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Abstract
In this article, new bounds for the mean and the variance of uniformly distributed discrete random variables are derived. It
is shown that the new results, under certain conditions, are better than the bounds of Bhatia and Davies reported in [Amer.
Math. Monthly 107 (2000) 353–357].
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1. Introduction

Let x1, x2, . . . , xn be given positive real numbers. LetX be the discrete random variable uniformly distributed on {x1, . . . , xn}.
The mean of X is defined as

µ(X) =
x1 + . . .+ xn

n
,

while the variance of X is defined as

σ2(X) =
(x1 − µ(X))2 + . . .+ (xn − µ(X))2

n
.

Let M and m be positive real numbers satisfying 0 < m ≤ xi ≤ M for each i = 1, 2, . . . , n. In the past, several bounds on
the variance of X, in terms of M and m, were given. Popoviciu in [3] proved the following inequality

σ2(X) ≤ 1

4
(M −m)2. (1)

The complementary Von Szokefalvi Nagy inequality [2] asserts that

σ2(X) ≥ (M −m)2

2n
. (2)

Popoviciu’s inequality (1) was improved by Bhatia and Davis in [1]; they proved

σ2(X) ≤ (M − µ(X))(µ(X)−m). (3)

A question about the relation between the variances of the variablesX andX2 was given on the 30th International Mathe-
matical Competition for undergraduate students, Vojtěch Jarnı́k, held in Czech Republic, 2022; this question asks to prove
the following inequality

σ2(X) ≥
( m

2M2

)2
σ2(X2). (4)

In this paper, new bounds for the variances of X are derived, which under certain conditions are better than the bound
(given in (3)) of Bhatia and Davis and than the bound obtained by Von Szokefalvi Nagy given in (2). Moreover, the inequality
(4) is generalized. The paper is ended with two new bounds for the mean of X.

2. Better bounds for the variance of X

New bounds for the variance in terms of M , m, and µ(X)

We start with an improvement of the well-known inequality (3) of Bhatia and Davis published in [1].
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Theorem 2.1. Let x1, . . . , xn be given real numbers with 0 < m ≤ xi ≤ M for each i ∈ {1, . . . , n} and let “a” numbers
among x1, . . . , xn take values M , and b numbers take value m. Let X be the discrete random variable uniformly distributed
on {x1, x2, . . . , xn}. Then

σ2(X) ≤ (M − µ(X))(µ(X)−m)− (n− a− b)(M −m− 1)

n
.

Proof. For xi which are different than M and m we get

M −m− 1 ≤ (M − xi)(xi −m) = −x2i + xi(M +m)−Mm (5)

with equality if and only if xi = m+ 1 or xi =M − 1. After adding all inequalities in (5) we get

(n− a− b)(M −m− 1) ≤ −
∑

m<xi<M

x2i − (n− a− b)Mm+ (nµ(X)− aM − bm)(M +m).

Thus, we get
n∑
i=1

x2i ≤ aM2 + bm2 − (n− a− b)(M −m− 1)− (n− a− b)Mm+ (nµ(X)− aM − bm)(M +m). (6)

From
σ2(X) =

∑n
i=1 x

2
i

n
− µ2(X)

and from (6), we get
σ2(X) ≤ (M − µ(X))(µ(X)−m)− (n− a− b)(M −m− 1)

n
,

where the equality holds if and only if xi ∈ {m,m+ 1,M − 1,M}.

Theorem 2.2. Let x1, . . . , xn be given real numbers with 0 < m ≤ xi ≤ M for each i ∈ {1, . . . , n}. Let X be the discrete
random variable uniformly distributed on {x1, x2, . . . , xn}. Then

σ2(X) ≤ (M2 +m2)

2Mmn(n− 2)
(nµ(X)−M −m)2 +

M2 +m2

n
− µ2(X).

Proof. We consider the expression

(Mxi −mxj)(Mxj −mxi) = (M2 +m2)xixj −Mm(x2i + x2j ). (7)

Without loss of generality, we assume that x1 = M and xn = m. The terms Mxi −mxj and Mxj −mxi are non-negative
for all i, j = 1, 2, . . . , n. By summing (7) over i, j = 2, 3, . . . , n− 1, we get

(M2 +m2)(x2 + . . .+ xn−1)
2 −Mm(2(n− 2)(x22 + . . .+ x2n−1)) ≥ 0

that is,
(M2 +m2)(nµ(X)−M −m)2 −Mm(2(n− 2)(x21 + . . .+ x2n −M2 −m2)) ≥ 0. (8)

From (8), we get
x21 + . . .+ x2n

n
≤ (M2 +m2)

2Mmn(n− 2)
(nµ(X)−M −m)2 +

(M2 +m2)

n
.

Thus, we have

σ2(X) =
x21 + . . .+ x2n

n
− µ2(X) ≤ (M2 +m2)

2Mmn(n− 2)
(nµ(X)−M −m)2 +

M2 +m2

n
− µ2(X).

Remark 2.1. Unfortunately, we are not able to compare our bound with the bound obtained by Bhatia and Davis. However,
by using Wolfram Alpha we found a lot of cases when our bound is better than the existing bounds.

We close this subsection with a lower bound for the variance of X in terms of M , n, and µ(X).

Theorem 2.3. Let x1, . . . , xn be given real numbers with 0 < m ≤ xi ≤ M for each i ∈ {1, . . . , n}. Let X be the discrete
random variable uniformly distributed on {x1, x2, . . . , xn}. Then

σ2(X) ≥ (M − µ(X))2

n− 1
. (9)
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Proof. Without loss of generality, we assume that M = x1. We begin by proving the inequality:

x21 + x22 + . . .+ x2n ≥
(x1 + x2 + . . .+ xn)

2

n
+

((n− 1)x1 − (x2 + x3 + . . .+ xn))
2

n(n− 1)
. (10)

The argument proceeds as follows. If we let S = x2 + x3 + . . .+ xn, the inequality (10) is equivalent to

n(n− 1)(x21 + x22 + . . .+ x2n) ≥ (n− 1)(x1 + S)2 + ((n− 1)x1 − S)2

which in turn is equivalent to
(n− 1)(x21 + x22 + . . .+ x2n) ≥ S2 + (n− 1)x21. (11)

Dividing (11) by n− 1 yields the equivalent inequality

x22 + x23 + . . .+ x2n ≥
(x2 + x3 + . . .+ xn)

2

n− 1

which holds because of the inequality between the quadratic and arithmetic means of the numbers x2, x3, . . . , xn. Conse-
quently, (10) holds as well. Now, the inequality (10) is equivalent to

x21 + . . .+ x2n ≥ nµ2(X) +
n(M − µ(X))2

n− 1
.

Hence
σ2(X) =

x21 + . . .+ x2n
n

− µ2(X) ≥ (M − µ(X))2

n− 1
.

Remark 2.2. It is easy to show that if µ(X) ≤ M −
√

n−1
2n (M −m) then the inequality (9) is better than the Von Szokefali

Nagi inequality (2).

A generalization of a competition problem
The Original Competition Problem. The 3rd problem (Category II) of the 30th International Mathematical Competi-
tion for undergraduate students, Vojtěch Jarnı́k, held in Czech Republic, 2022, was the following:

Let x1, . . . , xn be given real numbers with 0 < m ≤ xi ≤M for each i ∈ {1, . . . , n}. Let X be the discrete random
variable uniformly distributed on {x1, x2, . . . , xn}. The mean µ and the variance σ2 of X are defined as

µ(X) =
x1 + . . .+ xn

n
and σ2(X) =

(x1 − µ(X))2 + . . .+ (xn − µ(X))2

n
.

By X2 denote the discrete random variable uniformly distributed on {x21, . . . , x2n}. Prove that

σ2(X) ≥
( m

2M2

)2
σ2(X2). (12)

This problem was solved by 3 (out of 40) students, see [5]. In the next theorem, we generalize this problem and give a
significantly shorter proof than that of the original problem.

Theorem 2.4. Let x1, . . . , xn be given real numbers with 0 < m ≤ xi ≤ M for each i ∈ {1, . . . , n}. Let X be the discrete
random variable uniformly distributed on {x1, x2, . . . , xn}. The mean µ and the variance σ2 of X are defined as

µ(X) =
x1 + . . .+ xn

n
and σ2(X) =

(x1 − µ(X))2 + . . .+ (xn − µ(X))2

n
.

For i ≥ 1, by Xi denote the discrete random variable uniformly distributed on {xi1, . . . , xin}. Then

σ2(Xi) ≥
(
imi−1

jM j−1

)2

σ2(Xj). (13)

Proof. We have

σ2(Xi) =
(xi1 − µ(Xi))2 + . . .+ (xin − µ(Xi))2

n
=

(x2i1 + . . .+ x2in )− nµ2(Xi)

n

=
n(x2i1 + . . .+ x2in )− (xi1 + . . .+ xin)

2

n2
=

∑
1≤k<l≤n(x

i
k − xil)2

n2
.
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For each k 6= l, it suffices to show that

(xik − xil)2 ≥
(
imi−1

jM j−1

)2

(xjk − x
j
l )

2 ⇔ (xi−1
k + xi−2

k xl + . . .+ xi−1
l ) ≥

(
imi−1

jM j−1

)
(xj−1
k + xj−2

k xl + . . .+ xj−1
l ).

From 0 < m ≤ xi ≤M , we get
xi−1
k + xi−2

k xl + . . .+ xi−1
l

xj−1
k + xj−2

k xl + . . .+ xj−1
l

≥ imi−1

jM j−1
.

Remark 2.3. Setting i = 1 and j = 2 in (13), we get

σ2(X) ≥
(

1

2M

)2

σ2(X2). (14)

Since 1
2M ≥

m
2M2 , we observe that the inequality (14) is better than the inequality (12).

Remark 2.4. The inequality in (14) could be considered by combining the Popoviciu’s and Szokefalvi Nagi inequality. In
such a case, we need to show that

(M −m)2

2n
≥
(

1

2M

)2

· 1
4
(M2 −m2)2,

which obviously does not hold for n ≥ 8.

A Solution of the Competition Problem. For the sake of completeness, we outline a solution for the original competition
problem. First, we prove the following lemma:

Lemma 2.1. If x and y are strictly positive real numbers, then√
x

y
+

√
y

x
≥ 2 +

(x− y)2

2(x2 + y2)
.

Proof. We prove the following equivalent inequality

√
x

y
+

√
y

x
≥ 2 +

(
x
y

)2
− 2

(
x
y

)
+ 1

2

((
x
y

)2
+ 1

) .

Let t2 = x
y , t > 0. The required inequality is equivalent to the inequalities

t+
1

t
≥ 2 +

t4 − 2t2 + 1

2(t4 + 1)
⇔ 2t6 − 5t5 + 2t4 + 2t3 + 2t2 − 5t+ 2 ≥ 0.

Now, we easily show 2t6 − 5t5 + 2t4 + 2t3 + 2t2 − 5t+ 2 = (t− 1)4(2t2 + 3t+ 2) ≥ 0.

Let ai = x2
i

x2
1+...+x

2
n

and bi = 1
n for i = 1, . . . , n. By applying Lemma 2.1 for x = ai and y = bi, we obtain

x2i
x21 + . . .+ x2n

+
1

n
≥
(
2 +

(x2in− (x21 + . . .+ x2n))
2

2(x4in
2 + (x21 + . . .+ x2n)

2)

)
xi√

(n(x21 + . . .+ x2n)
. (15)

Now, if we sum up the obtained n inequalities in (15), we get

2 ≥ 2√
n(x21 + . . .+ x2n)

n∑
i=1

xi +
m√

n(x21 + . . .+ x2n)
· 1

2(M4 + µ2(X2))
·
n∑
i=1

(x2i −
x21 + . . .+ x2n

n
)2 ⇔

√
x21 + . . .+ x2n

n
≥
∑n
i=1 xi
n

+
m · σ2(X2)

4(M4 + µ2(X2))
= µ(X) +

m · σ2(X2)

4(M4 + µ2(X2))
⇔

√
µ(X2) ≥ µ(X) +

m · σ2(X2)

4(M4 +M4)
= µ(X) +

m · σ2(X2)

8M4
.

Finally, we get
σ2(X) = (

√
µ(X2)− µ(X))(

√
µ(X2) + µ(X)) ≥ mσ2(X2)

8M4
· 2m =

( m

2M2

)2
· σ2(X2).
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3. New bounds for the mean

Schweitzer in [4] proved the inequality (16) given in the following theorem.

Theorem 3.1. For 0 < m < M , and xi ∈ [m,M ] for i ∈ {1, . . . , n},(
1

n

n∑
i=1

xi

)(
1

n

n∑
i=1

1

xi

)
≤ (m+M)2

4mM
. (16)

As a consequence of Theorem 3.1, we obtain the next result.

Theorem 3.2. Let x1, . . . , xn be given real numbers with 0 < m ≤ xi ≤ M for each i ∈ {1, . . . , n}. Let X be the discrete
random variable uniformly distributed on {x1, x2, . . . , xn}. Then

µ(X)µ

(
1

X

)
≤ (m+M)2

4mM
.

It is well-known that µ
(

1
X

)
≥ 1

µ(X) , that is, µ(X)
(

1
X

)
≥ 1, (this relation is based on the inequality between the arith-

metic and the harmonic means for the numbers x1, . . . , xn). In the next result, we improve this relation by using Lemma
2.1.

Theorem 3.3. Let x1, . . . , xn be given real numbers with 0 < m ≤ xi ≤ M for each i ∈ {1, . . . , n}. Let X be the discrete
random variable uniformly distributed on {x1, x2, . . . , xn}. Then

µ(X)µ

(
1

X

)
≥
(
1 +

(M −m)2

2n(M2 +m2)

)2

.

Proof. Without loss of generality, we assume M = x1 ≥ x2 ≥ . . . ≥ xn = m. By using Cauchy-Schwarz inequality, we have

n2µ(X)µ

(
1

X

)
= (x1 + . . .+ xn)

(
1

xn
+

1

x2
+ . . .+

1

x1

)

≥
(√

x1
xn

+

√
x2
x2

+ . . .+

√
xn
x1

)2

=

(√
x1
xn

+

√
xn
x1

+ n− 2

)2

.

Now, from Lemma 2.1, the required result follows.
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