
Contributions to Mathematics
www.shahindp.com/locate/cm

Contrib. Math. 7 (2023) 24–33
DOI: 10.47443/cm.2023.002

Research Article

Stirling numbers and inverse factorial series

Khristo N. Boyadzhiev∗

Department of Mathematics, Ohio Northern University, Ada, Ohio 45810, USA

(Received: 12 January 2023. Received in revised form: 27 February 2023. Accepted: 1 March 2023. Published online: 8 March 2023.)

c© 2023 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract
We study inverse factorial series and their relation to Stirling numbers of the first kind. We prove a special representation
of the polylogarithm function in terms of series with such numbers. Using various identities for Stirling numbers of the first
kind we construct a number of expansions of functions in terms of inverse factorial series where the coefficients are special
numbers. These results are used to prove/reprove the asymptotic expansion of some classical functions. We also prove a
binomial formula involving inverse factorials.
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1. Introduction

The unsigned Stirling numbers of the first kind
[
n
k

]
first appeared in James Stirling’s book Methodus Differentialis (pub-

lished in Latin, in 1730); see [26] for the English translation of this book and comments. These numbers have numerous
applications in combinatorics and analysis (see [1,3,6,9,10,12,24]).

In this paper, we present various results involving the unsigned Stirling numbers of the first kind and inverse factorial
series. These numbers are usually defined by their ordinary generating function

x(x+ 1) . . . (x+ n− 1) =

n∑
k=0

[
n
k

]
xk (1)

or by their exponential generating function

[− ln(1− x)]k

k!
=

∞∑
n=k

[
n
k

]
xn

n!
, |x| < 1, k ≥ 0 (2)

(see [9,10]). However, there is another, less known generating function coming from the original works of James Stirling

1

xk+1
=

∞∑
n=k

[
n
k

]
1

x(x+ 1) . . . (x+ n)
(3)

in terms of inverse factorials (see [3] and [26, p.171]). Series of this form are called inverse factorial series. As shown
by Milne-Thomson in Chapter 10 of his book [16], for appropriate functions f(z) defined on a half-plane Re (z) > δ > 0

expansions of the form

f(z) =

∞∑
n=0

an
z(z + 1) . . . (z + n)

are convergent and the coefficients are uniquely determined. See also Whittaker and Watson [30, pp. 142-144]. Inverse
factorial series were thoroughly studied by Norlund in [18–20], Obrechkoff [22], and Watson [27], and in more recent
times by Wasow in [28, Chapter 11], Weniger [29], and Karp with Prilepkina [13]. Instead of listing general conditions for
convergence, in many cases, it is more practical to prove convergence by using the ratio test or the Raabe-Duhamel test.

Formula (3) brings immediately to an important result. Setting z = m, an integer, summing for m = 1, 2, . . . and
changing the order of summation, we come to the representation

ζ(k + 1) =

∞∑
n=k

[
n
k

] ∞∑
m=1

1

m(m+ 1) . . . (m+ n)
,
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where ζ(s) is Riemann’s zeta function

ζ(s) =

∞∑
n=1

1

ns
, Re(s) > 1.

It is easy to compute that
∞∑

m=1

1

m(m+ 1) . . . (m+ n)
=

1

n!n

(see, for example, [4]) and we obtain an important representation of the zeta function

ζ(k + 1) =

∞∑
n=k

[
n
k

]
1

n!n
. (4)

This result is not new; it was known to Charles Jordan at least in 1939 (see [12, Equation (6) on p. 166 and Equation (11)
on p. 194]). Jordan even proved a more general formula (see [12, p. 343]); for another proof see [4]. Informative comments
on Equation (4) can be found in Adamchik’s paper [1]; see also [24, Chapter 1, Problems 46 and 47].

In this paper we extend the representation (4) to the Hurwitz zeta function

ζ(s, a) =

∞∑
n=0

1

(n+ a)s
, Re (s) > 1, a > 0,

(see Proposition 2.1 in the next section). The next natural step is to replace the Riemann zeta function with the polyloga-
rithm

Lis(x) =

∞∑
n=1

xn

ns
(|x| ≤ 1).

This is our main result (Theorem 2.1 in Section 2). It represents an important extension since Lis(1) = ζ(s). In Section 3,
we list a number of examples of functions represented by inverse factorial series. In Section 4, with the help of Proposition
4.1 and using Stirling number identities, we generate new inverse factorial representations. Then in Section 5, again with
the help of Proposition 4.1, we obtain several important asymptotic expansions. Finally, in Section 6, we prove a formula
relating a binomial sum to inverse factorial series with unsigned Stirling numbers of the first kind.

2. Main results

Proposition 2.1. For the Hurwitz zeta function ζ(s, a) we have the representation

ζ(k + 1, a) = Γ(a)

∞∑
n=k

[
n
k

]
1

n Γ(n+ a)
(k ≥ 1, a > 0) (5)

which turns into (4) when a = 1.

Proof. With x = m+ a, m = 0, 1, 2, . . . we write (3) in the form

1

(m+ a)k+1
=

∞∑
n=k

[
n
k

]
1

(m+ a)(m+ a+ 1) . . . (m+ a+ n)

then summing for m = 0, 1, 2, . . . we come to

ζ(k + 1, a) =

∞∑
n=k

[
n
k

] { ∞∑
m=0

1

(m+ a)(m+ a+ 1) . . . (m+ a+ n)

}
.

Evaluating the sum in the braces gives
∞∑

m=0

1

(m+ a)(m+ a+ 1) . . . (m+ a+ n)
=

1

n Γ(n+ a)

and (5) is proved.

Next, we recall the harmonic numbers

Hn = 1 +
1

2
+ . . .+

1

n
, H0 = 0

which appear in the next proposition.
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Proposition 2.2. For any n ≥ 0

∞∑
p=1

xp+n

p(p+ 1) . . . (p+ n)
= Pn(x) +

(−1)n−1

n!
(1− x)n ln(1− x) (6)

where Pn(x) is the polynomial

Pn(x) =
1

n!

Hn(x− 1)n +

n−1∑
j=0

(
n
j

)
(x− 1)j

n− j

 =
1

n!

(
Hn(x− 1)n +

n∑
k=1

(
n
k

)
(x− 1)n−k

k

)
(7)

with Pn(1) = 1
n!n .

Proof. Let us set

fn(x) =

∞∑
p=1

xp+n

p(p+ 1) . . . (p+ n)

for n = 0, 1, . . . . Differentiating this function n times we find(
d

dx

)n

fn(x) =

∞∑
p=1

xp

p
= − ln(1− x).

We see that fn(x) is the n-th antiderivative of − ln(1 − x) satisfying the conditions (8) below. We will find a closed form
evaluation for the seriesfn(x).

Clearly (d/dx)fm(x) = fm−1(x). When n = 0,

f0(x) =

∞∑
p=1

xp

p
= − ln(1− x)

and f1, f2, . . . , fn are obtained from here by repeated integration. The constant of integration is taken zero each time so
that according to (4)

f1(1) =
1

1!1
, f2(1) =

1

2!2
, f3(1) =

1

3!3
, . . . , fn(1) =

1

n!n
. (8)

The process starts this way

f1(x) =

∫
− ln(1− x)dx =

∫
ln(1− x)d(1− x) = (1− x) ln(1− x) + x+ C = (1− x) ln(1− x) + x

then
f2(x) =

3

4
x2 − x

2
− 1

2
(1− x)2 ln(1− x)

etc. We evaluate each time at x = 1 by taking limits,

lim
x→1

(1− x)n ln(1− x) = 0, n = 1, 2, . . . .

Integrating repeatedly by parts, we come to the representation

fn(x) =

∞∑
p=1

xp+n

p(p+ 1) . . . (p+ n)
= Pn(x) +

(−1)n−1

n!
(1− x)n ln(1− x) (9)

where Pn(x) is a polynomial of degree n. For convenience, we write it in the form

Pn(x) = an(x− 1)n + an−1(x− 1)n−1 + . . .+ a1(x− 1) + a0.

Obviously, a0 = fn(1) = 1
n!n . To compute the other coefficients, we repeatedly differentiate in (9) and set x → 1. The

coefficient an requires a longer (but elementary) computation. Namely, differentiating Equation (9) n times and setting
x→ 1 brings to

0 = n!an +

n∑
k=1

(
n
k

)
(−1)k

k

and now using the well-known identity
n∑

k=1

(
n
k

)
(−1)k−1

k
= Hn ,

we find that n!an = Hn as desired. Thus we come to the representation (7), which completes the proof of the proposition.
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Setting x = −1 in (7) we compute that

Pn(−1) =
(−1)n2n

n!

n∑
k=1

1

2kk

and we find the next result.

Corollary 2.1. For every n ≥ 0 we have
∞∑
p=1

(−1)p

p(p+ 1) . . . (p+ n)
=

2n

n!

(
n∑

k=1

1

2kk
− ln 2

)
(10)

Now, we come to our main result, a theorem that extends the representation (4) to polylogarithms.

Theorem 2.1. For every integer k ≥ 0, and |x| < 1, we have

Lik+1(x) =

∞∑
n=k

[
n
k

]
1

xn

{
Pn(x) +

(−1)n−1

n!
(1− x)n ln(1− x)

}
(11)

where Pn(x) is the polynomial from (7).

Note that when we set x→ 1 in (11) the equation turns into (4), as Pn(1) = 1
n!n .

Proof. We write (3) in the form
1

pk+1
=

∞∑
n=k

[
n
k

]
1

p(p+ 1) . . . (p+ n)

then multiply both sides by xp and sum for p from 1 to infinity. After changing the order of summation, we write

Lik+1(x) =

∞∑
n=k

[
n
k

]
1

xn

{ ∞∑
p=1

xp+n

p(p+ 1) . . . (p+ n)

}

and the result follows now from Proposition 2.2. The proof is completed.

Remark 2.1. As mentioned above, Equation (9) represents the nth antiderivative of − ln(1− x) with the conditions (8). The
functions f2(x) and f3(x) can be found in the table [21] of Prudnikov et al.; f2 is entry 5.2.6 (3) and f3 is entry 5.2.6(12). They
are also listed in Hansen’s table [11], f2 is entry 5.7.40, and f3 is entry 5.6.29. The table [11] has some general formulas
similar to (9) like 10.4.15 and 10.4.17. Hansen refers to the works of Schwatt (see [23, pp. 191-192]). The functions fn were
also studied by Mathar [14], and a similar study can be found in [15].

We finish this section with a related result. Consider the Dirichlet series

H(s) =

∞∑
n=1

Hn

ns
(Res > 1).

It is reasonable to ask the same question: can we express H(k + 1) in terms of
[
n
k

]
? The affirmative answer is given in the

following proposition.

Proposition 2.3. For every k ≥ 1,
∞∑
p=1

Hp

pk+1
=

∞∑
n=k

[
n
k

]
ψ′(n)

n!
(12)

and also (
k + 3

2

)
ζ(k + 2)− 1

2

k−1∑
j=1

ζ(j + 1)ζ(k − j + 1) =

∞∑
n=k

[
n
k

]
ψ′(n)

n!
,

where ψ(z) = Γ′(z)/Γ(z) is the digamma function.

Proof. From (3) we have
Hp

pk+1
=

∞∑
n=k

[
n
k

]
Hp

p(p+ 1) . . . (p+ n)

and then we sum for p = 1, 2, . . .. Interchanging the summations on the right-hand side we write
∞∑
p=1

Hp

pk+1
=

∞∑
n=k

[
n
k

] { ∞∑
p=1

Hp

p(p+ 1) . . . (p+ n)

}
.
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It is known that for n ≥ 1
∞∑
p=1

Hp

p(p+ 1) . . . (p+ n)
=

1

n!

∞∑
m=0

1

(n+m)2
=
ψ′(n)

n!

(see, for instance, [4]). The Euler sums on the left hand side in (12) have the closed form evaluation [1]
∞∑
p=1

Hp

pk+1
=

(
k + 3

2

)
ζ(k + 2)− 1

2

k−1∑
j=1

ζ(j + 1)ζ(k − j + 1)

and this completes the proof.

3. Examples of inverse factorial series

First, we list several known series, and then we add some new ones.

Example 3.1. Using the properties [
n+ 1

1

]
= n!,

[
n+ 1

2

]
= n!Hn

we find from (3) with k = 1and k = 2 the following two expansions

1

z − 1
=

∞∑
n=0

n!

z(z + 1) . . . (z + n)
, (13)

1

(z − 1)2
=
∞∑

n=0

n!Hn

z(z + 1) . . . (z + n)
,

by making in (3) the substitutions n→ n+ 1, z → z − 1.

Both series are convergent for Re (z) > 1. This convergence can be verified by the Raabe-Duhamel test. For instance, if
an is the general term of the series in (13) we have for real z > 1,

lim n

(
an
an+1

− 1

)
= z > 1.

The Raabe-Duhamel test also confirms the convergence in the following several expansions.
Let w be a complex number. A series extending (13) is

1

z − w
=

∞∑
n=0

w(w + 1) . . . (w + n− 1)

z(z + 1) . . . (z + n)
(14)

convergent for Re (z) > Re (w) (see [19, p. 222]).

Example 3.2. Another example in the same spirit is the series

1

(z − 1)(z − 2)
=

∞∑
n=0

n!n

z(z + 1) . . . (z + n)
, Re (z) > 2 (15)

(cf. entry 6.6.14 in Hansen’s table [11]).

Example 3.3. Next (see [11, 6.6.39]) we have

ψ′ (z) =

∞∑
n=0

1

(z + n)2
=

∞∑
n=0

n!

n+ 1

1

z(z + 1) . . . (z + n)
, Re (z) > 0 (16)

where again ψ(z) = Γ′(z)/Γ(z) is the digamma function.

Example 3.4. Consider the beta function

β(z) =

∫ 1

0

tz−1

t+ 1
dt =

∫ ∞
0

e−z t

e−t + 1
dt =

∞∑
n=0

(−1)n

n+ z
, Re (z) > 0.

This function was studied by Niels Nielsen [17] and is often called Nielsen’s beta function. For some properties and
important integrals related to β(z), see [8]. Integration by parts gives

β(z) =
1

2z
+

1

z

∫ 1

0

tz

(t+ 1)
dt

and repeating this, again and again, we come to the expansion

β (z) =

∞∑
n=0

n!

2n+1

1

z(z + 1) . . . (z + n)
. (17)
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This representation appears in Nielsen’s book [17, p. 81]. It also appears in Norlund’s paper [18, p. 352].

Example 3.5. Consider the lower incomplete gamma function

γ(z, x) =

∫ x

0

tz−1e−tdt, x > 0, Re (z) > 0.

We have (Temme [25, p. 279])

γ(z, x) = xze−x
∞∑

n=0

xn

z(z + 1) . . . (z + n)
.

Convergence follows from the ratio test.

Example 3.6. Jacques Binet proved the expansion for the log-gamma function

ln Γ(z) =

(
z − 1

2

)
ln z − z + ln

√
2π +

∞∑
n=1

an
(z + 1)(z + 2) . . . (z + n)

where
an =

1

n

∫ 1

0

(
t− 1

2

)
t(t+ 1) . . . (t+ n− 1) dt.

We can write this in the form (with a0 = 0)

1

z
ln

Γ(z)√
2π
−
(

1− 1

2z

)
ln z + 1 =

∞∑
n=0

an
z(z + 1)(z + 2) . . . (z + n)

(see Whittaker and Watson [30, p. 253]).

Inverse factorial series also appeared in the works of Ramanujan, as discussed by Berndt in [2]. More details are given
in Section 5.

4. Generating new inverse factorial representations

The following proposition makes it possible to generate more inverse factorial representations.

Proposition 4.1. Let a0, a1, . . . , an, . . . be a sequence. Then we formally have

∞∑
k=0

ak
z k+1

=

∞∑
n=0

1

z(z + 1) . . . (z + n)

{
n∑

k=0

[
n
k

]
ak

}
. (18)

Proof. For the proof, we multiply both sides in (3) by ak, sum for k from zero to infinity and change the order of summation.
We do not discuss convergence in the general case. Convergence can be checked easily in all particular examples below.

Using the Stirling sequence transformation

bn =

n∑
k=0

[
n
k

]
ak

we can generate various inverse factorial representations. A short table of Stirling transform identities can be found in
the Appendix in [5]. The entries in this table are written in terms of the (signed) Stirling numbers of the first kind s(n, k)

for which [
n
k

]
= (−1)n−ks(n, k) (19)

and in terms of s(n, k) formula (18) can be written in the form

∞∑
k=0

(−1)kak
z k+1

=

∞∑
n=0

(−1)n

z(z + 1) . . . (z + n)

{
n∑

k=0

s(n, k) ak

}
(20)

replacing ak by (−1)kak and using (19).
The representations (13) follow from the identities

n∑
k=0

[
n
k

]
= n!,

n∑
k=0

[
n
k

]
k = n!Hn.
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Example 4.1. In the same line, using the identity
n∑

k=0

[
n
k

]
k2 = n!

(
Hn +H2

n −H (2)
n

)
where H (2)

n = 1 + 1
22 + . . .+ 1

n2 , we find from (18) the representation
∞∑
k=0

k2

z k+1
=

∞∑
n=0

n!

z(z + 1) . . . (z + n)

(
Hn +H2

n −H (2)
n

)
.

Computing the series on the left-hand side for z > 1 we come to the inverse factorial series

z + 1

(z − 1)3
=

∞∑
n=0

n!

z(z + 1) . . . (z + n)

(
Hn +H2

n −H (2)
n

)
.

Example 4.2. In this example, we use the Stirling numbers of the second kind S(n,m) which can be defined by the
generating function

∞∑
n=0

S(n,m) xn =
xm

(1− x)(1− 2x) . . . (1−mx)
. (21)

For any two integers 0 ≤ p ≤ n the following identity is true, [5, entry (A30)]
n∑

k=0

[
n
k

]
S(k + 1, p+ 1) =

n!

p!

(
n
p

)
.

According to Proposition 4.1 this implies the series identity
∞∑
k=0

S(k + 1, p+ 1)

z k+1
=

1

p!

∞∑
n=0

n!

z(z + 1) . . . (z + n)

(
n
p

)
. (22)

In view of (21) with x = 1/z we find the representation

1

(z − 1)(z − 2) . . . (z − p− 1)
=

1

p!

∞∑
n=0

n!

z(z + 1) . . . (z + n)

(
n
p

)
(23)

convergent for Re (z) > p+ 1. For p = 0 this is Equation (13) and for p = 1 this is (15).

Example 4.3. Let dn be the sequence of Cauchy numbers of the second kind defined by the generating function

−x
(1− x) ln (1− x)

=

∞∑
n=0

dn
xn

n!

(see [9, p. 293]). The numbers dn for n = 0, 1, . . ., satisfy the identity, [5, entry (A42)]
n∑

k=0

[
n
k

]
1

k + 1
= (−1)ndn

and from Proposition 4.1 it follows that
∞∑
k=0

1

(k + 1) z k+1
=

∞∑
n=0

(−1)ndn
z(z + 1) . . . (z + n)

, z > 1.

The series on the left is easy to recognize, and so we have the representation

− ln

(
1− 1

z

)
=

∞∑
n=0

(−1)ndn
z(z + 1) . . . (z + n)

, z > 1. (24)

It is interesting to compare this to the representation

ln

(
1 +

1

z

)
=

∞∑
n=0

(−1)ncn
z (z + 1) . . . (z + n)

, z > 0 (25)

where cn are the Cauchy numbers of the first kind defined by

x

ln(1 + x)
=

∞∑
n=0

cn
xn

n!

(see [6,9] , and [30, p. 144]). A similar representation can be found in [20, p. 244].
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5. Asymptotic expansions

We can use Proposition 4.1 to obtain asymptotic series on the powers of z−n−1 for functions with inverse factorial represen-
tations. We will use this proposition to give proofs for the asymptotic representation of Nielsen’s beta function β(z) from
Example 3.4, the incomplete gamma function γ(z, x), and also ψ′(z). We can use either Equation (18) or Equation (20).
Setting

β (z) =

∞∑
n=0

n!

2n+1

1

z(z + 1) . . . (z + n)
=

∞∑
n=0

1

z(z + 1) . . . (z + n)

{
n∑

k=0

[
n
k

]
ak

}
we solve for ak from the equation

n∑
k=0

[
n
k

]
ak =

n!

2n+1
.

Using the formulas for the Stirling transform of sequences (see the Appendix in [5]) we have

(−1)nan =

n∑
k=0

S(n, k)k!
(−1)k

2k+1
=

1

2

n∑
k=0

S(n, k)k!

(
−1

2

)k

.

At this point, we involve the geometric polynomials

ωn(x) =

n∑
k=0

S(n, k)k!xk (26)

introduced and studied in [7]. It is known that

ωn

(
−1

2

)
=

2

n+ 1
(1− 2n+1)Bn+1 = En(0)

where Bk are the Bernoulli numbers and Ek(x) are the Euler polynomials. For the first equality, see the solution of [10,
problem 6.76 p. 559]. For the second equality, see [3]. This way, we have

an =
(−1)n

n+ 1
(1− 2n+1)Bn+1 =

(−1)n

2
En(0)

and we come to the following proposition.

Proposition 5.1. Nielsen’s beta function has the asymptotic series

β(z) =

∞∑
n=0

(−1)n(1− 2n+1)Bn+1

n+ 1

1

zn+1
=

1

2

∞∑
n=0

(−1)nEn(0)
1

zn+1
. (27)

(Compare to [2, Example 1, p. 145]). In the same way, we can use the representation of the incomplete gamma function
γ(z, x) from Example 3.5. Solving for the coefficients an from the equation

n∑
k=0

[
n
k

]
ak = xn (28)

we find that
an = (−1)n

n∑
k=0

S(n, k)(−1)kxk. (29)

This time we use the exponential polynomials

ϕn(x) =

n∑
k=0

S(n, k)xk

(see [3, 7]). These polynomials appeared in the works of Ramanujan [2], E.T. Bell, J. Touchard, Gian-Carlo Rota, and
many others. As mentioned in [3], these polynomials were used as early as 1843 by the prominent German mathematician
Johann A. Grunert.

Equation (29) says that an = (−1)nϕn(−x), so that we have

γ(z, x) = xze−x
∞∑

n=0

(−1)nϕn(−x)
1

zn+1

in accordance with [7, Proposition 5.1] proved there by a different method.
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We notice that Equations (28) and (29) in view of Proposition 2.3 lead to the interesting formula
∞∑

n=0

xn

z(z + 1) . . . (z + n)
=

∞∑
k=0

(−1)nϕn(−x)
1

z k+1
(30)

which is Ramanujan’s [2, Example (c), p.145] (see also [2, p. 47]). In a similar manner, using the representation from
Example 3.3

ψ′ (z) =

∞∑
n=0

n!

n+ 1

1

z(z + 1) . . . (z + n)
=

∞∑
n=0

(−1)nn!

n+ 1

(−1)n

z(z + 1) . . . (z + n)
.

We compare this to (20) and solve for ak from the equation

(−1)nn!

n+ 1
=

n∑
k=0

s(n, k) ak

to find
an =

n∑
k=0

S(n, k)
(−1)kk!

k + 1

which are exactly the Bernoulli numbers [3], an = Bn. In view of (20), we find a new proof of the asymptotic expansion

ψ′ (z) =
∞∑
k=0

(−1)kBk

zk−1
.

6. A binomial formula with inverse factorials

In this short section, we prove a formula relating a binomial sum and an inverse factorial series with Stirling numbers of
the first kind.

Proposition 6.1. For any three integers p ≥ 1, k ≥ 0, m ≥ 0 we have
m∑
j=0

(
m
j

)
(−1)j

(j + p)k+1
= (p− 1)!

∞∑
n=0

[
n
k

]
1

n!(n+m+ 1)(n+m+ 2) . . . (n+m+ p)
. (31)

Proof. We start with the (exponential) generating function for the unsigned Stirling numbers of the first kind

(−1)k lnk(1− x) = k!

∞∑
n=0

[
n
k

]
xn

n!

where |x| < 1. We multiply both sides by xm(1− x)p−1 and integrate between 0 and 1 to get

(−1)k
∫ 1

0

xm(1− x)p−1 lnk(1− x)dx = k!

∞∑
n=0

[
n
k

]
1

n!

∫ 1

0

xn+m(1− x)p−1dx. (32)

In the integral on the left-hand side, we make the substitution 1− x = e−t

(−1)k
∫ 1

0

xm(1− x)p−1 lnk(1− x)dx =

∫ ∞
0

(1− e−t)me−pt+ttke−tdt

=

m∑
j=0

(
m
j

)
(−1)j

∫ ∞
0

tke−(j+p)tdt = k!

m∑
j=0

(
m
j

)
(−1)j

1

(j + p)k+1
.

For the integral on the right-hand side, we use the representation∫ 1

0

xn+m(1− x)p−1dx =
(p− 1)!

(n+m+ 1)(n+m+ 2) . . . (n+m+ p)

which comes from Euler’s Beta function

B(u, v) =

∫ 1

0

xu−1(1− x)v−1dx =
Γ(u)Γ(v)

Γ(u+ v)
.

Equating both sides in (32), we come to the desired formula.
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Example 6.1. In particular, by taking p = 1 in Equation (31), we have
m∑
j=0

(
m
j

)
(−1)j

(j + 1)k+1
=

∞∑
n=0

[
n
k

]
1

n! (n+m+ 1)
.

For m = 0, m = 1, and m = 2 this gives correspondingly

1 =

∞∑
n=0

[
n
k

]
1

n!(n+ 1)
,

1− 1

2k+1
=

∞∑
n=0

[
n
k

]
1

n!(n+ 2)
, and

1− 1

2k
+

1

3k+1
=

∞∑
n=0

[
n
k

]
1

n!(n+ 3)
.
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