On graphs with prescribed chromatic number and subset index

Gary Chartrand ${ }^{1}$, Ebrahim Salehi ${ }^{2}$, Ping Zhang ${ }^{1, *}$
${ }^{1}$ Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49008-5248, USA
${ }^{2}$ Department of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas, Nevada 89154-4020, USA

(Received: 21 October 2022. Accepted: 5 December 2022. Published online: 9 December 2022.)
© 2022 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

For a nontrivial graph G, a subset labeling of G is a labeling of the vertices of G with nonempty subsets of the set $[r]=\{1,2, \ldots, r\}$ for a positive integer r such that two vertices of G have disjoint labels if and only if the vertices are adjacent. The subset index of G is the minimum positive integer r for which G has such a subset labeling from the set $[r]$. Structures of graphs with prescribed subset index are investigated. It is shown that for every two integers a and b with $2 \leq a \leq b$, there exists a connected graph with chromatic number a and subset index b.

Keywords: chromatic number; subset labeling; subset index.
2020 Mathematics Subject Classification: 05C15, 05C75, 05C78.

1. Introduction

While studying an article on quadratic forms, the German mathematician Martin Kneser became interested in the behavior of partitions of the family of k-element subsets of an n-element set (see [4]). For positive integers k and n with $n>2 k$, there exists a partition of the k-element subsets of the n-element set $[n]=\{1,2, \ldots, n\}$ into $n-2 k+2$ classes such that no pair of disjoint k-element subsets belong to the same class. Kneser asked the following question:

For positive integers k and n with $n>2 k$, does there exist a partition of the k-element subsets of $[n]$ into $n-2 k+1$ classes such that no pair of disjoint k-element subsets belong to the same class?

Kneser [4] conjectured that such a partition was impossible. In 1978 Lovász [5] verified Kneser's Conjecture using graph theory which led to a class of graphs called Kneser graphs.

For positive integers k and n with $n>2 k$, the Kneser graph $K G_{n, k}$ is that graph whose vertices are the k-element subsets of $[n]$ and where two vertices (k-element subsets) A and B are adjacent if and only if A and B are disjoint. Consequently, the Kneser graph $K G_{n, 1}$ is the complete graph K_{n}, and the Kneser graph $K G_{5,2}$ is isomorphic to the Petersen graph. In terms of graph theory, Kneser's Conjecture became:

Kneser's Conjecture. There exists no $(n-2 k+1)$-coloring of the Kneser graph $K G_{n, k}$.
Lovász [5] verified the conjecture by determining the chromatic number $\chi\left(K G_{n, k}\right)$ of the Kneser graph $K G_{n, k}$ for positive integers k and n with $n>2 k$.

Theorem 1.1. For every two positive integers k and n with $n>2 k$,

$$
\chi\left(K G_{n, k}\right)=n-2 k+2 .
$$

In 1961, Paul Erdős, Chao Ko, and Richard Rado [3] determined the independence number $\alpha\left(K G_{n, k}\right)$ of the Kneser graph $K G_{n, k}$ when $n>2 k$. This result is often referred to as the Erdős-Ko-Rado Theorem.

Theorem 1.2. For every two positive integers k and n with $n>2 k$,

$$
\alpha\left(K G_{n, k}\right)=\binom{n-1}{k-1}
$$

[^0]In other words, if G is an unlabeled graph isomorphic to the Kneser graph $K G_{n, k}$, then it is possible to label the vertices of G with distinct k-element subsets of the set $[n]=\{1,2, \ldots, n\}$ in such a way that two vertices of G have disjoint labels if and only if the vertices are adjacent. This brings up the question of considering other familiar graphs G and determining the existence of sets $[r]$ for positive integers r such that the vertices of G can be labeled with nonempty subsets of $[r]$, not necessarily of the same cardinality, so that the labels of two vertices are disjoint if and only if these two vertices of G are adjacent. Such a labeling of a graph G is called a subset labeling of G, a concept introduced in [1]. For a positive integer r, the power set of $[r]$, namely the set of all subsets of $[r]$, is denoted by $\mathcal{P}([r])$, while $\mathcal{P}^{*}([r])$ denotes the set of all nonempty subsets of $[r]$. Thus, $\left|\mathcal{P}^{*}([r])\right|=2^{r}-1$. That every graph has a subset labeling was established in [1]. It is useful to include an independent proof of this fact here.

Theorem 1.3. Every graph has a subset labeling.

Proof. We proceed by induction on the order n of a graph. The result is immediate for small values of n, say $n \in\{2,3,4\}$. Assume that the statement is true for all graphs of order n for an integer $n \geq 4$ and let G be a graph of order $n+1$. Let v be a vertex of G where $\operatorname{deg}_{G} v=p$ with $0 \leq p \leq n$ and let $G^{\prime}=G-v$. Since G^{\prime} is a graph of order n, it follows by the induction hypothesis that G^{\prime} has a subset labeling f^{\prime}, say $f^{\prime}: V(G) \rightarrow \mathcal{P}^{*}([k])$ for some positive integer k. Let $V\left(G^{\prime}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, where either v is an isolated vertex or $N_{G}(v)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ with $1 \leq p \leq n$. Define a vertex labeling $f: V(G) \rightarrow \mathcal{P}^{*}([n+k+1])$ of G by

$$
f(x)= \begin{cases}f^{\prime}\left(v_{i}\right) \cup\{k+i\} & \text { if } x=v_{i} \text { for } 1 \leq i \leq n \\ \{k+p+1, k+p+2, \ldots, k+n+1\} & \text { if } x=v\end{cases}
$$

Since for vertices $x, y \in V(G)$, we have $f(x) \cap f(y)=\emptyset$ if and only if $x y \in E(G)$, it follows that f is a subset labeling of G.
The minimum positive integer r for which a graph G has such a subset labeling from the set $[r]$ is called the subset index of G, denoted by $\rho(G)$. We refer to the book [2] for graph theory notation and terminology not described in this paper. The subset index has been studied in [1,6], where it has been determined for paths and cycles of small order.

Theorem 1.4. For $3 \leq n \leq 24$,

n	$3 \leq n \leq 6$	7	$8 \leq n \leq 11$	$12 \leq n \leq 22$	23,24
$\rho\left(P_{n}\right)$	$n-1$	5	6	7	8

In particular, the smallest positive integer n for which $\rho\left(P_{n}\right)=9$ is not known. The fact that $\rho\left(P_{n}\right) \leq \rho\left(P_{n+1}\right)$ for every integer $n \geq 2$ is a consequence of the following fact [1]; while Theorem 1.5 shows that this is not the case for cycles.

Proposition 1.1. If H is an induced subgraph of a graph G, then $\rho(H) \leq \rho(G)$.
Theorem 1.5. For $3 \leq n \leq 18$,

n	3	4	5,6	7	8	9	10	11	12,13	14	$15 \leq n \leq 18$
$\rho\left(C_{n}\right)$	3	2	5	7	6	7	6	8	7	8	7

2. On graphs with a given subset index

For a given nontrivial connected graph G, there is a class of graphs associated with G that was constructed in [1] (by the means of the composition of graphs), all of which have the same subset index as G. More precisely, let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let H be the graph obtained from G by replacing each vertex $v_{i}(1 \leq i \leq n)$ of G with the empty graph $\bar{K}_{q_{i}}$ of order q_{i}. Hence, the vertex set of H is $\cup_{i=1}^{n} V\left(\bar{K}_{q_{i}}\right)$ and two vertices u and w of H are adjacent in H if $u \in V\left(\bar{K}_{q_{i}}\right)$ and $w \in V\left(\bar{K}_{q_{j}}\right)$ where $v_{i} v_{j} \in E(G)$. The graph H is referred to as the composition graph of G and $\bar{K}_{q_{1}}, \bar{K}_{q_{2}}, \ldots, \bar{K}_{q_{n}}$ and is often denoted by $G\left[\bar{K}_{q_{1}}, \bar{K}_{q_{2}}, \ldots, \bar{K}_{q_{n}}\right]$. The following result was established in [1].

Theorem 2.1. For a nontrivial connected graph G with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, let H be the composition graph of G and $\bar{K}_{q_{1}}, \bar{K}_{q_{2}}, \ldots, \bar{K}_{q_{n}}$. Then

$$
\rho(H)=\rho(G)
$$

By Theorem 2.1, a composition graph can be constructed from P_{4}, K_{3}, or the corona cor $\left(K_{3}\right)$ of K_{3} (obtained from K_{3} by adding a pendant edge at each vertex of K_{3}), all of which have subset index 3 , by replacing each vertex v_{i} by an empty graph, resulting in another graph having subset index 3. For example, for $F=\operatorname{cor}\left(K_{3}\right)$ where $V(F)=\left\{v_{1}, v_{2}, \ldots, v_{6}\right\}$, let \mathcal{H} be the set of all composition graphs $F\left[\bar{K}_{q_{1}}, \bar{K}_{q_{2}}, \ldots, \bar{K}_{q_{6}}\right]$, where $q_{1}, q_{2}, \ldots, q_{6}$ are positive integers. Then $\rho(H)=3$ for every graph $H \in \mathcal{H}$.

For a positive integer n, let F_{n} be the graph of order $2^{n}-1$ whose vertices are labeled with nonempty subsets of $[n]$ such that two vertices of F_{n} have disjoint labels if and only if the vertices are adjacent. Thus, the vertex labeled $[n]$ is an isolated vertex of F_{n}. The graphs F_{3} and F_{4} are shown in Figure 1. (For simplicity, we write the set $\{a\}$ as $a,\{a, b\}$ as $a b,\{a, b, c\}$ as $a b c$, and so on.) For $n \geq 2, F_{n}=G_{n}+K_{1}$, where G_{n} is a connected graph of order $2^{n}-2$. For example, $G_{3}=\operatorname{cor}\left(K_{3}\right)$.

Figure 1: The graphs F_{3} and F_{4}.
Let $\mathcal{F}_{1}=\left\{K_{1}\right\}$ and for $n \geq 2$, let \mathcal{F}_{n} denote the set of all graphs that are isomorphic to an induced subgraph of F_{n} but not to an induced subgraph of F_{n-1}. In particular, $G_{n}, F_{n} \in \mathcal{F}_{n}$. Thus, $\mathcal{F}_{2}=\left\{K_{2}, K_{1}+K_{2}\right\}$. If we let $A=\left\{\operatorname{cor}\left(K_{3}\right), K_{3}, H_{1}, H_{2}, P_{4}\right\}$, where H_{1} and H_{2} are the graphs shown in Figure 2, and $B=\left\{G+K_{1}: G \in A\right\}$, then $\mathcal{F}_{3}=A \cup B$.

Figure 2: The graphs H_{1} and H_{2}.
A graph H is called a magnified copy of a graph G (or simply a magnified G) where $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ if H is isomorphic to a graph obtained from G by replacing each vertex v_{i} of G by $\bar{K}_{q_{i}}$ for some positive integer q_{i} in a composition of G. If H is a magnified G, then $\rho(H)=\rho(G)$. If $H \cong G$, then H is a trivially magnified G. If the only graph of which G is a magnified graph is G itself, then G is called a basis graph. The set \mathcal{F}_{n}^{*} consists of all graphs that are magnified graphs of the graphs in \mathcal{F}_{n}. This set \mathcal{F}_{n}^{*} is therefore the set of all graphs F with $\rho(F)=n$. In the definition of \mathcal{F}_{n}, the term induced subgraph cannot be replaced by subgraph. For example, P_{5} is a subgraph of F_{3} but not an induced subgraph of F_{3}. We have seen that $\rho\left(P_{5}\right) \neq 3$; in fact, $\rho\left(P_{5}\right)=4$. We can now describe all those graphs having subset index 2 or 3 (see [1]).

Proposition 2.1. A connected graph G has subset index 2 if and only if G is a complete bipartite graph.
Proof. Since $F_{2}=K_{2}+K_{1}$, the only induced subgraph of F_{2} without isolated vertices is K_{2}. Therefore, the only nontrivial component of G is a complete bipartite graph.

Corollary 2.1. A graph G has subset index 2 if and only if the only nontrivial component of G is a complete bipartite graph.
Proposition 2.2. A connected graph G has subset index 3 if and only if G is a magnified cor $\left(K_{3}\right)$, a magnified K_{3}, a magnified P_{4}, a magnified H_{1}, or a magnified H_{2}, where H_{1} and H_{2} are shown in Figure 2. Consequently, every complete 3partite graph has subset index 3.

Proof. Since $F_{3}=\operatorname{cor}\left(K_{3}\right)+K_{1}$, the only induced subgraphs of F_{3} without isolated vertices (that are not induced subgraphs of F_{2}) are $\operatorname{cor}\left(K_{3}\right), K_{3}, H_{1}$, or H_{2}, P_{4}, which gives the desired result. Since a magnified K_{3} is a complete 3-partite graph, every complete 3-partite graph has subset index 3. By Theorem 2.1, a magnified P_{4} has subset index 3.

Corollary 2.2. A graph G has subset index 3 if and only if the only nontrivial component of G is a magnified $\operatorname{cor}\left(K_{3}\right), a$ magnified K_{3}, a magnified P_{4}, a magnified H_{1}, or a magnified H_{2}, where H_{1} and H_{2} are shown in Figure 2.

We now describe some properties of the graph F_{n} for a given positive integer n.
Theorem 2.2. For each positive integer $n, \omega\left(F_{n}\right)=n$.
Proof. Let $f: V\left(F_{n}\right) \rightarrow \mathcal{P}^{*}([n])$ be a subset labeling of F_{n} and let $S=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the set of those vertices $u_{i}, 1 \leq i \leq n$, for which $f\left(u_{i}\right)=\{i\}$. Since $f\left(u_{i}\right) \cap f\left(u_{j}\right)=\emptyset$ for each pair i, j of integers with $1 \leq i<j \leq n$, it follows that $F_{n}[S]=K_{n}$ and so $\omega\left(F_{n}\right) \geq n$. It remains to show that $\omega\left(F_{n}\right) \leq n$. Let $A=\left\{v_{1}, v_{2}, \ldots, v_{n+1}\right\}$ be an arbitrary set of $n+1$ vertices of F_{n}. Suppose that $f\left(v_{i}\right)=S_{i} \in \mathcal{P}^{*}([n])$ for $1 \leq i \leq n+1$. Let a_{i} be the minimum element of $[n]$ belonging to S_{i} where $1 \leq i \leq n+1$. We may assume that $a_{i} \leq a_{i+1}$ for $1 \leq i \leq n$. Thus,

$$
1 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n+1} \leq n
$$

Hence, there is an integer j with $1 \leq j \leq n$ such that $a_{j}=a_{j+1}$. Since $a_{j} \in S_{j} \cap S_{j+1}$, it follows that S_{j} and S_{j+1} are not disjoint and so $v_{j} v_{j+1} \notin E\left(F_{n}\right)$. Hence, $F_{n}[A]$ is not a clique of F_{n}. Therefore, $\omega\left(F_{n}\right) \leq n$ and so $\omega\left(F_{n}\right)=n$.

Since the subgraph of F_{n} induced by S is K_{n} and $\omega\left(F_{n-1}\right)=n-1$ by Theorem 2.2, it follows that K_{n} is not an induced subgraph of F_{n-1}. Therefore, $\rho\left(K_{n}\right)=n$.

Proposition 2.3. For each integer $n \geq 2$, every complete n-partite graph has subset index n.
Proof. We have seen that $\omega\left(F_{n}\right)=n$ by Theorem 2.2. Thus, the complete graph K_{n} is an induced subgraph of F_{n} but not an induced subgraph of F_{n-1}. Since a magnified K_{n} is a complete n-partite graph, it follows that every complete n-partite graph has subset index n.

Theorem 2.3. For each positive integer $n, \chi\left(F_{n}\right)=n$.
Proof. The statement is immediate for $n=1,2,3$. Thus, we may assume that $n \geq 4$. Since $\omega\left(F_{n}\right)=n$ by Theorem 2.2, it follows that $\chi\left(F_{n}\right) \geq n$. It remains to show that $\chi\left(F_{n}\right) \leq n$. Let $V\left(F_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{2^{n}-1}\right\}$ and let $f: V\left(F_{n}\right) \rightarrow \mathcal{P}^{*}([n])$ be a subset labeling of F_{n} where $f\left(v_{i}\right)=A_{i}$ for $1 \leq i \leq 2^{n}-1$. Next, let a_{i} be the minimum element of $[n]$ belonging to A_{i} where $1 \leq i \leq 2^{n}-1$. For $j=1,2, \ldots, n$, let $V_{j}=\left\{v_{i}: a_{i}=j\right\}$. Thus, $\left|V_{n}\right|=1$. If v_{r} and v_{s} are distinct vertices of V_{j} where $1 \leq j \leq n$, then $j \in f\left(v_{r}\right) \cap f\left(v_{s}\right)=A_{r} \cap A_{s}$ and so $v_{r} v_{s} \notin E\left(F_{n}\right)$. Hence, V_{j} is a set of independent vertices of F_{n} for $1 \leq j \leq n$. Assigning the color j to all vertices in $V_{j}(1 \leq j \leq n)$ produces a proper n-coloring of F_{n}. Therefore, $\chi\left(F_{n}\right) \leq n$ and so $\chi\left(F_{n}\right)=n$.

If G is a graph with $\chi(G)=k$, then G is not a magnified graph of any subgraph of F_{n} where $n<k$. Thus, $\rho(G) \geq k$. For example, $\chi\left(P_{4}\right)=2$ but $\rho\left(P_{4}\right)=3$. Each of the graphs G_{1} and G_{2} in Figure 3 belongs to \mathcal{F}_{4} but not to \mathcal{F}_{3}. Thus, $\rho\left(G_{i}\right)=4$ for $i=1,2$, while $\chi\left(G_{i}\right)=3$ for $i=1,2$.

Figure 3: The graphs G_{1} and G_{2}.
Since $\rho\left(C_{18}\right)=7$, it follows that $C_{18} \in \mathcal{F}_{7}$ but $C_{18} \notin \mathcal{F}_{6}$. Since $\rho\left(C_{n}\right)>7$ for $n \geq 19$, the induced cycle of greatest length in \mathcal{F}_{7} is C_{18}.

3. Chromatic number and subset index

In this section, we investigate the relationship between the chromatic number $\chi(G)$ and the subset index $\rho(G)$ of a connected graph G. The following result was obtained in [1]. We include a proof here for completion.

Theorem 3.1. If G is a nontrivial connected graph, then $\chi(G) \leq \rho(G)$.
Proof. Let $\rho(G)=k \geq 2$ and let $f: V(G) \rightarrow \mathcal{P}^{*}([k])$ be a subset labeling of G. Define the vertex coloring $c: V(G) \rightarrow[k]$ by

$$
c(x)=\min \{i \in[k]: i \in f(x)\} .
$$

Let u and v be two adjacent vertices of G. Since $f(u) \cap f(v)=\emptyset$, it follows that $c(u) \neq c(v)$. Thus, c is a proper coloring of G using at most k colors. Therefore, $\chi(G) \leq k=\rho(G)$.

By Proposition 2.3, for each integer $n \geq 2$, every complete n-partite graph has subset index n. Since $\chi(G)=n$ for each such graph G, it follows that $\chi(G)=\rho(G)$. Furthermore, $\chi\left(F_{n}\right)=\rho\left(F_{n}\right)$ for each integer $n \geq 2$ by Theorem 2.3. Therefore, there are infinite classes of connected graphs G for which $\chi(G)=\rho(G)$. Hence, we have the following observation.

Observation 3.1. For each integer $n \geq 2$, there is a connected graph G such that

$$
\chi(G)=\rho(G)=n .
$$

In particular, $\chi\left(K_{n}\right)=\rho\left(K_{n}\right)=n$.
On the other hand, the value of $\rho(G)-\chi(G)$ can be arbitrarily large for a connected graph G. The following result was established in [1].

Theorem 3.2. If $n \geq 3$, then $\rho\left(P_{n}\right) \leq \rho\left(P_{n+1}\right) \leq \rho\left(P_{n}\right)+1$. Furthermore, $\lim _{n \rightarrow \infty} \rho\left(P_{n}\right)=\infty$.
By Theorem 3.2, for each integer $p \geq 2$ there exists an integer n_{p} such that $\rho\left(P_{n_{p}}\right)=p$. For an integer $a \geq 2$, let G be the graph obtained from the complete graph K_{a} of order a and the path $P_{n_{p}}$ by joining a vertex of K_{a} and an end-vertex of $P_{n_{p}}$. Then $\chi(G)=a$. Since $P_{n_{p}}$ is an induced subgraph of G, it follows by Observation 1.1 that $\rho(G) \geq p$. Since $\lim _{n \rightarrow \infty} \rho\left(P_{n}\right)=\infty$, it follows that the value of $\rho(G)-\chi(G)$ can be arbitrarily large for this graph G. In fact, more can be said about the subset indices of this class of graphs. First, we introduce some additional definitions and notation. For integers $a \geq 3$ and $\ell \geq 1$, let $F(a, \ell)$ be the graph obtained from the complete graph K_{a} and the path P_{ℓ} by identifying a vertex of K_{a} with an end-vertex of P_{ℓ}. Thus, $F(a, 1)=K_{a}$ and $F(a, 2)$ is the graph obtained by adding a pendant edge at a vertex of K_{a}. For $\ell \geq 3$, the graph $F(a, \ell)$ is obtained by subdividing the pendant edge of $F(a, 2)$ exactly $\ell-2$ times. Then $\rho\left(F(a, 1)=\rho\left(F(a, 2)=\rho\left(K_{a}\right)=a\right.\right.$. Next, we show that $\rho(F(a, 3))=2 a-1$.

Proposition 3.1. For an integer $a \geq 3, \rho(F(a, 3))=2 a-1$.
Proof. Let $G=F(a, 3)$, let $V\left(K_{a}\right)=\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$, and let $P_{3}=(v, u, w)$, where G is obtained from K_{a} and the path P_{3} by identifying the end-vertex w of P_{3} and the vertex v_{1} of K_{n}, denoting the identified vertex by v_{1} in G. The subset labeling $g: V(G) \rightarrow \mathcal{P}^{*}([2 a-1])$ is defined by

$$
\begin{aligned}
g\left(v_{1}\right) & =\{1\} \\
g\left(v_{i}\right) & =\{i, a+(i-1)\} \text { for } 2 \leq i \leq a \\
g(v) & =[a] \\
g((u) & =[a+1,2 a-1]
\end{aligned}
$$

Thus, $\rho(G) \leq 2 a-1$. Next, we show that $\rho(G) \geq 2 a-1$. Assume, to the contrary, that there is a subset labeling $f: V(G) \rightarrow$ $\mathcal{P}^{*}([2 a-2])$ of G. Then $f\left(v_{i}\right) \cap f\left(v_{j}\right)=\emptyset$ for $1 \leq i<j \leq a$. Since $f(v) \cap f\left(v_{i}\right) \neq \emptyset$ for $1 \leq i \leq a$, we may assume that $i \in f(v) \cap f\left(v_{i}\right)$ for $1 \leq i \leq a$. Thus, $[a] \subseteq f(v)$. Since $f(u) \cap f\left(v_{i}\right) \neq \emptyset$ for $2 \leq i \leq a$, there is $t_{i} \in[2 a-2]-[a]$ such that $t_{i} \in f(u) \cap f\left(v_{i}\right)$ for $2 \leq i \leq a$. Thus, $t_{2}, t_{3}, \ldots, t_{a}$ are $a-1$ distinct elements in $[a+1,2 a-2]$, which is impossible. Therefore, $\rho(G) \geq 2 a-1$ and so $\rho(G)=2 a-1$.

For $\ell \geq 4$, we have the following.
Theorem 3.3. For integers a, ℓ with $a \geq 3$ and $\ell \geq 4$,

$$
\rho(F(a, \ell)) \leq \rho(F(a, \ell+1)) \leq \rho(F(a, \ell))+1 .
$$

Proof. Since $F(a, \ell)$ is an induced subgraph of $F(a, \ell+1)$, it follows that $\rho(F(a, \ell)) \leq \rho(F(a, \ell+1))$. Thus, it remains to show that $\rho(F(a, \ell+1)) \leq \rho(F(a, \ell))+1$. Let $G^{\prime}=F(a, \ell)$ and $G=F(a, \ell+1)$. Suppose that $\rho\left(G^{\prime}\right)=k$. Hence, there exists a subset labeling $g: V\left(G^{\prime}\right) \rightarrow \mathcal{P}^{*}([k])$ of G^{\prime}. Let v be the end-vertex of G and let (v, u, w, z) be a subpath of P_{ℓ}. The labeling $f: V(G) \rightarrow \mathcal{P}^{*}([k])$ of G is defined by

$$
\begin{aligned}
f(v) & =[k+1]-g(u) \\
f(z) & =g(z) \cup\{k+1\} \\
f(x) & =g(x) \text { if } x \in V(G)-\{v, z\}
\end{aligned}
$$

We show that f is a subset labeling of G. Let x and y be two distinct vertices of G. If $x, y \in V\left(G^{\prime}\right)$, then $f(x) \cap f(y)=$ $g(x) \cap g(y)$. Since z is the only vertex of G^{\prime} that contains $k+1$, it follows that $f(x) \cap f(y)=\emptyset$ if and only if $x y \in E\left(T^{\prime}\right)$. Thus, we may assume that $x=v$.
\star If $y=u$, then $u v \in E(G)$ and $f(v) \cap f(u)=\emptyset$ by the definition of f.
\star If $y=w$, then $f(w)=g(w) \subseteq[k]-g(u) \subseteq[k+1]-g(u)=f(v)$ and so $f(v) \cap f(w) \neq \emptyset$.
\star If $y=z, k+1 \in f(v) \cap f(z)$ and so $f(v) \cap f(z) \neq \emptyset$.
\star If $y \in V\left(G^{\prime}\right)-\{u, w, z\}$, then y is not adjacent to w. This implies that $f(y) \cap f(w)=g(y) \cap g(w) \neq \emptyset$. Since $f(w) \subseteq f(v)$, it follows that $f(y) \cap f(w) \subseteq f(y) \cap f(v)$. Therefore, $f(y) \cap f(v) \neq \emptyset$.

Hence, f is a subset labeling of G and so $\rho(G) \leq k+1=\rho\left(G^{\prime}\right)+1$.
With the aid of Proposition 3.1 and Theorem 3.3, we have the following realization result.
Theorem 3.4. For each pair a, b of integers with $a \geq 4$ and $b \geq 2 a-1$, there exists a connected graph G with $\chi(G)=a$ and $\rho(G)=b$.

Proof. Since $F(a, 3)$ is an induced subgraph of $F(a, \ell)$, it follows that $\rho(F(a, \ell)) \geq 2 a-1$ by Proposition 3.1. Since

$$
\lim _{\ell \rightarrow \infty} \rho\left(P_{\ell}\right)=\infty
$$

and P_{ℓ} is an induced subgraph of $F(a, \ell)$, it follows that $\lim _{\ell \rightarrow \infty} \rho(F(a, \ell))=\infty$. Thus, there is an integer ℓ_{0} such that $\rho\left(F\left(a, \ell_{0}\right)\right)=N>b$. It then follows by Theorem 3.3 that there is an integer ℓ such that $\rho(F(a, \ell))=b$. Since $\chi(F(a, \ell))=a$, the graph $F(a, \ell)$ has the desired property.

By Theorem 3.1, if G is a connected graph with $\rho(G)=3$, then $\chi(G)=2$ or $\chi(G)=3$. Therefore, there are graphs G with $\rho(G)=3$ for which $\chi(G)=k$ where $k=2$ or $k=3$. Similarly, if G is a connected graph with $\rho(G)=4$, then for each integer $k \in\{2,3,4\}$, there exists a connected graph G with $\rho(G)=4$ and $\chi(G)=k$. Furthermore, by Theorem 3.4, for each pair a, b of integers with $a \geq 4$ and $b \geq 2 a-1$, there exists a connected graph G with $\chi(G)=a$ and $\rho(G)=b$. We now establish a more general result.

First, we present some definitions and notation. For two vertex-disjoint graphs G and H, the join $G \vee H$ has $V(G \vee H)=$ $V(G) \cup V(H)$ and $E(G \vee H)=E(G) \cup E(H) \cup\{x y: x \in V(G), y \in V(H)\}$. For integers $a \geq 3$ and $t \geq 1$, let $G_{0}=K_{a-1} \vee \bar{K}_{t}$ be the join of the complete graph K_{a-1} and the empty graph \bar{K}_{t}, where $V\left(K_{a-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{a-1}\right\}$ and $V\left(\bar{K}_{t}\right)=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$. Since G_{0} is a magnified K_{a}, it follows that $\chi\left(G_{0}\right)=\rho\left(G_{0}\right)=a$. Let G_{1} be the graph obtained by adding the pendant edge $u_{1} w_{1}$ at the vertex u_{1} of G_{0}. For each integer i with $2 \leq i \leq t$, let G_{i} be the graph obtained by adding the pendant edge $u_{i} w_{i}$ at the vertex u_{i} of G_{i-1}. The graph G_{t} is shown in Figure 4. Equivalently, $G_{i-1}=G_{i}-w_{i}$ for $1 \leq i \leq t$. Since G_{i-1} is an induced subgraph of G_{i} for $1 \leq i \leq t$, it follows that

$$
\begin{equation*}
a=\rho\left(G_{0}\right) \leq \rho\left(G_{1}\right) \leq \rho\left(G_{2}\right) \leq \cdots \leq \rho\left(G_{t}\right) \tag{1}
\end{equation*}
$$

Next, we show that $\rho\left(G_{i}\right)$ exceeds $\rho\left(G_{i-1}\right)$ by at most 1 for $1 \leq i \leq t$.
Theorem 3.5. Let a and t be integers with $a \geq 3$ and $t \geq 1$. For $1 \leq i \leq t$,

$$
\rho\left(G_{i-1}\right) \leq \rho\left(G_{i}\right) \leq \rho\left(G_{i-1}\right)+1
$$

Figure 4: The graph G_{t}.
Proof. Suppose that $\rho\left(G_{i-1}\right)=k$ for some integer $k \geq a$ where $1 \leq i \leq t$. Then there is a subset labeling $g: V\left(G_{i-1}\right) \rightarrow$ $\mathcal{P}^{*}([k])$ of G_{i-1}. The graph G_{i} is obtained by adding the pendant edge $u_{i} w_{i}$ at the vertex u_{i} of G_{i-1}. The graph G_{3} where $3<t$ is shown in Figure 5. We now extend the subset labeling g of G_{i-1} to a labeling $f: V\left(G_{i}\right) \rightarrow \mathcal{P}^{*}([k+1])$ of G_{i} by defining

$$
\begin{aligned}
f\left(w_{i}\right) & =[k+1]-g\left(u_{i}\right) \\
f\left(u_{j}\right) & =g\left(u_{j}\right) \cup\{k+1\} \text { for } 1 \leq j \leq t \text { and } j \neq i \\
f(x) & =g(x) \text { if } x \neq u_{j} \text { for } 1 \leq j \leq t \text { and } j \neq i \text { and } x \neq w_{i} .
\end{aligned}
$$

We show that f is a subset labeling of G_{i}. To simplify notation, we let

$$
U=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}-\left\{u_{i}\right\} .
$$

Let x and y be two distinct vertices of G_{i}. If $x, y \in V\left(G_{i-1}\right)$, then

$$
f(x) \cap f(y)= \begin{cases}g(x) \cap g(y) & \text { if } x \notin U \text { or } y \notin U \\ (g(x) \cap g(y)) \cup\{k+1\} & \text { if } x, y \in U .\end{cases}
$$

Thus, $f(x) \cap f(y)=\emptyset$ if and only if $x y \in E\left(G_{i-1}\right)$. Thus, we may assume that $x=w_{i}$.
\star If $y=u_{i}$, then $u_{i} w_{i} \in E\left(G_{i}\right)$ and $f\left(u_{i}\right) \cap f\left(w_{i}\right)=\emptyset$ by the definition of f.
\star If $y=w_{j}$, where then $1 \leq j \leq i-1$ and $i \geq 2$, say $y=w_{1}$, then $w_{1} w_{i} \notin E\left(G_{i}\right)$. Since $w_{1} v_{1} \notin E\left(G_{i-1}\right)$, it follows that $g\left(w_{1}\right) \cap g\left(v_{1}\right) \neq \emptyset$. Because $g\left(w_{1}\right) \cap g\left(v_{1}\right) \subseteq[k]-g\left(u_{i}\right) \subseteq[k+1]-g\left(u_{i}\right)=f\left(w_{i}\right)$, it follows that $f\left(w_{1}\right) \cap f\left(w_{i}\right) \neq \emptyset$.

* If $y \in U$, then $k+1 \in f\left(w_{i}\right) \cap f(y)$ and so $f\left(w_{i}\right) \cap f(y) \neq \emptyset$.
* If $y \in V\left(K_{a-1}\right)$, then y is adjacent to u_{i} and so $f(y)=g(y) \subseteq[k]-g\left(u_{i}\right) \subseteq[k+1]-g\left(u_{i}\right)=f\left(w_{i}\right)$. Therefore, $f(y) \cap f\left(w_{i}\right) \neq \emptyset$.

Hence, f is a subset labeling of G_{i} and so $\rho\left(G_{i}\right) \leq k+1=\rho\left(G_{i-1}\right)+1$.

Figure 5: The graph G_{3}.

For integers $a \geq 3$ and $t \geq 1$, let G_{0} and G_{t} be defined as above. That is, $G_{0}=K_{a-1} \vee \bar{K}_{t}$ is the join of the complete graph K_{a-1} and the empty graph \bar{K}_{t}, where $V\left(K_{a-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{a-1}\right\}$ and $V\left(\bar{K}_{t}\right)=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$. The graph G_{t} is the graph obtained by adding the pendant edge $u_{i} w_{i}$ at the vertex u_{i} of $K_{a-1} \vee \bar{K}_{t}$ for $1 \leq i \leq t$.

Proposition 3.2. $\lim _{t \rightarrow \infty} \rho\left(G_{t}\right)=\infty$.
Proof. Let $N \geq 2$ be an arbitrary integer. We show that $\rho\left(G_{t}\right)>N$ for all integers $t>2^{N}$. Suppose that $\rho\left(G_{t}\right)=k$ and let $f: V\left(G_{t}\right) \rightarrow \mathcal{P}^{*}([k])$ be a subset labeling of G_{t}. Since $f\left(v_{i}\right) \cap f\left(v_{j}\right)=\emptyset$ for $1 \leq i<j \leq a-1$, we may assume that $i \in f\left(v_{i}\right)$ for $1 \leq i \leq a-1$. Thus, $f\left(u_{i}\right)$ is a subset of $[k]-[a-1]$ for $1 \leq i \leq t$. Since $N\left(u_{i}\right) \neq N\left(u_{j}\right)$ for $1 \leq i<j \leq t$, it follows that $f\left(u_{1}, f\left(u_{2}\right), \ldots, f\left(u_{t}\right)\right.$ are distinct subsets of $[k]-[a-1]$. This implies that $t \leq 2^{k-a+1}<2^{k}$ and so $\log _{2} t<k$. Thus, if $t>2^{N}$, then $\log _{2} t>N$ and so $\rho\left(G_{t}\right)=k>\log _{2} t>N$. Therefore, $\lim _{n \rightarrow \infty} \rho\left(G_{t}\right)=\infty$.

We are now prepared to prove that every two integers a and b with $2 \leq a \leq b$ are realizable as the chromatic number and subset index, respectively, of some connected graph.

Theorem 3.6. For every pair a, b of integers with $2 \leq a \leq b$, there is a connected graph G such that $\chi(G)=a$ and $\rho(G)=b$.
Proof. If $a=b \geq 2$, then let $G=K_{a}$. Then $\chi(G)=\rho(G)=a$ by Observation 3.1. If $a=2$ and $b \geq 3$, then there exists an integer n_{b} such that $\rho\left(P_{n_{b}}\right)=b$ by Theorem 3.2. Since $\chi\left(P_{n_{b}}\right)=2$, the graph $G=P_{n_{b}}$ has the desired properties. Thus, we may assume that $3 \leq a<b$. For integers $a \geq 3$ and $t \geq 1$, again let G_{0} be defined as above, namely $G_{0}=K_{a-1} \vee \bar{K}_{t}$ is the join of the complete graph K_{a-1} and the empty graph \bar{K}_{t}, where

$$
V\left(K_{a-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{a-1}\right\} \text { and } V\left(\bar{K}_{t}\right)=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}
$$

Since G_{0} is a magnified K_{a}, it follows that $\chi\left(G_{0}\right)=\rho\left(G_{0}\right)=a$. Let G_{1} be the graph obtained by adding the pendant edge $u_{1} w_{1}$ at the vertex u_{1} of G_{0}. For each integer i with $2 \leq i \leq t$, let G_{i} be the graph obtained by adding the pendant edge $u_{i} w_{i}$ at the vertex u_{i} of G_{i-1}. By Proposition 3.2, $\lim _{t \rightarrow \infty} \rho\left(G_{t}\right)=\infty$. Thus, there is an integer t_{0} such that $\rho\left(G_{t_{0}}\right)=N>b$. It then follows by Theorem 3.5 that there is an integer i with $1 \leq i \leq t_{0}$ such that $\rho\left(G_{i}\right)=b$. Since $\chi\left(G_{i}\right)=a$, the graph G_{i} has the desired property.

As an illustration of Theorem 3.6 and its proof, we determine the subset indices of the graphs $G_{0}, G_{1}, G_{2}, G_{3}$, and G_{4} for $a=5$. Thus, $G_{0}=K_{4} \vee \bar{K}_{4}$ and the graph G_{4} is shown in Figure 6. Hence, $G_{i-1}=G_{i}-w_{i}$ for $1 \leq i \leq 4$ and $\chi\left(G_{i}\right)=5$ for $1 \leq i \leq 4$. We saw that $\chi\left(G_{0}\right)=\rho\left(G_{0}\right)=5$.

Figure 6: The graph G_{4} for $a=5$.

Example 3.1. $\rho\left(G_{1}\right)=6, \rho\left(G_{2}\right)=\rho\left(G_{3}\right)=7$, and $\rho\left(G_{4}\right)=8$.
Proof. First, we make some observations. For $1 \leq i \leq 4$, let f_{i} be a subset labeling of G_{i}. Then $f_{i}(x) \neq f_{i}(y)$ for every two distinct vertices x and y of G_{i}. Furthermore, if $2 \leq i \leq 4$, then $\left|f_{i}\left(u_{j}\right)\right| \geq 2$ and $\left|f_{i}\left(w_{j}\right)\right| \geq 2$ for all integers j with $2 \leq j \leq i$. A subset labeling $f_{0}: V\left(G_{0}\right) \rightarrow \mathcal{P}^{*}([5])$ of G_{0} is defined by

$$
\begin{aligned}
& f_{0}\left(v_{j}\right)=\{j\} \text { for } 1 \leq j \leq 4 \\
& f_{0}\left(u_{j}\right)=\{5\} \text { for } 1 \leq j \leq 4
\end{aligned}
$$

For $1 \leq i \leq 4$, define a subset labeling f_{i} of G_{i} recursively as follows.
\star The subset labeling $f_{1}: V\left(G_{1}\right) \rightarrow \mathcal{P}^{*}([6])$ of G_{1} is defined in terms of f_{0} by

$$
f_{1}\left(v_{j}\right)=f_{0}\left(v_{j}\right)=\{j\} \text { for } 1 \leq j \leq 4
$$

$$
\begin{aligned}
f_{1}\left(u_{1}\right) & =f_{0}\left(u_{1}\right)=\{5\} \\
f_{1}\left(u_{j}\right) & =f_{0}\left(u_{i}\right) \cup\{6\}=\{5,6\} \text { for } 2 \leq j \leq 4 \\
f_{1}\left(w_{1}\right) & =[4] \cup\{6\} .
\end{aligned}
$$

Thus, $\rho\left(G_{1}\right) \leq 6$. We show that $\rho\left(G_{1}\right) \neq 5$. Assume, to the contrary, that there is a subset labeling $g_{1}: V\left(G_{1}\right) \rightarrow \mathcal{P}^{*}([5])$ of G_{1}. We may assume that $j \in g_{1}\left(v_{j}\right)$ for $1 \leq j \leq 4$. This forces $g_{1}\left(v_{j}\right)=\{j\}$ and $g_{1}\left(u_{j}\right)=\{5\}$ for $1 \leq j \leq 4$. However then, $g_{1}\left(w_{1}\right)=[4]$ and so $g_{1}\left(w_{1}\right) \cap g_{1}\left(u_{2}\right)=\emptyset$, a contradiction. Therefore, $\rho\left(G_{1}\right)=6$.
\star The subset labeling $f_{2}: V\left(G_{2}\right) \rightarrow \mathcal{P}^{*}([7])$ of G_{2} is defined in terms of f_{1} by

$$
\begin{aligned}
f_{2}\left(v_{j}\right) & =f_{1}\left(v_{j}\right)=\{j\} \text { for } 1 \leq j \leq 4 \\
f_{2}\left(u_{1}\right) & =f_{1}\left(u_{1}\right) \cup\{7\}=\{5,7\} \\
f_{2}\left(u_{2}\right) & =f_{1}\left(u_{2}\right)=\{5,6\} \\
f_{2}\left(u_{j}\right) & =f_{1}\left(u_{i}\right) \cup\{7\}=\{5,6,7\} \text { for } j=3,4 \\
f_{2}\left(w_{j}\right) & =[4] \cup\{5+j\} \text { for } j=1,2
\end{aligned}
$$

Thus, $\rho\left(G_{2}\right) \leq 7$. We show that $\rho\left(G_{2}\right) \neq 6$. Assume, to the contrary, that there is a subset labeling $g_{2}: V\left(G_{2}\right) \rightarrow \mathcal{P}^{*}([6])$ of G_{2}. We may assume that $j \in g_{2}\left(v_{j}\right)$ for $1 \leq j \leq 4$. Since $\left|g_{2}\left(u_{j}\right)\right| \geq 2$ for $1 \leq j \leq 4$, this forces $g_{2}\left(v_{j}\right)=\{j\}$ and $g_{2}\left(u_{j}\right)=\{5,6\}$. However then, $g_{2}\left(w_{1}\right)=[4]$ and so $g_{2}\left(w_{1}\right) \cap g_{2}\left(u_{2}\right)=\emptyset$, a contradiction. Therefore, $\rho\left(G_{2}\right)=7$.
\star The subset labeling $f_{3}: V\left(G_{3}\right) \rightarrow \mathcal{P}^{*}([7])$ of G_{3} is defined in terms of f_{2} by $f_{3}\left(w_{3}\right)=[4] \cup\{6,7\}$ and $f_{3}(x)=f_{2}(x)$ for $x \in V\left(G_{2}\right)$. Thus, $\rho\left(G_{3}\right) \leq 7$. Since $7 \leq \rho\left(G_{2}\right) \leq \rho\left(G_{3}\right)$, it follows that $\rho\left(G_{3}\right)=7$.
\star The subset labeling $f_{4}: V\left(G_{4}\right) \rightarrow \mathcal{P}^{*}([8])$ of G_{4} is defined in terms of f_{3} by

$$
\begin{aligned}
f_{4}\left(w_{4}\right) & =[4] \cup\{8\} \\
f_{4}\left(u_{j}\right) & =f_{3}\left(u_{i}\right) \cup\{8\} \text { for } 1 \leq j \leq 3 \\
f_{4}(x) & =f_{3}(x) \text { if } x \notin\left\{u_{1}, u_{2}, u_{3}, w_{4}\right\} .
\end{aligned}
$$

Thus, $\rho\left(G_{4}\right) \leq 8$. We show that $\rho\left(G_{4}\right) \neq 7$. Assume, to the contrary, that there is a subset labeling $g_{4}: V\left(G_{4}\right) \rightarrow \mathcal{P}^{*}([7])$ of G_{4}. We may assume that $j \in g_{4}\left(v_{j}\right)$ for $1 \leq j \leq 4$. Since $2 \leq\left|g_{4}\left(u_{j}\right)\right| \leq 3$ for $1 \leq j \leq 4$, this forces $g_{4}\left(v_{j}\right)=\{j\}$ and so $g_{4}\left(u_{j}\right) \subseteq\{5,6,7\}$. Since there are only three 2-element subsets of $\{5,6,7\}$, it follows that $\left|f_{4}\left(u_{j}\right)\right|=3$ for exactly one integer j with $1 \leq j \leq 4$. We may assume that $g_{4}\left(u_{1}\right)=\{5,6,7\}$. This forces $f_{4}\left(w_{1}\right)=[4]$ and so $f_{4}\left(w_{1}\right) \cap g_{4}\left(u_{2}\right)=\emptyset$, a contradiction. Therefore, $\rho\left(G_{4}\right)=8$.

References

[1] G. Chartrand, C. Egan, P. Zhang, How to Label a Graph, Springer, New York, 2019.
[2] G. Chartrand, P. Zhang, Chromatic Graph Theory, Second Edition, CRC Press, Boca Raton, 2020.
[3] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Q. J. Math. 12 (1961) 313-320.
[4] M. Kneser, Aufgabe 300, Jahresber. Dtsch. Math. Ver. 58 (1955) 27.
[5] L. Lovász, Kneser's conjecture, chromatic number, and homotopy, J. Combin. Theory Ser. A 25 (1978) 319-324.
[6] B. McGrew, From Multi-Prime Labelings to Subset Labelings of Graphs, Doctoral Dissertation, Western Michigan University, Kalamazoo, 2021.

[^0]: *Corresponding author (ping.zhang@wmich.edu).

