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Abstract

For a nontrivial graph G, a subset labeling of G is a labeling of the vertices of G with nonempty subsets of the set
[r] = {1, 2, . . . , r} for a positive integer r such that two vertices of G have disjoint labels if and only if the vertices are
adjacent. The subset index of G is the minimum positive integer r for which G has such a subset labeling from the set [r].
Structures of graphs with prescribed subset index are investigated. It is shown that for every two integers a and b with
2 ≤ a ≤ b, there exists a connected graph with chromatic number a and subset index b.
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1. Introduction

While studying an article on quadratic forms, the German mathematician Martin Kneser became interested in the behavior
of partitions of the family of k-element subsets of an n-element set (see [4]). For positive integers k and n with n > 2k,
there exists a partition of the k-element subsets of the n-element set [n] = {1, 2, . . . , n} into n− 2k + 2 classes such that no
pair of disjoint k-element subsets belong to the same class. Kneser asked the following question:

For positive integers k and n with n > 2k, does there exist a partition of the k-element subsets of [n] into n−2k+1

classes such that no pair of disjoint k-element subsets belong to the same class?

Kneser [4] conjectured that such a partition was impossible. In 1978 Lovász [5] verified Kneser’s Conjecture using graph
theory which led to a class of graphs called Kneser graphs.

For positive integers k and nwith n > 2k, the Kneser graphKGn,k is that graph whose vertices are the k-element subsets
of [n] and where two vertices (k-element subsets) A and B are adjacent if and only if A and B are disjoint. Consequently,
the Kneser graph KGn,1 is the complete graph Kn, and the Kneser graph KG5,2 is isomorphic to the Petersen graph. In
terms of graph theory, Kneser’s Conjecture became:

Kneser’s Conjecture. There exists no (n− 2k + 1)-coloring of the Kneser graph KGn,k.

Lovász [5] verified the conjecture by determining the chromatic number χ(KGn,k) of the Kneser graphKGn,k for positive
integers k and n with n > 2k.

Theorem 1.1. For every two positive integers k and n with n > 2k,

χ(KGn,k) = n− 2k + 2.

In 1961, Paul Erdős, Chao Ko, and Richard Rado [3] determined the independence number α(KGn,k) of the Kneser
graph KGn,k when n > 2k. This result is often referred to as the Erdős-Ko-Rado Theorem.

Theorem 1.2. For every two positive integers k and n with n > 2k,

α(KGn,k) =

(
n− 1

k − 1

)
.
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In other words, ifG is an unlabeled graph isomorphic to the Kneser graphKGn,k, then it is possible to label the vertices
of G with distinct k-element subsets of the set [n] = {1, 2, . . . , n} in such a way that two vertices of G have disjoint labels if
and only if the vertices are adjacent. This brings up the question of considering other familiar graphs G and determining
the existence of sets [r] for positive integers r such that the vertices of G can be labeled with nonempty subsets of [r], not
necessarily of the same cardinality, so that the labels of two vertices are disjoint if and only if these two vertices of G are
adjacent. Such a labeling of a graph G is called a subset labeling of G, a concept introduced in [1]. For a positive integer r,
the power set of [r], namely the set of all subsets of [r], is denoted by P([r]), while P∗([r]) denotes the set of all nonempty
subsets of [r]. Thus, |P∗([r])| = 2r− 1. That every graph has a subset labeling was established in [1]. It is useful to include
an independent proof of this fact here.

Theorem 1.3. Every graph has a subset labeling.

Proof. We proceed by induction on the order n of a graph. The result is immediate for small values of n, say n ∈ {2, 3, 4}.
Assume that the statement is true for all graphs of order n for an integer n ≥ 4 and let G be a graph of order n + 1.
Let v be a vertex of G where degG v = p with 0 ≤ p ≤ n and let G′ = G − v. Since G′ is a graph of order n, it follows
by the induction hypothesis that G′ has a subset labeling f ′, say f ′ : V (G) → P∗([k]) for some positive integer k. Let
V (G′) = {v1, v2, . . . , vn}, where either v is an isolated vertex or NG(v) = {v1, v2, . . . , vp} with 1 ≤ p ≤ n. Define a vertex
labeling f : V (G)→ P∗([n+ k + 1]) of G by

f(x) =

{
f ′(vi) ∪ {k + i} if x = vi for 1 ≤ i ≤ n

{k + p+ 1, k + p+ 2, . . . , k + n+ 1} if x = v.

Since for vertices x, y ∈ V (G), we have f(x)∩f(y) = ∅ if and only if xy ∈ E(G), it follows that f is a subset labeling of G.

The minimum positive integer r for which a graphG has such a subset labeling from the set [r] is called the subset index
of G, denoted by ρ(G). We refer to the book [2] for graph theory notation and terminology not described in this paper. The
subset index has been studied in [1,6], where it has been determined for paths and cycles of small order.

Theorem 1.4. For 3 ≤ n ≤ 24,

n 3 ≤ n ≤ 6 7 8 ≤ n ≤ 11 12 ≤ n ≤ 22 23, 24
ρ(Pn) n− 1 5 6 7 8

In particular, the smallest positive integer n for which ρ(Pn) = 9 is not known. The fact that ρ(Pn) ≤ ρ(Pn+1) for every
integer n ≥ 2 is a consequence of the following fact [1]; while Theorem 1.5 shows that this is not the case for cycles.

Proposition 1.1. If H is an induced subgraph of a graph G, then ρ(H) ≤ ρ(G).

Theorem 1.5. For 3 ≤ n ≤ 18,

n 3 4 5, 6 7 8 9 10 11 12, 13 14 15 ≤ n ≤ 18
ρ(Cn) 3 2 5 7 6 7 6 8 7 8 7

2. On graphs with a given subset index

For a given nontrivial connected graph G, there is a class of graphs associated with G that was constructed in [1] (by the
means of the composition of graphs), all of which have the same subset index asG. More precisely, let V (G) = {v1, v2, . . . , vn}
and let H be the graph obtained from G by replacing each vertex vi (1 ≤ i ≤ n) of G with the empty graph Kqi of order qi.
Hence, the vertex set of H is ∪ni=1V (Kqi) and two vertices u and w of H are adjacent in H if u ∈ V (Kqi) and w ∈ V (Kqj )

where vivj ∈ E(G). The graph H is referred to as the composition graph of G and Kq1 ,Kq2 , . . . ,Kqn and is often denoted
by G[Kq1 ,Kq2 , . . . ,Kqn ]. The following result was established in [1].

Theorem 2.1. For a nontrivial connected graph G with vertex set {v1, v2, . . ., vn}, let H be the composition graph of G and
Kq1 ,Kq2 , . . . ,Kqn . Then

ρ(H) = ρ(G).
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By Theorem 2.1, a composition graph can be constructed from P4,K3, or the corona cor(K3) of K3 (obtained from K3

by adding a pendant edge at each vertex of K3), all of which have subset index 3, by replacing each vertex vi by an empty
graph, resulting in another graph having subset index 3. For example, for F = cor(K3) where V (F ) = {v1, v2, . . . , v6}, letH
be the set of all composition graphs F [Kq1 ,Kq2 , . . . ,Kq6 ], where q1, q2, . . . , q6 are positive integers. Then ρ(H) = 3 for every
graph H ∈ H.

For a positive integer n, let Fn be the graph of order 2n−1 whose vertices are labeled with nonempty subsets of [n] such
that two vertices of Fn have disjoint labels if and only if the vertices are adjacent. Thus, the vertex labeled [n] is an isolated
vertex of Fn. The graphs F3 and F4 are shown in Figure 1. (For simplicity, we write the set {a} as a, {a, b} as ab, {a, b, c} as
abc, and so on.) For n ≥ 2, Fn = Gn +K1, where Gn is a connected graph of order 2n − 2. For example, G3 = cor(K3).

[4]

[3]

3

12

2

13

1

23 123 124 134 234

4 3 2 1

12 13 14 23 24 34

Figure 1: The graphs F3 and F4.

Let F1 = {K1} and for n ≥ 2, let Fn denote the set of all graphs that are isomorphic to an induced subgraph of Fn but not
to an induced subgraph ofFn−1. In particular,Gn, Fn ∈ Fn. Thus,F2 = {K2,K1+K2}. If we letA = {cor(K3),K3, H1, H2, P4},
where H1 and H2 are the graphs shown in Figure 2, and B = {G+K1 : G ∈ A}, then F3 = A ∪B.

H1 :

........
.........................................
..

........
.........................................
..

........
.........................................
..

........
.........................................
..

........
.........................................
.. ........

.........................................
..

........
.........................................
.. ........

.........................................
..

.........
.........
.........
.........
.........
.........

.........
.........
.........
.........
.........
.........
... ........................................................

................................................................................
.....................................................

H2 :

........
.........................................
..

Figure 2: The graphs H1 and H2.

A graph H is called a magnified copy of a graph G (or simply a magnified G) where V (G) = {v1, v2, . . . , vn} if H is
isomorphic to a graph obtained from G by replacing each vertex vi of G by Kqi for some positive integer qi in a composition
of G. If H is a magnified G, then ρ(H) = ρ(G). If H ∼= G, then H is a trivially magnified G. If the only graph of which G is
a magnified graph is G itself, then G is called a basis graph. The set F∗n consists of all graphs that are magnified graphs of
the graphs in Fn. This set F∗n is therefore the set of all graphs F with ρ(F ) = n. In the definition of Fn, the term induced
subgraph cannot be replaced by subgraph. For example, P5 is a subgraph of F3 but not an induced subgraph of F3. We
have seen that ρ(P5) 6= 3; in fact, ρ(P5) = 4. We can now describe all those graphs having subset index 2 or 3 (see [1]).

Proposition 2.1. A connected graph G has subset index 2 if and only if G is a complete bipartite graph.

Proof. Since F2 = K2 +K1, the only induced subgraph of F2 without isolated vertices is K2. Therefore, the only nontrivial
component of G is a complete bipartite graph.

Corollary 2.1. A graphG has subset index 2 if and only if the only nontrivial component ofG is a complete bipartite graph.

Proposition 2.2. A connected graph G has subset index 3 if and only if G is a magnified cor(K3), a magnified K3, a
magnified P4, a magnified H1, or a magnified H2, where H1 and H2 are shown in Figure 2. Consequently, every complete 3-
partite graph has subset index 3.

Proof. Since F3 = cor(K3)+K1, the only induced subgraphs of F3 without isolated vertices (that are not induced subgraphs
of F2) are cor(K3), K3, H1, or H2, P4, which gives the desired result. Since a magnified K3 is a complete 3-partite graph,
every complete 3-partite graph has subset index 3. By Theorem 2.1, a magnified P4 has subset index 3.
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Corollary 2.2. A graph G has subset index 3 if and only if the only nontrivial component of G is a magnified cor(K3), a
magnified K3, a magnified P4, a magnified H1, or a magnified H2, where H1 and H2 are shown in Figure 2.

We now describe some properties of the graph Fn for a given positive integer n.

Theorem 2.2. For each positive integer n, ω(Fn) = n.

Proof. Let f : V (Fn)→ P∗([n]) be a subset labeling of Fn and let S = {u1, u2, . . . , un} be the set of those vertices ui, 1 ≤ i ≤ n,
for which f(ui) = {i}. Since f(ui) ∩ f(uj) = ∅ for each pair i, j of integers with 1 ≤ i < j ≤ n, it follows that Fn[S] = Kn

and so ω(Fn) ≥ n. It remains to show that ω(Fn) ≤ n. Let A = {v1, v2, . . . , vn+1} be an arbitrary set of n+ 1 vertices of Fn.
Suppose that f(vi) = Si ∈ P∗([n]) for 1 ≤ i ≤ n+1. Let ai be the minimum element of [n] belonging to Si where 1 ≤ i ≤ n+1.
We may assume that ai ≤ ai+1 for 1 ≤ i ≤ n. Thus,

1 ≤ a1 ≤ a2 ≤ · · · ≤ an+1 ≤ n.

Hence, there is an integer j with 1 ≤ j ≤ n such that aj = aj+1. Since aj ∈ Sj ∩ Sj+1, it follows that Sj and Sj+1 are not
disjoint and so vjvj+1 /∈ E(Fn). Hence, Fn[A] is not a clique of Fn. Therefore, ω(Fn) ≤ n and so ω(Fn) = n.

Since the subgraph of Fn induced by S is Kn and ω(Fn−1) = n− 1 by Theorem 2.2, it follows that Kn is not an induced
subgraph of Fn−1. Therefore, ρ(Kn) = n.

Proposition 2.3. For each integer n ≥ 2, every complete n-partite graph has subset index n.

Proof. We have seen that ω(Fn) = n by Theorem 2.2. Thus, the complete graph Kn is an induced subgraph of Fn but not
an induced subgraph of Fn−1. Since a magnified Kn is a complete n-partite graph, it follows that every complete n-partite
graph has subset index n.

Theorem 2.3. For each positive integer n, χ(Fn) = n.

Proof. The statement is immediate for n = 1, 2, 3. Thus, we may assume that n ≥ 4. Since ω(Fn) = n by Theorem 2.2, it
follows that χ(Fn) ≥ n. It remains to show that χ(Fn) ≤ n. Let V (Fn) = {v1, v2, . . . , v2n−1} and let f : V (Fn) → P∗([n]) be
a subset labeling of Fn where f(vi) = Ai for 1 ≤ i ≤ 2n − 1. Next, let ai be the minimum element of [n] belonging to Ai

where 1 ≤ i ≤ 2n − 1. For j = 1, 2, . . . , n, let Vj = {vi : ai = j}. Thus, |Vn| = 1. If vr and vs are distinct vertices of Vj
where 1 ≤ j ≤ n, then j ∈ f(vr) ∩ f(vs) = Ar ∩ As and so vrvs /∈ E(Fn). Hence, Vj is a set of independent vertices of Fn for
1 ≤ j ≤ n. Assigning the color j to all vertices in Vj (1 ≤ j ≤ n) produces a proper n-coloring of Fn. Therefore, χ(Fn) ≤ n

and so χ(Fn) = n.

If G is a graph with χ(G) = k, then G is not a magnified graph of any subgraph of Fn where n < k. Thus, ρ(G) ≥ k. For
example, χ(P4) = 2 but ρ(P4) = 3. Each of the graphs G1 and G2 in Figure 3 belongs to F4 but not to F3. Thus, ρ(Gi) = 4

for i = 1, 2, while χ(Gi) = 3 for i = 1, 2.
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Figure 3: The graphs G1 and G2.

Since ρ(C18) = 7, it follows that C18 ∈ F7 but C18 /∈ F6. Since ρ(Cn) > 7 for n ≥ 19, the induced cycle of greatest length
in F7 is C18.
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3. Chromatic number and subset index

In this section, we investigate the relationship between the chromatic number χ(G) and the subset index ρ(G) of a connected
graph G. The following result was obtained in [1]. We include a proof here for completion.

Theorem 3.1. If G is a nontrivial connected graph, then χ(G) ≤ ρ(G).

Proof. Let ρ(G) = k ≥ 2 and let f : V (G)→ P∗([k]) be a subset labeling of G. Define the vertex coloring c : V (G)→ [k] by

c(x) = min{i ∈ [k] : i ∈ f(x)}.

Let u and v be two adjacent vertices of G. Since f(u)∩ f(v) = ∅, it follows that c(u) 6= c(v). Thus, c is a proper coloring of G
using at most k colors. Therefore, χ(G) ≤ k = ρ(G).

By Proposition 2.3, for each integer n ≥ 2, every complete n-partite graph has subset index n. Since χ(G) = n for each
such graph G, it follows that χ(G) = ρ(G). Furthermore, χ(Fn) = ρ(Fn) for each integer n ≥ 2 by Theorem 2.3. Therefore,
there are infinite classes of connected graphs G for which χ(G) = ρ(G). Hence, we have the following observation.

Observation 3.1. For each integer n ≥ 2, there is a connected graph G such that

χ(G) = ρ(G) = n.

In particular, χ(Kn) = ρ(Kn) = n.

On the other hand, the value of ρ(G)− χ(G) can be arbitrarily large for a connected graph G. The following result was
established in [1].

Theorem 3.2. If n ≥ 3, then ρ(Pn) ≤ ρ(Pn+1) ≤ ρ(Pn) + 1. Furthermore, lim
n→∞

ρ(Pn) =∞.

By Theorem 3.2, for each integer p ≥ 2 there exists an integer np such that ρ(Pnp
) = p. For an integer a ≥ 2, let G be the

graph obtained from the complete graph Ka of order a and the path Pnp by joining a vertex of Ka and an end-vertex of Pnp .
Then χ(G) = a. Since Pnp is an induced subgraph of G, it follows by Observation 1.1 that ρ(G) ≥ p. Since lim

n→∞
ρ(Pn) =∞,

it follows that the value of ρ(G)−χ(G) can be arbitrarily large for this graph G. In fact, more can be said about the subset
indices of this class of graphs. First, we introduce some additional definitions and notation. For integers a ≥ 3 and ` ≥ 1, let
F (a, `) be the graph obtained from the complete graph Ka and the path P` by identifying a vertex of Ka with an end-vertex
of P`. Thus, F (a, 1) = Ka and F (a, 2) is the graph obtained by adding a pendant edge at a vertex ofKa. For ` ≥ 3, the graph
F (a, `) is obtained by subdividing the pendant edge of F (a, 2) exactly `− 2 times. Then ρ(F (a, 1) = ρ(F (a, 2) = ρ(Ka) = a.
Next, we show that ρ(F (a, 3)) = 2a− 1.

Proposition 3.1. For an integer a ≥ 3, ρ(F (a, 3)) = 2a− 1.

Proof. Let G = F (a, 3), let V (Ka) = {v1, v2, . . . , va}, and let P3 = (v, u, w), where G is obtained from Ka and the path P3 by
identifying the end-vertex w of P3 and the vertex v1 of Kn, denoting the identified vertex by v1 in G. The subset labeling
g : V (G)→ P∗([2a− 1]) is defined by

g(v1) = {1}

g(vi) = {i, a+ (i− 1)} for 2 ≤ i ≤ a

g(v) = [a]

g((u) = [a+ 1, 2a− 1].

Thus, ρ(G) ≤ 2a− 1. Next, we show that ρ(G) ≥ 2a− 1. Assume, to the contrary, that there is a subset labeling f : V (G)→
P∗([2a − 2]) of G. Then f(vi) ∩ f(vj) = ∅ for 1 ≤ i < j ≤ a. Since f(v) ∩ f(vi) 6= ∅ for 1 ≤ i ≤ a, we may assume that
i ∈ f(v) ∩ f(vi) for 1 ≤ i ≤ a. Thus, [a] ⊆ f(v). Since f(u) ∩ f(vi) 6= ∅ for 2 ≤ i ≤ a, there is ti ∈ [2a − 2] − [a] such that
ti ∈ f(u)∩f(vi) for 2 ≤ i ≤ a. Thus, t2, t3, . . . , ta are a−1 distinct elements in [a+1, 2a−2], which is impossible. Therefore,
ρ(G) ≥ 2a− 1 and so ρ(G) = 2a− 1.

For ` ≥ 4, we have the following.

Theorem 3.3. For integers a, ` with a ≥ 3 and ` ≥ 4,

ρ(F (a, `)) ≤ ρ(F (a, `+ 1)) ≤ ρ(F (a, `)) + 1.

19
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Proof. Since F (a, `) is an induced subgraph of F (a, ` + 1), it follows that ρ(F (a, `)) ≤ ρ(F (a, ` + 1)). Thus, it remains to
show that ρ(F (a, ` + 1)) ≤ ρ(F (a, `)) + 1. Let G′ = F (a, `) and G = F (a, ` + 1). Suppose that ρ(G′) = k. Hence, there
exists a subset labeling g : V (G′) → P∗([k]) of G′. Let v be the end-vertex of G and let (v, u, w, z) be a subpath of P`. The
labeling f : V (G)→ P∗([k]) of G is defined by

f(v) = [k + 1]− g(u)

f(z) = g(z) ∪ {k + 1}

f(x) = g(x) if x ∈ V (G)− {v, z}.

We show that f is a subset labeling of G. Let x and y be two distinct vertices of G. If x, y ∈ V (G′), then f(x) ∩ f(y) =

g(x)∩ g(y). Since z is the only vertex of G′ that contains k+1, it follows that f(x)∩f(y) = ∅ if and only if xy ∈ E(T ′). Thus,
we may assume that x = v.

? If y = u, then uv ∈ E(G) and f(v) ∩ f(u) = ∅ by the definition of f .

? If y = w, then f(w) = g(w) ⊆ [k]− g(u) ⊆ [k + 1]− g(u) = f(v) and so f(v) ∩ f(w) 6= ∅.

? If y = z, k + 1 ∈ f(v) ∩ f(z) and so f(v) ∩ f(z) 6= ∅.

? If y ∈ V (G′)−{u,w, z}, then y is not adjacent to w. This implies that f(y)∩f(w) = g(y)∩g(w) 6= ∅. Since f(w) ⊆ f(v),
it follows that f(y) ∩ f(w) ⊆ f(y) ∩ f(v). Therefore, f(y) ∩ f(v) 6= ∅.

Hence, f is a subset labeling of G and so ρ(G) ≤ k + 1 = ρ(G′) + 1.

With the aid of Proposition 3.1 and Theorem 3.3, we have the following realization result.

Theorem 3.4. For each pair a, b of integers with a ≥ 4 and b ≥ 2a− 1, there exists a connected graph G with χ(G) = a and
ρ(G) = b.

Proof. Since F (a, 3) is an induced subgraph of F (a, `), it follows that ρ(F (a, `)) ≥ 2a− 1 by Proposition 3.1. Since

lim
`→∞

ρ(P`) =∞

and P` is an induced subgraph of F (a, `), it follows that lim`→∞ ρ(F (a, `)) = ∞. Thus, there is an integer `0 such that
ρ(F (a, `0)) = N > b. It then follows by Theorem 3.3 that there is an integer ` such that ρ(F (a, `)) = b. Since χ(F (a, `)) = a,
the graph F (a, `) has the desired property.

By Theorem 3.1, if G is a connected graph with ρ(G) = 3, then χ(G) = 2 or χ(G) = 3. Therefore, there are graphs G
with ρ(G) = 3 for which χ(G) = k where k = 2 or k = 3. Similarly, if G is a connected graph with ρ(G) = 4, then for each
integer k ∈ {2, 3, 4}, there exists a connected graph G with ρ(G) = 4 and χ(G) = k. Furthermore, by Theorem 3.4, for each
pair a, b of integers with a ≥ 4 and b ≥ 2a − 1, there exists a connected graph G with χ(G) = a and ρ(G) = b. We now
establish a more general result.

First, we present some definitions and notation. For two vertex-disjoint graphsG andH, the joinG∨H has V (G∨H) =

V (G)∪V (H) andE(G∨H) = E(G)∪E(H)∪{xy : x ∈ V (G), y ∈ V (H)}.For integers a ≥ 3 and t ≥ 1, letG0 = Ka−1∨Kt be the
join of the complete graph Ka−1 and the empty graph Kt, where V (Ka−1) = {v1, v2, . . . , va−1} and V (Kt) = {u1, u2, . . . , ut}.
Since G0 is a magnified Ka, it follows that χ(G0) = ρ(G0) = a. Let G1 be the graph obtained by adding the pendant edge
u1w1 at the vertex u1 of G0. For each integer i with 2 ≤ i ≤ t, let Gi be the graph obtained by adding the pendant edge uiwi

at the vertex ui of Gi−1. The graph Gt is shown in Figure 4. Equivalently, Gi−1 = Gi − wi for 1 ≤ i ≤ t. Since Gi−1 is an
induced subgraph of Gi for 1 ≤ i ≤ t, it follows that

a = ρ(G0) ≤ ρ(G1) ≤ ρ(G2) ≤ · · · ≤ ρ(Gt). (1)

Next, we show that ρ(Gi) exceeds ρ(Gi−1) by at most 1 for 1 ≤ i ≤ t.

Theorem 3.5. Let a and t be integers with a ≥ 3 and t ≥ 1. For 1 ≤ i ≤ t,

ρ(Gi−1) ≤ ρ(Gi) ≤ ρ(Gi−1) + 1.
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Figure 4: The graph Gt.

Proof. Suppose that ρ(Gi−1) = k for some integer k ≥ a where 1 ≤ i ≤ t. Then there is a subset labeling g : V (Gi−1) →
P∗([k]) of Gi−1. The graph Gi is obtained by adding the pendant edge uiwi at the vertex ui of Gi−1. The graph G3 where
3 < t is shown in Figure 5. We now extend the subset labeling g of Gi−1 to a labeling f : V (Gi) → P∗([k + 1]) of Gi by
defining

f(wi) = [k + 1]− g(ui)

f(uj) = g(uj) ∪ {k + 1} for 1 ≤ j ≤ t and j 6= i

f(x) = g(x) if x 6= uj for 1 ≤ j ≤ t and j 6= i and x 6= wi.

We show that f is a subset labeling of Gi. To simplify notation, we let

U = {u1, u2, . . . , ut} − {ui}.

Let x and y be two distinct vertices of Gi. If x, y ∈ V (Gi−1), then

f(x) ∩ f(y) =

{
g(x) ∩ g(y) if x /∈ U or y /∈ U
(g(x) ∩ g(y)) ∪ {k + 1} if x, y ∈ U .

Thus, f(x) ∩ f(y) = ∅ if and only if xy ∈ E(Gi−1). Thus, we may assume that x = wi.

? If y = ui, then uiwi ∈ E(Gi) and f(ui) ∩ f(wi) = ∅ by the definition of f .

? If y = wj , where then 1 ≤ j ≤ i − 1 and i ≥ 2, say y = w1, then w1wi /∈ E(Gi). Since w1v1 /∈ E(Gi−1), it follows that
g(w1) ∩ g(v1) 6= ∅. Because g(w1) ∩ g(v1) ⊆ [k]− g(ui) ⊆ [k + 1]− g(ui) = f(wi), it follows that f(w1) ∩ f(wi) 6= ∅.

? If y ∈ U , then k + 1 ∈ f(wi) ∩ f(y) and so f(wi) ∩ f(y) 6= ∅.

? If y ∈ V (Ka−1), then y is adjacent to ui and so f(y) = g(y) ⊆ [k] − g(ui) ⊆ [k + 1] − g(ui) = f(wi). Therefore,
f(y) ∩ f(wi) 6= ∅.

Hence, f is a subset labeling of Gi and so ρ(Gi) ≤ k + 1 = ρ(Gi−1) + 1.
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Figure 5: The graph G3.
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For integers a ≥ 3 and t ≥ 1, let G0 and Gt be defined as above. That is, G0 = Ka−1 ∨ Kt is the join of the complete
graph Ka−1 and the empty graph Kt, where V (Ka−1) = {v1, v2, . . . , va−1} and V (Kt) = {u1, u2, . . . , ut}. The graph Gt is the
graph obtained by adding the pendant edge uiwi at the vertex ui of Ka−1 ∨Kt for 1 ≤ i ≤ t.

Proposition 3.2. lim
t→∞

ρ(Gt) =∞.

Proof. Let N ≥ 2 be an arbitrary integer. We show that ρ(Gt) > N for all integers t > 2N . Suppose that ρ(Gt) = k and let
f : V (Gt) → P∗([k]) be a subset labeling of Gt. Since f(vi) ∩ f(vj) = ∅ for 1 ≤ i < j ≤ a − 1, we may assume that i ∈ f(vi)
for 1 ≤ i ≤ a − 1. Thus, f(ui) is a subset of [k] − [a − 1] for 1 ≤ i ≤ t. Since N(ui) 6= N(uj) for 1 ≤ i < j ≤ t, it follows that
f(u1, f(u2), . . ., f(ut) are distinct subsets of [k]− [a−1]. This implies that t ≤ 2k−a+1 < 2k and so log2 t < k. Thus, if t > 2N ,
then log2 t > N and so ρ(Gt) = k > log2 t > N . Therefore, lim

n→∞
ρ(Gt) =∞.

We are now prepared to prove that every two integers a and b with 2 ≤ a ≤ b are realizable as the chromatic number
and subset index, respectively, of some connected graph.

Theorem 3.6. For every pair a, b of integers with 2 ≤ a ≤ b, there is a connected graph G such that χ(G) = a and ρ(G) = b.

Proof. If a = b ≥ 2, then let G = Ka. Then χ(G) = ρ(G) = a by Observation 3.1. If a = 2 and b ≥ 3, then there exists an
integer nb such that ρ(Pnb

) = b by Theorem 3.2. Since χ(Pnb
) = 2, the graph G = Pnb

has the desired properties. Thus, we
may assume that 3 ≤ a < b. For integers a ≥ 3 and t ≥ 1, again let G0 be defined as above, namely G0 = Ka−1 ∨Kt is the
join of the complete graph Ka−1 and the empty graph Kt, where

V (Ka−1) = {v1, v2, . . . , va−1} and V (Kt) = {u1, u2, . . . , ut}.

Since G0 is a magnified Ka, it follows that χ(G0) = ρ(G0) = a. Let G1 be the graph obtained by adding the pendant edge
u1w1 at the vertex u1 of G0. For each integer i with 2 ≤ i ≤ t, let Gi be the graph obtained by adding the pendant edge uiwi

at the vertex ui of Gi−1. By Proposition 3.2, lim
t→∞

ρ(Gt) =∞. Thus, there is an integer t0 such that ρ(Gt0) = N > b. It then
follows by Theorem 3.5 that there is an integer i with 1 ≤ i ≤ t0 such that ρ(Gi) = b. Since χ(Gi) = a, the graph Gi has the
desired property.

As an illustration of Theorem 3.6 and its proof, we determine the subset indices of the graphs G0, G1, G2, G3, and G4

for a = 5. Thus, G0 = K4 ∨K4 and the graph G4 is shown in Figure 6. Hence, Gi−1 = Gi − wi for 1 ≤ i ≤ 4 and χ(Gi) = 5

for 1 ≤ i ≤ 4. We saw that χ(G0) = ρ(G0) = 5.
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Figure 6: The graph G4 for a = 5.

Example 3.1. ρ(G1) = 6, ρ(G2) = ρ(G3) = 7, and ρ(G4) = 8.

Proof. First, we make some observations. For 1 ≤ i ≤ 4, let fi be a subset labeling of Gi. Then fi(x) 6= fi(y) for every two
distinct vertices x and y of Gi. Furthermore, if 2 ≤ i ≤ 4, then |fi(uj)| ≥ 2 and |fi(wj)| ≥ 2 for all integers j with 2 ≤ j ≤ i.
A subset labeling f0 : V (G0)→ P∗([5]) of G0 is defined by

f0(vj) = {j} for 1 ≤ j ≤ 4

f0(uj) = {5} for 1 ≤ j ≤ 4.

For 1 ≤ i ≤ 4, define a subset labeling fi of Gi recursively as follows.

? The subset labeling f1 : V (G1)→ P∗([6]) of G1 is defined in terms of f0 by

f1(vj) = f0(vj) = {j} for 1 ≤ j ≤ 4
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f1(u1) = f0(u1) = {5}

f1(uj) = f0(ui) ∪ {6} = {5, 6} for 2 ≤ j ≤ 4

f1(w1) = [4] ∪ {6}.

Thus, ρ(G1) ≤ 6. We show that ρ(G1) 6= 5. Assume, to the contrary, that there is a subset labeling g1 : V (G1)→ P∗([5])
of G1. We may assume that j ∈ g1(vj) for 1 ≤ j ≤ 4. This forces g1(vj) = {j} and g1(uj) = {5} for 1 ≤ j ≤ 4. However
then, g1(w1) = [4] and so g1(w1) ∩ g1(u2) = ∅, a contradiction. Therefore, ρ(G1) = 6.

? The subset labeling f2 : V (G2)→ P∗([7]) of G2 is defined in terms of f1 by

f2(vj) = f1(vj) = {j} for 1 ≤ j ≤ 4

f2(u1) = f1(u1) ∪ {7} = {5, 7}

f2(u2) = f1(u2) = {5, 6}

f2(uj) = f1(ui) ∪ {7} = {5, 6, 7} for j = 3, 4

f2(wj) = [4] ∪ {5 + j} for j = 1, 2.

Thus, ρ(G2) ≤ 7. We show that ρ(G2) 6= 6. Assume, to the contrary, that there is a subset labeling g2 : V (G2)→ P∗([6])
of G2. We may assume that j ∈ g2(vj) for 1 ≤ j ≤ 4. Since |g2(uj)| ≥ 2 for 1 ≤ j ≤ 4, this forces g2(vj) = {j} and
g2(uj) = {5, 6}. However then, g2(w1) = [4] and so g2(w1) ∩ g2(u2) = ∅, a contradiction. Therefore, ρ(G2) = 7.

? The subset labeling f3 : V (G3) → P∗([7]) of G3 is defined in terms of f2 by f3(w3) = [4] ∪ {6, 7} and f3(x) = f2(x)

for x ∈ V (G2). Thus, ρ(G3) ≤ 7. Since 7 ≤ ρ(G2) ≤ ρ(G3), it follows that ρ(G3) = 7.

? The subset labeling f4 : V (G4)→ P∗([8]) of G4 is defined in terms of f3 by

f4(w4) = [4] ∪ {8}

f4(uj) = f3(ui) ∪ {8} for 1 ≤ j ≤ 3

f4(x) = f3(x) if x /∈ {u1, u2, u3, w4}.

Thus, ρ(G4) ≤ 8. We show that ρ(G4) 6= 7. Assume, to the contrary, that there is a subset labeling g4 : V (G4)→ P∗([7])
of G4. We may assume that j ∈ g4(vj) for 1 ≤ j ≤ 4. Since 2 ≤ |g4(uj)| ≤ 3 for 1 ≤ j ≤ 4, this forces g4(vj) = {j} and so
g4(uj) ⊆ {5, 6, 7}. Since there are only three 2-element subsets of {5, 6, 7}, it follows that |f4(uj)| = 3 for exactly one
integer j with 1 ≤ j ≤ 4. We may assume that g4(u1) = {5, 6, 7}. This forces f4(w1) = [4] and so f4(w1) ∩ g4(u2) = ∅, a
contradiction. Therefore, ρ(G4) = 8.
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