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Abstract

The authors establish novel integrals involving a certain periodic function which is associated with the Euler-Maclaurin
summation formula.
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1. Motivation

Evaluations of some integrals involving the function

Pt)=t—[t] - 5 o)
(where [t] is the integer part of ¢) play an important role in evaluations of certain series of the Riemann zeta function. Note
that P(t) is the first periodized Bernoulli polynomial, i.e., P(t) = By(t — [t]) = {t} — %, with {t} being the fractional part
of t. In their excellent book on zeta functions, Srivastava and Choi [3] analyze such integrals in Chapter 6.3, referring to
Rainville [2], Zhang [4] and Choi et al. [1]. They report that
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For n > 3, the following general formula can be found in [3]
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being the Riemann zeta function with its analytical continuation
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which will be used later. Two other examples reported by Choi et al. [1, Equations (29) and (30)] are the following interesting

integrals
< P@#) , 3 1 1
/1 St = =2+ 1) + S n) ®)
and ~ . 5
/1 P(t)In (1 + E) dt =In(2) - 7. 9)

In this note, we complete the above analysis by providing closed-form evaluations for the analogue of (4) involving
|P(t)|/t" as an integrand.

2. Main result

Theorem 2.1.
™
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we have
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In the last step, we have used that {t} = ¢ for ¢t € [0,1). Since
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it is clear that we have to distinguish two separate cases. The case n = 2 is established first. Integrating, rearranging,
and simplifying gives
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Now,
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which is a consequence of Wallis’ product
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To show the general case, we need (7) or equivalently
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This gives for n > 3
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After applying (11) a second time and simplifying the result, we get
n—2"
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This is the equation stated in the theorem and the proofis complete for n > 4. The case n = 3 is treated separately. In this

case, we use (6) to get
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or specifically for n = 3

The last sum is known to be equal to In(2). O
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