Research Article

New integrals involving a function associated with Euler-Maclaurin summation formula*

Robert Frontczak ${ }^{1, \dagger}$, Munesh Kumari ${ }^{2}$, Kalika Prasad ${ }^{2}$

${ }^{1}$ Landesbank Baden-Württemberg (LBBW), Stuttgart, Germany
${ }^{2}$ Department of Mathematics, Central University of Jharkhand, Ranchi, India
(Received: 5 November 2022. Received in revised form: 26 November 2022. Accepted: 29 November 2022. Published online: 9 December 2022.)
(c) 2022 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

The authors establish novel integrals involving a certain periodic function which is associated with the Euler-Maclaurin summation formula.

Keywords: Bernoulli polynomial; Euler-Maclaurin summation formula; integrals; Riemann zeta function.
2020 Mathematics Subject Classification: 11B68, 65B15.

1. Motivation

Evaluations of some integrals involving the function

$$
\begin{equation*}
P(t)=t-[t]-\frac{1}{2} \tag{1}
\end{equation*}
$$

(where $[t]$ is the integer part of t) play an important role in evaluations of certain series of the Riemann zeta function. Note that $P(t)$ is the first periodized Bernoulli polynomial, i.e., $P(t)=B_{1}(t-[t])=\{t\}-\frac{1}{2}$, with $\{t\}$ being the fractional part of t. In their excellent book on zeta functions, Srivastava and Choi [3] analyze such integrals in Chapter 6.3, referring to Rainville [2], Zhang [4] and Choi et al. [1]. They report that

$$
\begin{equation*}
\int_{1}^{\infty} \frac{P(t)}{t} d t=\frac{1}{2} \ln (2 \pi)-1 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{1}^{\infty} \frac{P(t)}{t^{2}} d t=\frac{1}{2}-\gamma \tag{3}
\end{equation*}
$$

where γ is the Euler-Mascheroni constant

$$
\gamma=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\ln n\right)=0,5772156649 \ldots
$$

For $n \geq 3$, the following general formula can be found in [3]

$$
\begin{equation*}
\int_{1}^{\infty} \frac{P(t)}{t^{n}} d t=\frac{n}{2(n-1)(n-2)}-\frac{1}{n-1} \zeta(n-1) \quad(n \neq 1,2) \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
\zeta(s)=\sum_{k=1}^{\infty} \frac{1}{k^{s}} \quad(\Re(s)>1) \tag{5}
\end{equation*}
$$

being the Riemann zeta function with its analytical continuation

$$
\begin{equation*}
\zeta(s)=\left(1-2^{1-s}\right)^{-1} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{s}} \quad(\Re(s)>0, s \neq 1) \tag{6}
\end{equation*}
$$

We also note that

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{s}}=\left(1-2^{-s}\right) \zeta(s) \tag{7}
\end{equation*}
$$

[^0]which will be used later. Two other examples reported by Choi et al. [1, Equations (29) and (30)] are the following interesting integrals
\[

$$
\begin{equation*}
\int_{1}^{\infty} \frac{P(t)}{2 t+1} d t=-\frac{3}{4}+\frac{1}{4} \ln (2)+\frac{1}{2} \ln (3) \tag{8}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\int_{1}^{\infty} P(t) \ln \left(1+\frac{1}{t}\right) d t=\ln (2)-\frac{3}{4} \tag{9}
\end{equation*}
$$

In this note, we complete the above analysis by providing closed-form evaluations for the analogue of (4) involving $|P(t)| / t^{n}$ as an integrand.

2. Main result

Theorem 2.1.

$$
\int_{1}^{\infty} \frac{|P(t)|}{t^{n}} d t= \begin{cases}\ln \left(\frac{\pi}{4}\right)+\frac{1}{2}, & n=2 \tag{10}\\ 2 \ln (2)-\frac{5}{4}, & n=3 \\ \frac{1}{2(n-2)(n-1)}\left(\left(2^{n}-2^{3}\right) \zeta(n-2)+n-2^{n}\right), & n \geq 4\end{cases}
$$

Proof. Starting with

$$
|P(t)|=\left\{\begin{array}{lr}
\{t\}-\frac{1}{2}, & k+\frac{1}{2} \leq t<k+1 \\
-\{t\}+\frac{1}{2}, & k \leq t<k+\frac{1}{2}
\end{array}\right.
$$

we have

$$
\begin{aligned}
\int_{1}^{\infty} \frac{|P(t)|}{t^{n}} d t & =\sum_{k=1}^{\infty} \frac{1}{2}\left(\int_{k}^{k+1 / 2} \frac{1}{t^{n}} d t-\int_{k+1 / 2}^{k+1} \frac{1}{t^{n}} d t\right)+\sum_{k=1}^{\infty}\left(\int_{k+1 / 2}^{k+1} \frac{\{t\}}{t^{n}} d t-\int_{k}^{k+1 / 2} \frac{\{t\}}{t^{n}} d t\right) \\
& =\sum_{k=1}^{\infty} \frac{1}{2}\left(\int_{k}^{k+1 / 2} \frac{1}{t^{n}} d t-\int_{k+1 / 2}^{k+1} \frac{1}{t^{n}} d t\right)+\sum_{k=1}^{\infty}\left(\int_{1 / 2}^{1} \frac{\{t+k\}}{(t+k)^{n}} d t-\int_{0}^{1 / 2} \frac{\{t+k\}}{(t+k)^{n}} d t\right) \\
& =\sum_{k=1}^{\infty} \frac{1}{2}\left(\int_{k}^{k+1 / 2} \frac{1}{t^{n}} d t-\int_{k+1 / 2}^{k+1} \frac{1}{t^{n}} d t\right)+\sum_{k=1}^{\infty}\left(\int_{1 / 2}^{1} \frac{t}{(t+k)^{n}} d t-\int_{0}^{1 / 2} \frac{t}{(t+k)^{n}} d t\right)
\end{aligned}
$$

In the last step, we have used that $\{t\}=t$ for $t \in[0,1)$. Since

$$
\int \frac{x}{(x+k)^{n}} d x= \begin{cases}x-k \ln (x+k), & n=1 \\ \frac{x}{x+k}+\ln (x+k), & n=2 \\ -\frac{1}{(n-2)(n-1)} \frac{(n-1) x+k}{(x+k)^{n-1}}, & n \geq 3\end{cases}
$$

it is clear that we have to distinguish two separate cases. The case $n=2$ is established first. Integrating, rearranging, and simplifying gives

$$
\begin{aligned}
\int_{1}^{\infty} \frac{|P(t)|}{t^{2}} d t= & \frac{1}{2} \sum_{k=1}^{\infty}\left(\frac{1}{k}+\frac{1}{k+1}\right)-2 \sum_{k=1}^{\infty} \frac{1}{2 k+1}+\sum_{k=1}^{\infty}\left(\left(\frac{k}{k+1}-\frac{2 k}{2 k+1}\right)+\left(1-\frac{2 k}{2 k+1}\right)\right) \\
& +\sum_{k=1}^{\infty}\left(\ln \left(\frac{k+1}{k+\frac{1}{2}}\right)+\ln \left(\frac{k}{k+\frac{1}{2}}\right)\right)
\end{aligned}
$$

Now,

$$
\begin{aligned}
\left(\frac{k}{k+1}-\frac{2 k}{2 k+1}\right)+\left(1-\frac{2 k}{2 k+1}\right) & =\frac{-k}{(k+1)(2 k+1)}+\frac{1}{2 k+1} \\
& =\frac{1}{(k+1)(2 k+1)} \\
& =\frac{2}{2 k+1}-\frac{1}{k+1}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{1}^{\infty} \frac{|P(t)|}{t^{2}} d t & =\frac{1}{2} \sum_{k=1}^{\infty}\left(\frac{1}{k}-\frac{1}{k+1}\right)+\sum_{k=1}^{\infty}\left(\ln \left(1+\frac{1}{2 k+1}\right)+\ln \left(1-\frac{1}{2 k+1}\right)\right) \\
& =\frac{1}{2}+\ln \left(\prod_{k=1}^{\infty}\left(1-\frac{1}{(2 k+1)^{2}}\right)\right)
\end{aligned}
$$

The statement follows from the known result

$$
\prod_{k=1}^{\infty}\left(1-\frac{1}{(2 k+1)^{2}}\right)=\frac{\pi}{4}
$$

which is a consequence of Wallis' product

$$
\pi=2 \prod_{k=1}^{\infty} \frac{2 k}{(2 k+1)} \frac{2 k}{(2 k-1)} .
$$

To show the general case, we need (7) or equivalently

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{(2 k+1)^{n-1}}=\left(1-2^{-(n-1)}\right) \zeta(n-1)-1 . \tag{11}
\end{equation*}
$$

This gives for $n \geq 3$

$$
\begin{aligned}
\int_{1}^{\infty} \frac{|P(t)|}{t^{n}} d t= & \frac{\zeta(n-1)}{n-1}-\frac{1}{2(n-1)}-\frac{2^{n-1}}{n-1}\left(\left(1-2^{-(n-1)}\right) \zeta(n-1)-1\right) \\
& +\frac{1}{(n-2)(n-1)} \sum_{k=1}^{\infty}\left(\frac{(n-1)+2 k}{\left(k+\frac{1}{2}\right)^{n-1}}-\frac{(n-1)+k}{(k+1)^{n-1}}-\frac{1}{k^{n-2}}\right) \\
= & \frac{\zeta(n-1)}{n-1}\left(2-2^{n-1}\right)-\frac{1}{2(n-1)}\left(1-2^{n}\right) \\
& +\frac{2^{n-1}}{(n-2)}\left(\left(1-2^{-(n-1)}\right) \zeta(n-1)-1\right) \\
& +\frac{2^{n-1}}{(n-2)(n-1)} \sum_{k=1}^{\infty}\left(\frac{1}{(2 k+1)^{n-2}}-\frac{1}{(2 k+1)^{n-1}}\right) \\
& -\frac{1}{(n-2)}(\zeta(n-1)-1)-\frac{1}{(n-2)(n-1)}(\zeta(n-2)-1) \\
& +\frac{1}{(n-2)(n-1)}(\zeta(n-1)-1)-\frac{1}{(n-2)(n-1)} \zeta(n-2) .
\end{aligned}
$$

After applying (11) a second time and simplifying the result, we get

$$
\int_{1}^{\infty} \frac{|P(t)|}{t^{n}} d t=\frac{4}{(n-2)(n-1)}\left(2^{n-3}-1\right) \zeta(n-2)+\frac{n-2^{n}}{2(n-2)(n-1)} .
$$

This is the equation stated in the theorem and the proof is complete for $n \geq 4$. The case $n=3$ is treated separately. In this case, we use (6) to get

$$
\frac{4}{(n-2)(n-1)}\left(2^{n-3}-1\right) \zeta(n-2)=\frac{2^{n-1}}{(n-2)(n-1)} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{n-2}},
$$

or specifically for $n=3$

$$
\int_{1}^{\infty} \frac{|P(t)|}{t^{3}} d t=2 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}-\frac{5}{4} .
$$

The last sum is known to be equal to $\ln (2)$.

Acknowledgement

The authors are thankful to the two anonymous reviewers for their rapid review and some helpful comments.

References

[1] J. Choi, H. M. Srivastava, N. Y. Zhang, Integrals involving a function associated with the Euler-Maclaurin summation formula, Appl. Math. Comput. 93 (1998) $101-116$.
[2] E. D. Rainville, Special Functions, Macmillan, New York, 1960; Reprinted by Chelsea Publishing Company, New York, 1971.
[3] H. M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions, Springer, New York, 2001.
[4] N. Y. Zhang, Euler's constant and some sums related to the Riemann zeta function, Theory Pract. Math. (Beijing) 4 (1990) 62-70.

[^0]: *Statements and conclusions made in this article by R. F. are entirely those of the author. They do not necessarily reflect the views of LBBW.
 ${ }^{\dagger}$ Corresponding author (robert.frontczak@lbbw.de).

