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Abstract
The average size of independent sets of a graph (avi) is considered. It can be viewed as the logarithmic derivative of the
independence polynomial at 1. Lower and upper bounds on avi for unicyclic graphs of a given order are determined, and the
respective extremal graphs are given. The unicyclic graphs that maximize (minimize) avi coincide with those that maximize
(minimize, respectively) the number of independent sets.
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1. Introduction

In 1980s, Jamison [21,22] initiated the study of the average size of subtrees of a tree. He studied an extremal problem and
proved that the path Pn has the smallest average size of subtrees among all trees of a fixed order n. However, although the
average size of subtrees of a tree has been extensively studied (see [8,25,27,31,34]), the problem of describing the tree(s)
of a given order with the largest average size of subtrees remains unresolved. Inspired by these works, the study of the
average size of certain substructures of graphs, including subtrees [9,10], independent sets [1], matching [2], dominating
sets [5,14] and connected sets [15,30], has attracted increasing attention in recent years.

An independent set of a graph G is a set of pairwise non-adjacent vertices of G. The total number of such sets has been
studied extensively and is usually called Merrifield–Simmons index in honor of the work of Merrifield and Simmons in
mathematical chemistry [26]. In fact it has been called the Fibonacci number of G (cf. [23]), based on the fact that in the
case of a path, i(Pn) = Fn+2, where Fh is the standard h-th Fibonacci number, F1 = 1 , , F2 = 1 , F3 = 2 , Fh+2 = Fh+1 + Fh.
In addition, the association of i(G) with the hard core model is well established in statistical physics [7]. It is of interest to
determine the graphs having extremal (maximal or minimal) i(G)-values in several given graph classes, especially in the
context of mathematical chemistry, such as trees, unicyclic graphs, bicyclic graphs and so on (see [13, 29, 35, 36, 39, 40]).
For more extremal results on i(G) see the surveys [32,33] and for related results see [19,20,37,38].

This paper is focused on the extremal problems of the average size of independent sets (avi), instead of their number
(i(G)). Different authors have already studied bounds on this invariant for specific graphs, see [11, 12, 24]. Recently An-
driantiana, Misanantenaina, and Wagner [1] studied the extreme problem of this invariant and showed that the complete
and empty graphs attain the minimum and maximum among all graphs of a given order, whereas the path and the star
attain the minimum and maximum among all trees of a given order. It turns out that these results parallel the extremal
graph for the number of independent sets. In view of the definition of correlation, this may not be too surprising. However,
the correlation is not fully understood between these two invariants (the average size of independent sets and the number
of independent sets).

A natural question is whether the extremal graph for the average size of independent sets in other graph classes remains
parallel to the extremal graph for the number of independent sets. A unicyclic graph, as a natural extension of a tree, is
a connected graph containing exactly one cycle. Many extremal problems, considered for various classes of trees, can be
extended to unicyclic graphs. For example, Pedersen and Vestergaard [29] determined sharp lower and upper bounds for
the Merrifield–Simmons index in a unicyclic graph of a given order. Andriantiana and Wang [4] characterized the extremal
unicyclic graphs with respect to the number of subtrees. Ou [28] described the unicyclic graphs of order n with the largest
and second largest Hosoya index. Hou [17] determined the unicyclic graphs of order n with the minimal energy. Hou,
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Gutman, and Woo [18] characterized the unicyclic bipartite graphs of order n having the maximal energy. Andriantiana
and Wagner [3] also found the non-bipartite unicyclic graphs of order n with the maximum energy.

In this paper, we study the average size of independent sets in a unicyclic graph and characterized the unicyclic graphs
of order n having the largest and smallest average size of independent sets. These turn out that the unicyclic graphs
that maximize (minimize) the average size of independent sets are those that also maximize (minimize, respectively) the
number of independent sets. Section 2 gives some auxiliary results that will be used for the subsequent proofs. In Section
3, we determine the graphs minimizing and maximizing the average size of independent sets among unicyclic graphs with
the given order. We conclude in Section 4 with some questions.

2. Preliminaries

Let G be a simple graph with vertex set V (G) and edge set E(G). The number of vertices of G is called the order of G,
denoted by |G|. For a vertex v ∈ V (G), the open neighborhood of v is NG(v) = {u ∈ V (G) : uv ∈ E(G)} and the closed
neighborhood of v is NG[v] = NG(v)∪ {v}. We use N(v) and N [v], respectively, if there is no ambiguity on G. The degree of
v ∈ V (G) is just dG(v) = |NG(v)|, and a vertex of degree 1 is called a leaf vertex. For a vertex subset X ⊆ V (G), we write
G − X for the graph obtained from G by removing all the vertices in X and the edges incident with them. The distance
d(u, v) between two vertices u and v of G is the number of edges on a shortest path from u to v in G. Let v be a vertex of G
and S ⊆ V (G), the distance between v and S is dG(S, v) = min {dG(u, v) : u ∈ S}.

As usual, we use Pn, Sn, and Cn to denote the path, star, and cycle, respectively, of order n. For n ≥ 3, we denote by USn

the graph obtained by inserting an edge connecting two leaves of Sn, and UPn the graph obtained by identifying one end
of Pn−2 with one of the vertices of C3 (see Figure 1). For all other notations we refer to [6].

Figure 1: The unicyclic graphs USn and UPn for n = 7.

For a graph G, an independent set in G is a set of vertices with no two adjacent vertices. Let i(G, k) be the number of
independent sets of cardinality k in G. It is both consistent and convenient to set i(G, 0) = 1. The independence polynomial
of G is defined by

I(G, x) =
∑
k≥0

i(G, k)xk.

One can easily see that I(G, 1) =
∑

k≥0 i(G, k) is the total number of independent sets ofG, and that I′(G, 1) =
∑

k≥0 ki(G, k)

is the total size of all independent sets of G. For brevity we use the notations i(G) = I(G, 1) and t(G) = I′(G, 1). Then the
average size of independent sets in G is given by the logarithmic derivative

avi(G) =
I′(G, 1)

I(G, 1)
=
t(G)

i(G)
.

The following results are very useful for calculating the independence polynomial.

Proposition 2.1 (see [16]). Let v be a vertex of G and G1, G2, . . . , Gk be the disjoint components of G. Then

(i) I(G, x) = I(G− v, x) + xI(G−N [v], x);

(ii) I(G, x) =
∏k

i=1 I(Gi, x).

A recursive formula for i(G) and t(G) is obtained as a immediate consequence.

Proposition 2.2 (see [1]). For any graph G and v ∈ V (G), we have

(i) i(G) = i(G− v) + i(G−N [v]);

(ii) t(G) = t(G− v) + i(G−N [v]) + t(G−N [v]).

For the equality in Proposition 2.1 (ii), by taking the logarithm and the differentiation on both sides, letting x = 1, we
get the next result.
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Z. Luo, K. Xu, A. S. Çevik, and I. Gutman / Contrib. Math. 7 (2023) 1–10 3

Proposition 2.3. Let G1, G2, . . . , Gk be the disjoint components of G. Then

avi(G) =

k∑
i=1

avi(Gi).

The following result established in [1], will be fundamental for proving our main results.

Lemma 2.1 (see [1]). For every tree T of order n, we have avi(Sn) ≥ avi(T ) ≥ avi(Pn). Moreover,

(i) avi(T ) ≥ avi(Pn) ≥ 5−
√
5

10 n+ 1√
5
− 1

3 for n ≥ 1;

(ii) avi(T ) ≥ avi(Pn) ≥ 5−
√
5

10 n+ 2√
5
− 3

4 for n ≥ 3;

(iii) if T 6∼= Pn, then avi(T ) ≥ 5−
√
5

10 n+ 79
√
5−165
70 > avi(Pn).

3. Main results

For notational simplicity, in this section we always set

a =
5−
√
5

10
≈ 0.27639320, b =

2√
5
− 3

4
≈ 0.14442719,

c =
1√
5
− 1

3
≈ 0.11388026, d =

79
√
5− 165

70
≈ 0.16641957, φ =

√
5 + 1

2
.

It is known that USn maximizes the number of independent sets and Cn and UPn minimizes the number of independent
sets among all unicyclic graphs of order n (see [29]). We show that these results parallel the extremal graph for the average
size of independent sets. We begin with some lemmas that are useful for proving the subsequent results.

Lemma 3.1.

avi (Sn) =
n− 1

2
+

3− n
2n + 2

. (1)

avi (USn) =
3n− 5

6
+

11− 3n

18 · 2n−3 + 6
. (2)

avi (Cn) = avi (UPn) = an+
2n

2
√
5− (3

√
5 + 5)(−φ2)n−1

. (3)

Moreover,

avi (Cn) ≤ an+
9
√
5− 20

15
≈ an+ 0.0083

for n ≥ 5 with equality only for n = 6. For n ≥ 7,

avi (Cn) ≤ an+
8836

√
5− 19740

11045
≈ an+ 0.0016

with equality only for n = 8.

Proof. Applying Proposition 2.1, we have

I (Sn, x) = (1 + x)n−1 + x, I (USn, x) = (1 + 2x)(1 + x)n−3 + x,

which yields
i (Sn) = 2n−1 + 1 and i (USn) = 3 · 2n−3 + 1,
t (Sn) = (n− 1)2n−2 + 1 and t (USn) = 3(n− 3) · 2n−4 + 2n−2 + 1.

Therefore (1) and (2) follow by direct computation.
Let u be one of the vertices of degree 2 that lies on the unique cycle of UPn and v be any vertex of Cn. By applying

Proposition 2.1, we have

I(UPn, x) = I(UPn − u, x) + xI(UPn −N [u], x) = I(Pn−1, x) + xI(Pn−3, x),

I(Cn, x) = I(Cn − v, x) + xI(Cn −N [v], x) = I(Pn−1, x) + xI(Pn−3, x).

Clearly, I(UPn, x) = I(Cn, x), which implies that avi (UPn) = avi (Cn).
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Note that i(Pn) is the Fibonacci number Fn+2 = 1√
5

(
φn+2 − (−φ)−n−2

)
(see [23]). Moreover, by Proposition 2.2, we have

the recursion t (Pn) = t (Pn−2) + i (Pn−2) + t (Pn−1) with t (P1) = 1 and t (P2) = 2. By solving this recursive equation we get

t (Pn) =

(
1 +
√
5

10
n+

2
√
5

25

)
φn +

(
1−
√
5

10
n− 2

√
5

25

)
(−φ)−n.

On the other hand, it follows from Proposition 2.2 that i(Cn) = i(Pn−1) + i(Pn−3), t(Cn) = t(Pn−1) + i(Pn−3) + t(Pn−3).
Direct calculation give the formula (3) for avi(Cn) = t(Cn)/i(Cn).

Let cn = avi (Cn)− an. We prove that the absolute value of cn is decreasing. When n ≥ 5, we get∣∣∣∣ cncn−1

∣∣∣∣ =
∣∣∣∣∣ 2n

2
√
5− (3

√
5 + 5)(−φ2)n−1

· 2
√
5− (3

√
5 + 5)(−φ2)n−2

2(n− 1)

∣∣∣∣∣
≤
(
1 +

1

n− 1

)
(3
√
5 + 5)φ2(n−2) + 2

√
5

(3
√
5 + 5)φ2(n−1) − 2

√
5

= φ−2
(
1 +

1

n− 1

)
3
√
5 + 5 + 2

√
5φ−2(n−2)

3
√
5 + 5− 2

√
5φ−2(n−1)

≤ φ−2 · 5
4
· 3
√
5 + 5 + 2

√
5φ−6

3
√
5 + 5− 2

√
5φ−8

≈ 0.4916 < 1.

Therefore, |cn| is decreasing for n. Meanwhile, observe that the sign of cn alternates, i.e., cn < 0 if n is odd and cn > 0 if
n is even. This implies that avi(Cn) is alternately greater and less than an. It follows that if n ≥ 5, the maximum of cn is
attained for n = 6, and if n ≥ 7, the maximum of cn is attained for n = 8. In both cases, the values of avi(Cn) are easy to
calculate and the two inequalities in Lemma 3.1 follow.

Lemma 3.2. For any graph G and v ∈ V (G), we have

1

2
≤ i(G− v)

i(G)
< 1.

Proof. Using Proposition 2.2, we get i(G) = i(G− v) + i(G−N [v]). Note that i(G−N [v]) ≤ i(G− v) because G−N [v] is a
subgraph of G− v. This establishes the left inequality. And the right inequality follows easily from the fact that G− v is
a proper subgraph of G.

Lemma 3.3. If T is a tree on n vertices, then

(i) for any vertex v of T , we have avi(T − v) ≥ a(n− 1) + c for n > 1;

(ii) for any two vertices u, v of T , we have avi(T − u− v) ≥ a(n− 2) + c for n ≥ 3.

Proof. We only prove (i), whereas the proofs of (ii) is similar and is omitted.
If T − v is connected, the inequality follows from Lemma 2.1 (i). Consider, therefore, the case when T − v be not

connected. Let k be the number of components of T − v, where k ≥ 2. Applying Lemma 2.1 (i) to each component of T − v,
then by Proposition 2.3, avi(T − v) ≥ a(n− 1) + kc > a(n− 1) + c as desired.

We first characterize the graphs minimizing the average size of independent sets among all unicyclic graphs of order n.

Theorem 3.1. For any unicyclic graph G of order n ≥ 3, we have

avi (G) ≥ an+
2n

2
√
5− (3

√
5 + 5)(−φ2)n−1

with equality if and only if G ∈ {Cn, UPn}.

Proof. If G ∈ {Cn, UPn}, then by Lemma 3.1,

avi(G) = an+
2n

2
√
5− (3

√
5 + 5)(−φ2)n−1

.

Assume that G /∈ {Cn, UPn} is a unicyclic graph of order n ≥ 3. It suffices to prove that avi (G) > avi (Cn). We write C
to denote the unique cycle in G and consider a vertex v in C with dG(v) ≥ 3. Assume that NG(v) = {v0, v1, . . . , vk} with
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v0, v1 ∈ V (C), we use T1, T2, . . . , Tk to denote the components of G− v such that v0, v1 is contained in T1, vi is contained in
Ti for 2 ≤ i ≤ k. By Propositions 2.2 and 2.3, we obtain

avi(G) =
t(G− v) + i(G−N [v]) + t(G−N [v])

i(G)

=
i(G− v)
i(G)

· t(G− v)
i(G− v)

+
i(G−N [v])

i(G)
·
(
1 +

t(G−N [v])

i(G−N [v])

)

=
i(G− v)
i(G)

avi(G− v) + i(G)− i(G− v)
i(G)

(1 + avi(G−N [v]))

=
i(G− v)
i(G)

avi (T1) +

(
1− i(G− v)

i(G)

)
avi (T1 − v0 − v1)

+
i(G− v)
i(G)

k∑
i=2

avi (Ti) +

(
1− i(G− v)

i(G)

)(
1 +

k∑
i=2

avi (Ti − vi)

)
.

Assume that k ≥ 5 and let T ′ = G− T1. Repeating the above calculation yields

avi (T ′) =
i (T ′ − v)
i (T ′)

k∑
i=2

avi (Ti) +

(
1− i (T ′ − v)

i (T ′)

)(
1 +

k∑
i=2

avi (Ti − vi)

)
.

For simplicity, we use σ and σ′ to denote i(G−v)
i(G) and i(T ′−v)

i(T ′) , respectively, and set

A = σavi (T1) + (1− σ) avi (T1 − v0 − v1) ,

B = σ

k∑
i=2

avi (Ti) + (1− σ)

(
1 +

k∑
i=2

avi (Ti − vi)

)
.

Note that

σ =
i(G− v)
i(G)

=

∏k
i=1 i (Ti)∏k

i=1 i (Ti) + i (T1 − v0 − v1)
∏k

i=2 i (Ti − vi)

=

(
1 +

i (T1 − v0 − v1)
i (T1)

k∏
i=2

i (Ti − vi)
i (Ti)

)−1
(4)

and likewise

σ′ =

(
1 +

k∏
i=2

i (Ti − vi)
i (Ti)

)−1
. (5)

Applying Lemma 3.2, we deduce that

1

4
≤ i (T1 − v0 − v1)

i (T1)
=
i (T1 − v0 − v1)
i (T1 − v0)

i (T1 − v0)
i(T1)

< 1. (6)

Combining (4), (5) and (6), we get σ > σ′. Now, we write

B =σ

k∑
i=2

avi (Ti) + (1− σ)

(
1 +

k∑
i=2

avi (Ti − vi)

)

=
1− σ
1− σ′

(
σ′

k∑
i=2

avi (Ti) + (1− σ′)

(
1 +

k∑
i=2

avi (Ti − vi)

))
+
σ − σ′

1− σ′
k∑

i=2

avi (Ti)

=
1− σ
1− σ′

avi (T ′) +
σ − σ′

1− σ′
k∑

i=2

avi (Ti) . (7)

Observe that T ′ is not a path. Using Lemma 2.1 (iii) gives avi (T ′) > a|T ′|+d. Moreover, by Lemma 2.1 (i), avi (Ti) > a |Ti|+c
for all 2 ≤ i ≤ k. Hence

k∑
i=2

avi (Ti) >
k∑

i=2

(a |Ti|+ c) = a (|T ′| − 1) + c(k − 1)

> a |T ′|+ 4c− a > a|T ′|+ d.

5
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By substituting the above inequality and avi (T ′) > a|T ′|+ d into (7), we obtain B > a|T ′|+ d. Then we consider the order
of T1.

If |T1| ≥ 3, then, by Lemmas 2.1 (ii), 3.3 (ii) and 3.2, we have

A = σavi (T1) + (1− σ) avi (T1 − v0 − v1)

> σ (a |T1|+ b) + (1− σ) (a (|T1| − 2) + c)

= a|T1| − 2a+ c+ σ (b− c+ 2a)

≥ a|T1| − 2a+ c+
1

2
(b− c+ 2a) as b− c+ 2a > 0

= a|T1|+
48
√
5− 125

120
.

Hence avi(G) = A+B ≥ a|T1|+ 48
√
5−125
120 + a|T ′|+ d ≈ an+ 0.0192. Note that in this case n ≥ 8. Applying Lemma 3.1, we

get avi(G) > avi(Cn).
If |T1| = 2, then T1 ∼= P2. Thus we have avi (T1) = 2

3 , avi (T1 − v0 − v1) = 0 and i(T1−v0−v1)
i(T1)

= 1
3 . By applying Equality (4)

and Lemma 3.2, we obtain

σ =

(
1 +

1

3

k∏
i=2

i (Ti − vi)
i (Ti)

)−1
>

3

4
,

and so
A = σavi (T1) + (1− σ) avi (T1 − v0 − v1) =

2

3
σ >

1

2
.

Observe that in this case n ≥ 7. Therefore by Lemma 3.1,

avi(G) = A+B > 1/2 + a|T ′|+ d ≈ an+ 0.1136 > avi(Cn).

This completes the proof of k ≥ 5.
Next we deal with the cases of k = 4 and k = 3. In each case, we divide into two subcases |T1| ≥ 3 and |T1| = 2. Then

for each subcase we continue to distinguish different cases that depend on how many T ′is are a single vertex for i ≥ 2. This
yields eight cases for k = 4 and six cases for k = 3.

Now, we return to the expression

avi(G) = σ

k∑
i=1

avi(Ti) + (1− σ)

(
1 + avi(T1 − v0 − v1) +

k∑
i=2

avi(Ti − vi)

)
. (8)

For each of these 14 cases, we employ the following bounds and values, which can be easily obtained by Theorems 2.1 and
3.3 or simple calculations.

avi (Ti)



= 1
2 |Ti| = 1,

= 2
3 |Ti| = 2,

≥ a|Ti|+ c |Ti| > 1,

≥ a|Ti|+ b |Ti| ≥ 3,

avi (Ti − vi)

= 0 |Ti| = 1,

≥ a|Ti − 1|+ c otherwise,

avi(T1 − v0 − v1)

= 0 |T1| = 2,

≥ a(|T1| − 2) + c otherwise.

Also by Theorem 3.2 and Inequality (6), we have

i (Ti − vi)
i (Ti)

= 1
2 |Ti| = 1,

∈
[
1
2 , 1
]

otherwise,
i (T1 − v0 − v1)

i (T1)

= 1
3 |T1| = 2,

∈
[
1
4 , 1
]

otherwise.

We plug these above bounds and values into (8), and use the expression (4) to obtain the maximum or minimum possible
value of σ. Since the expression (8) is linear in σ, its minimum is either obtained at the maximum or minimum value of

6
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σ. Then we get lower bounds of avi(G) for the above 14 cases, which are easily calculated by computer. We consider, as an
example, the case with the worst bound, which is obtained for |T1| ≥ 3, |T2| > 1, |T3| > 1, |T4| > 1 when k = 4. Then

4∑
i=1

avi(Ti) ≥ a |T1|+ b+ a(|T2|+ |T3|+ |T4|) + 3c = a(n− 1) + b+ 3c,

avi(T1 − v0 − v1) +
4∑

i=2

avi(Ti − vi) ≥ a(|T1| − 2) + c+ a

(
4∑

i=2

|Ti| − 3

)
+ 3c

= a(n− 6) + 4c,

σ =

(
1 +

i (T1 − v0 − v1)
i (T1)

i (T2 − v2) i (T3 − v3) i (T4 − v4)
i (T2) i (T3) i (T4)

)−1
∈
[
1

2
,
32

33

]
.

Note that n ≥ 7 in this case, combining with the Lemma 3.1, we have

avi(G) = σ

4∑
i=1

avi(Ti) + (1− σ)

(
1 + avi(T1 − v0 − v1) +

4∑
i=2

avi(Ti − vi)

)

≥ σ(a(n− 1) + b+ 3c) + (1− σ)(1 + a(n− 6) + 4c)

= an+ 1− 6a+ 4c+ σ(5a+ b− c− 1)

≥ an+ 1− 6a+ 4c+
1

2
(5a+ b− c− 1) as 5a+ b− c− 1 > 0

≈ an+ 0.0034 > avi(Cn).

In order to illustrate a more general process, as another example, we consider the case with the second-worst bound, which
is obtained for |T1| = 2, |T2| > 1, |T3| > 1 when k = 3. Then

σ =

(
1 +

1

3

i (T2 − v2) i (T3 − v3)
i(T2)i(T3)

)−1
∈
[
3

4
,
12

13

]
.

Note that n ≥ 5 in this case. By Lemma 3.1, we have

avi(G) = σ

3∑
i=1

avi(Ti) + (1− σ)

(
1 + avi(T1 − v0 − v1) +

3∑
i=2

avi(Ti − vi)

)

≥ σ
(
2

3
+ a(|T2|+ |T3|) + 2c

)
+ (1− σ) (1 + a(|T2|+ |T3| − 2) + 2c)

= σ

(
2

3
+ a(n− 3) + 2c

)
+ (1− σ) (1 + a(n− 5) + 2c)

= an+ 1− 5a+ 2c+ σ

(
2a− 1

3

)

≥ an+ 1− 5a+ 2c+
3

4

(
2a− 1

3

)
as 2a− 1

3
> 0

≈ an+ 0.0104 > avi(Cn).

The other 12 cases can be treated analogously. Each time we obtain avi(G) ≥ an+ ε where ε > 0.0104 is a constant. Note
that we have n ≥ 5 for all these 12 cases. Therefore for each of these we have avi(G) ≥ an+ ε > avi(Cn) by Lemma 3.1.

Now, only the case k = 2 remains. Consider the following subcases.
If |T1| ≥ 3, |T2| ≥ 3, then n ≥ 7. By Lemmas 2.1, 3.1, 3.2, 3.3, we have

avi(G) = σ (avi(T1) + avi(T2)) + (1− σ) (1 + avi(T1 − v0 − v1) + avi(T2 − v2))

≥ σ (a |T1|+ b+ a|T2|+ b) + (1− σ) (1 + a(|T1| − 2) + c+ a(|T2| − 1) + c)

= an+ 1− 4a+ 2c+ σ (3a+ 2b− 2c− 1)

≥ an+ 1− 4a+ 2c+ (3a+ 2b− 2c− 1) as 3a+ 2b− 2c− 1 < 0

≈ an+ 0.0125 > avi(Cn).
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If |T1| ≥ 3, |T2| = 2, then avi(T2 − v2) = 1
2 , i(T2−v2)

i(T2)
= 2

3 . Moreover, by the inequality in (6), we have

σ =

(
1 +

2

3

i (T1 − v0 − v1)
i (T1)

)−1
∈
[
3

5
,
6

7

]
.

Note that n ≥ 6 in this case. It follows from Lemmas 2.1, 3.1 and 3.3 that

avi(G) = σ (avi(T1) + avi(T2)) + (1− σ) (1 + avi(T1 − v0 − v1) + avi(T2 − v2))

≥ σ
(
a |T1|+ b+

2

3

)
+ (1− σ)

(
1 + a(|T1| − 2) + c+

1

2

)

= an+ 1− 5a+ c+
1

2
+ σ

(
2a+ b− c− 5

6

)

≥ an+ 1− 5a+ c+
1

2
+

6

7

(
2a+ b− c− 5

6

)
as 2a+ b− c− 5

6
< 0

≈ an+ 0.0176 > avi(Cn).

If |T1| ≥ 3, |T2| = 1, then avi(T2− v2) = 0. Note that n ≥ 5 in this case. It follows from Lemmas 2.1, 3.1, 3.2 and 3.3 that

avi(G) = σ (avi(T1) + avi(T2)) + (1− σ) (1 + avi(T1 − v0 − v1) + avi(T2 − v2))

≥ σ
(
a |T1|+ b+

1

2

)
+ (1− σ) (1 + a(|T1| − 2) + c)

= an+ 1− 4a+ c+ σ

(
2a+ b− c− 1

2

)

≥ an+ 1− 4a+ c+
1

2

(
2a+ b− c− 1

2

)
as 2a+ b− c− 1

2
> 0

≈ an+ 0.0500 > avi(Cn).

If |T1| = 2, |T2| ≥ 4, then n ≥ 7 in this case. We consider the structure of T2. Suppose first that T2 is not a path. Then
by Lemma 2.1 (iii), avi(T2) ≥ a |T2|+ d. It follows from Lemmas 3.1 3.2 and 3.3 that

avi(G) = σ (avi(T1) + avi(T2)) + (1− σ) (1 + avi(T1 − v0 − v1) + avi(T2 − v2))

≥ σ
(
2

3
+ a |T2|+ d

)
+ (1− σ) (1 + a(|T2| − 1) + c)

= an+ 1− 4a+ c+ σ

(
a+ d− c− 1

3

)
≥ an+ 1− 4a+ c+

(
a+ d− c− 1

3

)
as a+ d− c− 1

3
< 0

≈ an+ 0.0039 > avi(Cn).

Suppose now that T2 is a path. Since G /∈ {Cn, UPn}, T2 − v2 is not connected. Then by applying Lemma 2.1 (i) to each
component of T2 − v2, we obtain avi(T2 − v2) ≥ a(|T2| − 1) + 2c. Moreover, by Lemma 3.2,

σ =

(
1 +

1

3

i (T2 − v2)
i (T2)

)−1
∈
[
3

4
,
6

7

]
.

It follows from Lemmas 2.1 and 3.1 that

avi(G) = σ (avi(T1) + avi(T2)) + (1− σ) (1 + avi(T1 − v0 − v1) + avi(T2 − v2))

≥ σ
(
2

3
+ a |T2|+ b

)
+ (1− σ) (1 + a(|T2| − 1) + 2c)

= an+ 1− 4a+ 2c+ σ

(
a+ b− 2c− 1

3

)
≥ an+ 1− 4a+ 2c+

6

7

(
a+ b− 2c− 1

3

)
as a+ b− 2c− 1

3
< 0

≈ an+ 0.0020 > avi(Cn).

8
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If |T1| = 2, |T2| ≤ 3, then G must be the graph obtained by identifying one of vertices of C3 with a leaf of S4 since
G /∈ {Cn, UPn}. Simple computations show that avi(G) = 33

19 , avi(C6) =
5
3 . Thus avi(G) > avi(Cn).

We have thus examined all cases and so these complete the proof.

Now we turn to considering the graphs maximizing the average size of independent sets.

Theorem 3.2. For any unicyclic graph G of order n ≥ 3, we have

avi (G) ≤ 3n− 5

6
+

11− 3n

18 · 2n−3 + 6

with equality if and only if G ∼= USn.

Proof. If G ∼= USn, then
avi(G) =

3n− 5

6
+

11− 3n

18 · 2n−3 + 6

by Equality (2). If G ∼= Cn, then by Theorem 3.1, we have

avi(G) < avi(USn) =
3n− 5

6
+

11− 3n

18 · 2n−3 + 6
.

Assume that G /∈ {Cn, USn} is a unicyclic graph. It suffices to prove that avi(G) < avi(USn). Then we proceed by induction
on n (note that n ≥ 5 since G /∈ {Cn, USn}). For n = 5, we easily see that G ∼= UP5, and thus by Theorem 3.1, avi(G) <
avi(USn) . We write C for the unique cycle of G and let v ∈ V (G) that has the maximum distance from C. Clearly, v is a
leaf. Assume that vu ∈ E(G) with dG(u) = k. We first prove the following inequality:

avi(G−N [v]) <
3n− 8

6
. (9)

Consider the distance between v and C. If dG(C, v) = 1, then the maximality of dG(C, v) implies that G−N [v] consists
of a tree of order n − k + 1, say T ′, and k − 3 singletons. Moreover, since G /∈ {Cn, USn}, we must have n − k ≥ 2. By
Proposition 2.3, Lemma 2.1 and Equality (1), deduce that

avi(G−N [v]) = 1/2(k − 3) + avi(T ′)

≤ 1/2(k − 3) + avi(Sn−k+1)

=
n− 3

2
+

2− (n− k)
2n−k+1 + 2

≤ n− 3

2
<

3n− 8

6
as n− k ≥ 2.

Suppose now that dG(C, v) ≥ 2. Then the maximality of dG(C, v) implies that G −N [v] consists of a unicyclic graph of
order n − k, say G′, and k − 2 singletons, where n − k ≥ 3. By Proposition 2.3, induction hypothesis and Equality (2), we
have

avi(G−N [v]) = 1/2(k − 2) + avi(G′)

≤ 1/2(k − 2) + avi(USn−k)

=
3n− 11

6
+

11− 3(n− k)
18 · 2n−k−3 + 6

≤ 3n− 11

6
+

1

12
<

3n− 8

6
.

Therefore, the inequality (9) is proved.
Observe next that i(G− v)− i(G−N [v]) = i(G− v)− i(G− v−u) ≥ 1. Since USn maximizes the number of independent

sets among all unicyclic graphs of order n ( [29]), we have i(G− v) ≤ i (USn−1) = 3 · 2n−4 + 1. It follows that

i(G−N [v])

i(G− v)
= 1− i(G− v)− i(G−N [v])

i(G− v)
≤ 1− 1

i(G− v)
≤ 1− 1

3 · 2n−4 + 1
. (10)

Using Proposition 2.2 and Inequality (9), we get

avi(G) =
t(G)

i(G)
=
t(G− v) + i(G−N [v]) + t(G−N [v])

i(G− v) + i(G−N [v])

=
i(G− v)avi(G− v) + i(G−N [v])(1 + avi(G−N [v]))

i(G− v) + i(G−N [v])

<
avi (USn−1) i(G− v)/i(G−N [v]) + (3n− 8)/6 + 1

i(G− v)/i(G−N [v]) + 1
.

9
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By Equality (2), we can easily check that avi (USn−1) < (3n− 8)/6 + 1, and thus
avi (USn−1)x+ (3n− 8)/6 + 1

x+ 1

is decreasing for x ≥ 0. This together with the inequality in (10) yields

avi(G) <
avi (USn−1)

(
3 · 2n−4 + 1

)
/(3 · 2n−4) + (3n− 8)/6 + 1

(3 · 2n−4 + 1) /(3 · 2n−4) + 1
= avi (USn) ,

which completes the proof.

4. Concluding remarks

Considering the family of unicyclic graphs of order n ≥ 3, we have proved that the minimum average size of independent
sets is attained by Cn and UPn, while the graph USn resulting from adding one edge between two leaves of the star of order
n uniquely realizes the maximum. These results parallel the extremal graphs for the number of independent sets.

This leaves some natural questions. First, we can consider the average size of independent sets by choosing any different
graph instead of unicyclic graph, and see if there are similar parallel conclusions. Secondly, it is well-known that there is
a negative correlation between Merrifield–Simmons index and Hosoya index, which are the number of independent sets
and the number of matchings, respectively. Recently, Andriantiana et al. [2] also considered the extreme problem on the
average size of matching of graphs. It was shown that in all the instances they dealt with, including general graphs and
trees of given order, graphs that minimize the average size of the independent set also maximize the average size of the
matching, and vice versa. So, it is also interesting to consider whether the average size of independent set and the average
size of matching also have a negative correlation in other graph classes.
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