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Abstract
The main motivation for obtaining the results reported in the present paper comes from the following existing identity:

∞∑
n=0

(
2n
n

)
(2n+ 1)316n

=
7π3

216
.

Let
Rn =

7π3

216
−

n∑
k=0

(
2k
k

)
(2k + 1)316k

.

We obtain the asymptotic expansion of the remainder Rn as given below:

Rn ∼
(
2n
n

)
(2n+ 1)316n

{
1

3
− 14

9n
+

59

9n2
− 527

18n3
+ · · ·

}
, n→∞.

We also give a recursive relation for determining the coefficients involved in the obtained expansion. Moreover, we establish
an upper bound and a lower bound on the remainder Rn. As an application of the obtained bounds, we give an approximate
value of π.

Keywords: asymptotic expansion; the constant π; inequality.

2020 Mathematics Subject Classification: 11Y60, 40A05.

1. Introduction

Throughout this paper, N represents the set of positive integers and N0 := N∪{0}. There exist many formulas in literature
for the representation of π and a collection of such formulas can be found in [8,9]. Ramanujan [6] provided seventeen series
for 1/π. The following formula (known as Leibniz series)

π

4
=

∞∑
j=0

(−1)j

2j + 1

is due to Gottfried Wilhelm Leibniz. Recently, Alzer [2] presented a series representation for π which relates π to the
partial sums of the Leibniz series,

Tk =

k∑
j=0

(−1)j

2j + 1
, k ∈ N.

More precisely, Alzer [2] obtained the following result:

π = 32

∞∑
k=0

(−1)k+1 4k2 + 8k + 1

(2k − 1)(2k + 1)(2k + 3)(2k + 5)
T 2
k .

For additional information on the topic under consideration, see [1,3–5].
Consider the following identity (see [7,10])

∞∑
n=0

(
2n
n

)
(2n+ 1)316n

=
7π3

216
(1)

and let
Sn =

n∑
k=0

(
2k
k

)
(2k + 1)316k

(2)
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be the partial sums of the series (1). We now consider the remainder Rn defined as

Rn =
7π3

216
− Sn =

∞∑
k=n+1

(
2k
k

)
(2k + 1)316k

. (3)

At the start of Section 2, using the Maple software, we derive the asymptotic expansion of the remainderRn as given below:

Rn ∼
(
2n
n

)
(2n+ 1)316n

{
1

3
− 14

9n
+

59

9n2
− 527

18n3
+ · · ·

}
, n→∞. (4)

In Theorem 2.1, we give a recursive relation for determining the coefficients involved in the obtained expansion. We
establish an upper bound and a lower bound on the remainder Rn in Theorem 2.2. In Remark 2.1, as an application of the
obtained bounds, we give an approximate value of π.

We end this section with the remark that all the numerical calculations presented in this study are performed by using
the Maple software for symbolic computations.

2. Results

Using the Maple software, we here give a derivation of (4). We find, as n→∞,(
2(n+1)
n+1

)
(2(n+ 1) + 1)316n+1

=

(
2n
n

)
(2n+ 1)316n

(2n+ 1)4

8(2n+ 3)3(n+ 1)
=

(
2n
n

)
(2n+ 1)316n

{
1

4
− 7

8n
+

19

8n2
− 45

8n3
+ . . .

}
, (5)

(
2(n+2)
n+2

)
(2(n+ 2) + 1)316n+2

=

(
2n
n

)
(2n+ 1)316n

(2n+ 3)(2n+ 1)4

64(2n+ 5)3(n+ 1)(n+ 2)
=

(
2n
n

)
(2n+ 1)316n

{
1

16
− 7

16n
+

139

64n2
− 585

64n3
+ . . .

}
, (6)

(
2(n+3)
n+3

)
(2(n+ 3) + 1)316n+3

=

(
2n
n

)
(2n+ 1)316n

{
1

64
− 21

128n
+

303

256n2
− 3663

512n3
+ . . .

}
, (7)

(
2(n+4)
n+4

)
(2(n+ 4) + 1)316n+4

=

(
2n
n

)
(2n+ 1)316n

{
1

256
− 7

128n
+

265

512n2
− 261

64n3
+ . . .

}
, (8)

(
2(n+5)
n+5

)
(2(n+ 5) + 1)316n+5

=

(
2n
n

)
(2n+ 1)316n

{
1

1024
− 35

2048n
+

205

1024n2
− 7965

4096n3
+ . . .

}
, (9)

and so on. In view of (5) to (9), we find the sums of the following series:

1

4
+

1

16
+

1

64
+

1

256
+

1

1024
+ . . . =

∞∑
j=0

1

4 · 4j
=

1

3
,

7

8
+

7

16
+

21

128
+

7

128
+

35

2048
+ . . . =

∞∑
j=0

7 + 7j

8 · 4j
=

14

9
,

19

8
+

139

64
+

303

256
+

265

512
+

205

1024
+ . . . =

∞∑
j=0

76 + 139j + 63j2

32 · 4j
=

59

9
,

45

8
+

585

64
+

3663

512
+

261

64
+

7965

4096
+ . . . =

∞∑
j=0

3(120 + 313j + 270j2 + 77j3)

64 · 4j
=

527

18
.

Summing the expansions (5) to (9) side by side, we obtain the asymptotic expansion (4).
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Theorem 2.1. The remainder Rn, defined by (3), has the following asymptotic expansion:

Rn ∼
(
2n
n

)
(2n+ 1)316n

∞∑
k=0

rk
nk

=

(
2n
n

)
(2n+ 1)316n

{
1

3
− 14

9n
+

59

9n2
− 527

18n3
+ · · ·

}
(10)

as n→∞, where the coefficients rk (with k ∈ N0) are given by the following recursive relation:

r0 =
1

3
,

rk =
4

3

{
(−1)k−1

[
1

8
−
(

10

27
+

2

9
k +

2

27
k2
)(

3

2

)k
]

+
1

4

k−1∑
p=0

rp(−1)k−p
(
k − 1

k − p

)

+

k∑
`=1

(−1)`−1

[
1

8
−
(

10

27
+

2

9
`+

2

27
`2
)(

3

2

)`
]

k−∑̀
p=0

rp(−1)k−`−p
(
k − `− 1

k − `− p

)}
, (11)

for k ∈ N.

Proof. Let

Tn =

(
2n
n

)
(2n+ 1)316n

∞∑
k=0

rk
nk
,

where rk (with k ∈ N0) are the real numbers to be determined. In view of (4), we can let Rn ∼ Tn and

∆Rn := Rn+1 −Rn ∼ Tn+1 − Tn =: ∆Tn, n→∞.

Direct computation yields

∆Rn = −
(
2(n+1)
n+1

)
(2(n+ 1) + 1)316n+1

= −
(
2n
n

)
(2n+ 1)316n

(2n+ 1)4

8(2n+ 3)3(n+ 1)

= −
(
2n
n

)
(2n+ 1)316n

{
1

4
+

1

8n

1

1 + 1
n

− 1

n

1

1 + 3
2n

+
1

n2
1

(1 + 3
2n )2

− 1

2n3
1

(1 + 3
2n )3

}

= −
(
2n
n

)
(2n+ 1)316n

{
1

4
+

1

8n

∞∑
k=0

(−1)k
(

1

n

)k

− 1

n

∞∑
k=0

(−1)k
(

3

2n

)k

+
1

n2

∞∑
k=0

(−1)k(k + 1)

(
3

2n

)k

− 1

2n3

∞∑
k=0

(−1)k(k + 2)(k + 1)

2

(
3

2n

)k
}

= −
(
2n
n

)
(2n+ 1)316n

∞∑
k=0

ak
nk
, n→∞,

which can be written as ( (
2n
n

)
(2n+ 1)316n

)−1
∆Rn =

∞∑
k=0

(−ak)n−k, (12)

where

a0 =
1

4
, ak = (−1)k−1

[
1

8
−
(

10

27
+

2

9
k +

2

27
k2
)(

3

2

)k
]
, k ≥ 1.

Also, we have

∆Tn =

(
2(n+1)
n+1

)
(2(n+ 1) + 1)316n+1

∞∑
k=0

rk
(n+ 1)k

−
(
2n
n

)
(2n+ 1)316n

∞∑
k=0

rk
nk
,

=

(
2n
n

)
(2n+ 1)316n

{
(2n+ 1)4

8(2n+ 3)3(n+ 1)

∞∑
k=0

rk
(n+ 1)k

−
∞∑
k=0

rk
nk

}

=

(
2n
n

)
(2n+ 1)316n

{ ∞∑
k=0

ak
nk

∞∑
k=0

rk
(n+ 1)k

−
∞∑
k=0

rk
nk

}
(13)
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and
∞∑
k=0

rk
(n+ 1)k

=

∞∑
k=0

rk
nk

(
1 +

1

n

)−k
=

∞∑
k=0

rk
nk

∞∑
j=0

(
−k
j

)
1

nj

=

∞∑
k=0

rk
nk

∞∑
j=0

(−1)j
(
k + j − 1

j

)
1

nj
=

∞∑
k=0

bk
nk
,

where

b0 = r0, bk =

k∑
p=0

rp(−1)k−p
(
k − 1

k − p

)
, k ≥ 1.

We obtain from (13), as n→∞,( (
2n
n

)
(2n+ 1)316n

)−1
∆Tn =

∞∑
k=0

ak
nk

∞∑
k=0

bk
nk
−
∞∑
k=0

rk
nk

=

∞∑
k=0


k∑

j=0

ajbk−j − rk

n−k. (14)

Equating coefficients of the term n−k (with k ∈ N0) on the right-hand sides of (12) and (14), we obtain

−ak =

k∑
j=0

ajbk−j − rk, k ∈ N0. (15)

For k = 0, from (15) it follows that (noting a0 = 1
4 , b0 = r0)

−1

4
= a0b0 − r0 =

1

4
r0 − r0 =⇒ r0 =

1

3
.

For k ∈ N, we obtain from (15) that

−ak =
1

4
bk +

k∑
`=1

a`bk−` − rk,

−ak =
1

4

k∑
p=0

rp(−1)k−p
(
k − 1

k − p

)
+

k∑
`=1

a`bk−` − rk,

−ak =
1

4

k−1∑
p=0

rp(−1)k−p
(
k − 1

k − p

)
+

1

4
rk +

k∑
`=1

a`bk−` − rk,

3

4
rk = ak +

1

4

k−1∑
p=0

rp(−1)k−p
(
k − 1

k − p

)
+

k∑
`=1

a`bk−`,

which implies that

rk =
4

3

{
ak +

1

4

k−1∑
p=0

rp(−1)k−p
(
k − 1

k − p

)
+

k∑
`=1

a`bk−`

}

=
4

3

{
(−1)k−1

[
1

8
−
(

10

27
+

2

9
k +

2

27
k2
)(

3

2

)k
]

+
1

4

k−1∑
p=0

rp(−1)k−p
(
k − 1

k − p

)

+

k∑
`=1

(−1)`−1

[
1

8
−
(

10

27
+

2

9
`+

2

27
`2
)(

3

2

)`
]

k−∑̀
p=0

rp(−1)k−`−p
(
k − `− 1

k − `− p

)}
,

which yields the required formula (11).
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Next, by utilizing (11), we demonstrate how straightforwardly one can find rk given in (10). We give the values of rk for
k = 0, 1, 2, 3, as follows:

r0 =
1

3
,

r1 = −7

6
− 7

6
r0 = −14

9
,

r2 =
19

6
+

19

6
r0 −

3

2
r1 =

59

9
,

r3 = −15

2
− 15

2
r0 +

14

3
r1 −

11

6
r2 = −527

18
.

Theorem 2.2. For all n ∈ N, the following inequality holds:

Ln < Rn < Un, (16)

where
Ln =

(
2n
n

)
(2n+ 1)316n

(
1

3
− 14

9n

)
and Un =

(
2n
n

)
(2n+ 1)316n

(
1

3
− 14

9n
+

59

9n2

)
.

Proof. For n ∈ N, let
ξn = Rn − Ln, ηn = Rn − Un.

Then, we have
lim

n→∞
ξn = 0, lim

n→∞
ηn = 0.

To prove (16), it is sufficient to prove that the sequence {ξn} is strictly decreasing and the sequence {ηn} is strictly increas-
ing. By elementary calculations, we have

ξn − ξn+1 =

(
2n
n

)
(2n+ 1)316n

(2n+ 1)4

8(2n+ 1)3(n+ 1)
+ Ln+1 − Ln

=

(
2n
n

)
(2n+ 1)316n

(2n+ 1)4

8(2n+ 1)3(n+ 1)
+

(
2n
n

)
(2n+ 1)316n

(2n+ 1)4

8(2n+ 1)3(n+ 1)

(
1

3
− 14

9(n+ 1)

)
−

(
2n
n

)
(2n+ 1)316n

(
1

3
− 14

9n

)

=

(
2n
n

)
(2n+ 1)316n

1416n4 + 5476n3 + 8278n2 + 5723n+ 1512

36n(2n+ 3)3(n+ 1)2
> 0

and

ηn − ηn+1 =

(
2n
n

)
(2n+ 1)316n

(2n+ 1)4

8(2n+ 3)3(n+ 1)
+ Un+1 − Un

=

(
2n
n

)
(2n+ 1)316n

(2n+ 1)4

8(2n+ 3)3(n+ 1)
+

(
2n
n

)
(2n+ 1)316n

(2n+ 1)4

8(2n+ 3)3(n+ 1)

(
1

3
− 14

9(n+ 1)
+

59

9(n+ 1)2

)

−
(
2n
n

)
(2n+ 1)316n

(
1

3
− 14

9n
+

59

9n2

)

= −
(
2n
n

)
(2n+ 1)316n

12648n5 + 58868n4 + 115486n3 + 117159n2 + 60696n+ 12744

72n2(2n+ 3)3(n+ 1)3
< 0.

Thus, for n ∈ N, we have ξn > ξn+1 and ηn < ηn+1.

Remark 2.1. We now apply (16) to give an approximate value of π. Write (16) as

αn < π < βn, (17)

where

αn =

[
216

7
(Ln + Sn)

]1/3
and βn =

[
216

7
(Un + Sn)

]1/3
.
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For n = 10, we have

α10 = 3.14159265358 · · · ,

β10 = 3.14159265359 · · · .

From (17), we get an approximate value of π,
π ≈ 3.1415926535.

The choice n = 1000 in (17) gives

π ≈ 3.14159265358979323846264338327950288419716939937510582097494459230781.
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