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Abstract

Let A(G) andD(G) be the adjacency matrix and the degree diagonal matrix of a graphG, respectively. For any real number
α, the general Zagreb adjacency matrix ofG is defined asZα(G) = Dα(G)+A(G). In this paper, the positive semidefiniteness,
spectral moment, coefficients of characteristic polynomials, and energy of the general Zagreb adjacency matrix are studied.
The obtained results extend the corresponding results concerning the signless Laplacian matrix, the vertex Zagreb adjacency
matrix, and the forgotten adjacency matrix.
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1. Introduction

Let G be a simple graph with the vertex set V (G) and edge set E(G). For vi ∈ V (G), di or d(vi) denotes the degree of
the vertex vi in G. Recently, in order to extend the spectral theory of classical graph matrices such as adjacency matrix,
signless Laplacian matrix and distance matrix, many scholars have devoted themselves to the study of the generalization
of graph matrices, and proposed many new graph matrices including the generalised adjacency matrix [4], the universal
adjacency matrix [6], Aα-matrix [10], and the generalized distance matrix [2]. Inspired by these studies, we propose the
general Zagreb adjacency matrix of a graph G as follows:

Zα(G) = Dα(G) +A(G), α ∈ R,

where A(G) and D(G) are the adjacency matrix and the degree diagonal matrix of G, respectively. The general Zagreb
adjacency matrix gives several existing matrices as special cases:

1. Z0(G) = D0(G) +A(G) = I +A(G), where I is identity matrix;

2. Z1(G) = D(G) +A(G) is the signless Laplacian matrix [3];

3. Z2(G) = D2(G) +A(G) is the vertex Zagreb adjacency matrix [7];

4. Z3(G) = D3(G) +A(G) is the forgotten adjacency matrix [7];

5. Zα(G) = rαI +A(G) when G is r-regular.

Let z1, z2, . . . , zn be the eigenvalues of the general Zagreb adjacency matrix of a graph G with n vertices. The general
Zagreb adjacency energy of G is defined as

Eα(G) =

n∑
i=1

∣∣∣∣zi − Mα

n

∣∣∣∣ , α ∈ R,

where Mα =
∑
vi∈V (G) d

α
i is called the first general Zagreb index [8].

In this paper, some spectral properties of the general Zagreb adjacency matrix are reported. The obtained results
extend the corresponding results concerning the signless Laplacian matrix, the vertex Zagreb adjacency matrix, and the
forgotten adjacency matrix.
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2. Preliminaries

For an integer k, the k-th spectral moment of a graph is defined as the sum over the k-th powers of all eigenvalues of the
adjacency matrix. Let λi and tr(A) be the ith eigenvalue and trace of the adjacency matrix A, respectively. Denote by Pn
and Cn the path and the cycle, respectively, on n vertices. For a graph G with n vertices and m edges, it holds that

n∑
i=1

λ2i = tr(A2) = 2m,

n∑
i=1

λ3i = tr(A3) = 6|C3|,
n∑
i=1

λ4i = tr(A4) = 8|C4|+ 4|P3|+ 2m,

where |C3| and |C4| are the number of triangles and quadrangles ofG, respectively. In 1998, Bollobás and Erdős [1] defined
the general Randić index as:

Rα = Rα(G) =
∑

vivj∈E(G)

(didj)
α,

where α is an arbitrary real number.

Lemma 2.1 (see [11]). Let M = (mij) be a matrix with the characteristic polynomial

Φ(M) = det(xI −M) = xn +

n∑
i=1

aix
n−i.

Let sk = tr(Mk). Then the coefficients of Φ(M) satisfy the following equations:

a1 = −s1, kak = −sk − a1sk−1 − a2sk−2 − · · · − ak−1s1, (k = 2, 3, . . . , n).

Lemma 2.2 (see [5]). Let a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) be sequences of real numbers and s = (s1, s2, . . . , sn),
t = (t1, t2, . . . , tn) be nonnegative. If β, γ > 0 and η ∈ R such that η2 ≤ βγ, then

β

n∑
i=1

ti

n∑
i=1

a2i si + γ

n∑
i=1

si

n∑
i=1

b2i ti ≥ 2η

n∑
i=1

aisi

n∑
i=1

biti.

3. The positive semidefiniteness of the general Zagreb adjacency matrix

Theorem 3.1. Let G be a connected graph with n vertices. If α > β, then

zk(Zα) > zk(Zβ)

for k = 1, 2, . . . , n.

Proof. By Weyl’s inequality, we have
zk(Zα)− zk(Zβ) ≥ zmin(Dα −Dβ) > 0.

This completes the proof.

Corollary 3.1. If α = 1, and G is a graph, then Zα(G) is positive semidefinite. If α > 1, and G is a graph with no isolated
vertices, then Zα(G) is positive definite.

Proof. It is well known that the signless Laplacian matrix Z1(G) is positive semidefinite. If α > 1, and G is a graph with
no isolated vertices, then by Theorem 3.1 one has

zmin(Zα(G)) > zmin(Z1(G)) ≥ 0.

Thus Zα(G) is positive definite for α > 1.

Theorem 3.2. Let G be a connected bipartite graph. Then Zα(G) is positive semidefinite if and only if α ≥ 1.

Proof. Since a connected graph G is bipartite if and only if zmin(Z1(G)) = 0, by Theorem 3.1, we have that Zα(G) is positive
semidefinite if and only if α ≥ 1.

Theorem 3.3. Let G be a graph with n vertices, m edges and chromatic number χ. Then

zmin(Zα(G)) ≤ (χ− 1)Mα − 2m

n(χ− 1)
.
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Proof. Let V1, V2, . . . , Vχ be the color classes of G. For an integer k, 1 ≤ k ≤ χ, define a vector X = (x1, x2, . . . , xn) by

xi =

χ− 1, if vi ∈ Vk;

−1, otherwise.

By the Rayleigh-Ritz theorem, one has

zmin(Zα(G))||X||2 ≤ XZα(G)XT =
∑

vi∈V (G)

dαi x
2
i + 2

∑
vivj∈E(G)

xixj .

On the one hand, for ||X||2 it holds that

||X||2 = (χ− 1)2|Vk|+ (n− |Vk|) = χ(χ− 2)|Vk|+ n.

But, ∑
vi∈V (G)

dαi x
2
i + 2

∑
vivj∈E(G)

xixj =
∑

vi∈V (G)\Vk

dαi +
∑
vi∈Vk

(χ− 1)2dαi − 2(χ− 1)
∑
vi∈Vk

di + 2

(
m−

∑
vi∈Vk

di

)

= Mα +
∑
vi∈Vk

χ(χ− 2)dαi + 2

(
m− χ

∑
vi∈Vk

di

)
.

Therefore,

zmin(Zα(G))
[
χ(χ− 2)|Vk|+ n

]
≤Mα +

∑
vi∈Vk

χ(χ− 2)dαi + 2

(
m− χ

∑
vi∈Vk

di

)
.

Adding the above inequalities for all k ∈ {1, 2, . . . , χ}, one arrives at

zmin(Zα(G))

χ∑
k=1

[χ(χ− 2)|Vk|+ n] ≤
χ∑
k=1

[
Mα +

∑
vi∈Vk

χ(χ− 2)dαi + 2

(
m− χ

∑
vi∈Vk

di

)]
,

which gives,
nχ(χ− 1)zmin(Zα(G)) ≤ χMα + χ(χ− 2)Mα + 2mχ− 4mχ,

that is,
zmin(Zα(G)) ≤ (χ− 1)Mα − 2m

n(χ− 1)
.

This completes the proof.

Remark 3.1. Lima et al. [9] showed that if G is a graph with n vertices, m edges and chromatic number χ, then

zmin(Z1(G)) ≤ 2m(χ− 2)

n(χ− 1)
.

Theorem 3.3 asserts that this bound can be extended to all matrices Zα.

Corollary 3.2. If Mα <
2m
χ−1 , and G is a graph, then Zα(G) is not positive semidefinite.

Question 3.1. Given a graph G, find the smallest α for which Zα(G) is positive semidefinite.

4. The spectral moment of the general Zagreb adjacency matrix

Theorem 4.1. Let G be a graph with n vertices and m edges. Then
n∑
i=1

zi = tr(Zα) = Mα,

n∑
i=1

z2i = tr(Z2
α) = M2α + 2m,

n∑
i=1

z3i = tr(Z3
α) = M3α + 3Mα+1 + 6|C3|,

n∑
i=1

z4i = tr(Z4
α) = M4α + 4M2α+1 + 8

n∑
i=1

tG(vi)d
α
i + 4Rα + 8|C4|+ 4|P3|+ 2m,

where tG(vi) is the number of triangles containing the vertex vi of G.

41



Z. Lin / Contrib. Math. 6 (2022) 39–44 42

Proof. By definition, the diagonal elements of Zα are equal to dαi . Thus, the trace of Zα is Mα. Next, we calculate the trace
of Z2

α. Since tr(BC) = tr(CB) and tr(DαA) = 0, one has

tr(Z2
α) = tr(D2α) + tr(DαA) + tr(ADα) + tr(A2)

= tr(D2α) + 2tr(DαA) + tr(A2)

= M2α + 2m.

Since tr(BC) = tr(CB) and tr(D2αA) = 0, it holds that

tr(Z3
α) = tr(D3α) + tr(D2αA) + tr(DαADα) + tr(DαA2) + tr(AD2α) + tr(ADαA) + tr(A2Dα) + tr(A3)

= tr(D3α) + 3tr(D2αA) + 3tr(DαA2) + tr(A3)

= M3α + 3Mα+1 + 6|C3|.

Since tr(BC) = tr(CB) and tr(D3αA) = 0, one has

tr(Z4
α) = tr(D4α) + tr(D3αA) + tr(D2αADα) + tr(D2αA2) + tr(DαAD2α) + tr(DαADαA) + tr(DαA2Dα) + tr(DαA3)

+tr(AD3α) + tr(AD2αA) + tr(ADαADα) + tr(ADαA2) + tr(A2D2α) + tr(A2DαA) + tr(A3Dα) + tr(A4)

= tr(D4α) + 4tr(D3αA) + 4tr(D2αA2) + 4tr(DαA3) + 2tr(DαADαA) + tr(A4)

= M4α + 4M2α+1 + 8

n∑
i=1

tG(vi)d
α
i + 4Rα + 8|C4|+ 4|P3|+ 2m.

This completes the proof.

Corollary 4.1. Let G be a graph with n vertices and m edges. Then the first four coefficients a1, a2, a3, a4 of characteristic
polynomials of the general Zagreb adjacency matrix are given as follows:

a1 = −Mα,

a2 =
M2
α −M2α

2
−m,

a3 = Mα

(
M2α

2
− M2

α

6
+m

)
− 1

3
M3α −Mα+1 − 2|C3|,

a4 = Mα

[
M3α

3
+Mα+1 + 2|C3| −Mα

(
M2α

8
− M2

α

24
+
m

4

)]
− M4α

4
−M2α+1 − 2

n∑
i=1

tG(vi)d
α
i −Rα − 2|C4| − |P3| −

m

2

−(M2α + 2m)

(
M2
α −M2α

8
− m

4

)
.

Proof. From Lemma 2.1 and Theorem 4.1, the results follow.

Corollary 4.2. Let G be a graph with n vertices and m edges. Then

Γ2 =

n∑
i=1

∣∣∣∣zi − Mα

n

∣∣∣∣2 = M2α −
M2
α

n
+ 2m,

Γ4 =

n∑
i=1

∣∣∣∣zi − Mα

n

∣∣∣∣4

= M4α + 4M2α+1 + 8

n∑
i=1

tG(vi)d
α
i + 4Rα + 8|C4|+ 4|P3|+ 2m− 4Mα

n

(
M3α + 3Mα+1 + 6|C3|

)

+
6M2

α

n2

(
M2α + 2m

)
− 3M4

α

n3
.

Proof. The result follows from Theorem 4.1.
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5. Bounds on the general Zagreb adjacency energy of a graph

Theorem 5.1. Let G be a graph with n vertices and m edges. Then√
2

(
M2α + 2m− M2

α

n

)
≤ Eα(G) ≤

√
n

(
M2α + 2m− M2

α

n

)
.

Proof. By the Cauchy-Schwarz inequality, we have

Eα(G) =

n∑
i=1

∣∣∣∣zi − Mα

n

∣∣∣∣ ≤√nΓ2 =

√
n

(
M2α + 2m− M2

α

n

)
.

From the definition of the general Zagreb adjacency energy, it follows that

E2
α(G) =

(
n∑
i=1

∣∣∣∣zi − Mα

n

∣∣∣∣
)2

=

n∑
i=1

∣∣∣∣zi − Mα

n

∣∣∣∣2 + 2
∑
i<j

∣∣∣∣zi − Mα

n

∣∣∣∣ ∣∣∣∣zj − Mα

n

∣∣∣∣
≥ Γ2 + 2

∣∣∣∣∣∣
∑
i<j

(
zi −

Mα

n

)(
zj −

Mα

n

)∣∣∣∣∣∣
= Γ2 + 2

∣∣∣∣∣∣
∑
i<j

(
zizj −

Mα

n
(zi + zj) +

M2
α

n2

)∣∣∣∣∣∣
= Γ2 + 2

∣∣∣∣a2 − M2
α

n
(n− 1) +

M2
α

n2
· n(n− 1)

2

∣∣∣∣
= Γ2 + 2

∣∣∣∣a2 − (n− 1)M2
α

2n

∣∣∣∣
= M2α −

M2
α

n
+ 2m+ 2

∣∣∣∣M2
α −M2α

2
−m− (n− 1)M2

α

2n

∣∣∣∣
= 2

(
M2α + 2m− M2

α

n

)
.

Thus,

Eα(G) ≥

√
2

(
M2α + 2m− M2

α

n

)
.

This completes the proof.

Theorem 5.2. Let G be a graph with n vertices. If β, γ > 0 and η ∈ R such that η2 ≤ βγ, then√
Γ3
2

Γ4
≤ Eα(G) ≤ n

2η

(
β + γ

Γ4

Γ2

)
.

Proof. Taking ai =
∣∣zi − Mα

n

∣∣ 23 , bi =
∣∣zi − Mα

n

∣∣ 43 , p = 3
2 and q = 3 in the Hölder inequality

n∑
i=1

aibi ≤

(
n∑
i=1

api

) 1
p
(

n∑
i=1

bqi

) 1
q

gives
n∑
i=1

∣∣∣∣zi − Mα

n

∣∣∣∣2 =

n∑
i=1

∣∣∣∣zi − Mα

n

∣∣∣∣ 23
(∣∣∣∣zi − Mα

n

∣∣∣∣4
) 1

3

≤

(
n∑
i=1

∣∣∣∣zi − Mα

n

∣∣∣∣
) 2

3
(

n∑
i=1

∣∣∣∣zi − Mα

n

∣∣∣∣4
) 1

3

,

that is,

Eα(G) ≥


n∑
i=1

∣∣zi − Mα

n

∣∣2
(

n∑
i=1

∣∣zi − Mα

n

∣∣4) 1
3


3
2

=

√
Γ3
2

Γ4
.
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Setting si = ti = 1, ai =
∣∣zi − Mα

n

∣∣ and bi =
∣∣zi − Mα

n

∣∣2 in Lemma 2.2, yields

βn

n∑
i=1

∣∣∣∣zi − Mα

n

∣∣∣∣2 + γn

n∑
i=1

∣∣∣∣zi − Mα

n

∣∣∣∣4 ≥ 2η

n∑
i=1

∣∣∣∣zi − Mα

n

∣∣∣∣ n∑
i=1

∣∣∣∣zi − Mα

n

∣∣∣∣2 ,
that is,

Eα(G) ≤ n

2η

(
β + γ

Γ4

Γ2

)
.

Combining the above arguments completes the proof.
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