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Abstract
In this paper, we study the oscillatory criteria of solutions for third-order dynamic equations with damping and obtain some
sufficient conditions by using the generalized Riccati transformation. We extend and improve some well-known existing
results. We also provide an example for illustrating our main result.
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1. Introduction

The study of oscillatory behavior of nonlinear damped differential equations has become a well-researched area because
of the fact that such equations appear in many real-life problems; for example, see [5,8,10–12,14,17,18,21–23,25–30] and
the references cited therein.

Hilger [7] introduced the time scales theory which unified the representation of continuous analysis and discrete anal-
ysis; see also [2,3]. The past decade has witnessed the tremendous development of time scale theory in many fields. This
theory has received a large amount of attention and studies. In general, we cannot obtain analytical solutions of higher
order dynamic equations, so the oscillation and asymptotic behavior of solutions is what we often focus on. Very recently,
there have been many researches regarding the oscillation criteria for solutions of dynamic equations on any time scales
such as [4,6,9,13–15,15,16,18,20–22,24,25,28] and the references therein.

Nowadays, several researchers are interested in the following nonlinear differential equation (see [19]):

(r(t)z′(t))′ + p(t)z′(t) + q(t)f(z(t)) = 0.

Aktaş et al. [1] gave some new oscillation results for the following difference equation:

4(cn4(dn4zn)) + pn4zn+1 + qnf(zn−σ) = 0, n ≥ n0,

where n0 ∈ N is a fixed integer and σ is a nonnegative integer.
By a solution for dynamic equations on time scales, we mean a nontrivial real valued function satisfying the dynamic

equation on any time scalesT. If a solution of the dynamic equation is neither eventually negative nor eventually positive, it
is called oscillatory. Or else, the solution is called non-oscillatory. If all of the solutions of dynamic equation are oscillatory,
then we say that the dynamic equation is oscillatory.

Şenel [21] studied the oscillation behavior of the following second-order dynamic equations:

(r(t)(z∆(t))γ)∆ + p(t)(z∆(t))γ + f(t, z(t)) = 0

on a time scale T. Hassan [6] obtained some oscillation results for the equation:

(a(t)(r(t)[(z∆(t))∆]γ)∆ + f(t, z(τ(t))) = 0.

Afterwards, Erbe et al. [4] gave some new results for this problem. In [16], Qiu explored the following third-order damped
dynamic equation:

(r1(t)(r2(t)(z∆(t))γ)∆)∆ + f(t, z(t), zσ(t), z(g(t)), z∆(t)) = 0

on any time scale T such that inf T = t0 and supT =∞.
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The aim of the present study is to give an oscillation behavior for the following third-order nonlinear damped dynamic
equation with delay term on any time scale T:

(r1(t)(r2(t)(x∆(t))γ)∆)∆ + p(t)(r2(x∆(t))γ)∆ + f(t, x(t), xσ(t), x(g(t)), x∆(t)) = 0. (1)

Throughout this study, we assume that the following assumptions hold:

(C1). r1(t), r2(t) ∈ C(T, (0,∞)) such that∫ ∞
t0

e− p
r1

(s,t0)

r1(s)
∆s =∞ and

∫ ∞
t0

1

(r2(s))
1
γ

∆s =∞; (2)

(C2). g(t) ∈ C(T,T) and

g(t) ≥

σ(t), 0 < γ < 1

t, γ ≥ 1,

for all t ∈ T;

(C3). f(t, u, v, w, r) ∈ C(T× R4,T) and there exists a function q(t) ∈ Crd(T, (0,∞)) such that

f(t, u, v, w, r)sign(u) ≥ q(t)
(
| v |2 + | w |2

)
,

for u, v and w with a same sign;

(C4). The inequality ∫ ∞
t0

q(t)∆t <∞,

satisfies whenever γ ∈ (0, 1);

(C5). p(t) ∈ C(T,R) and 1− µ(t)
p(t)

r1(t)
> 0;

(C6). γ is a quotient of odd positive integers.

The remaining part of this paper is arranged as follows. In Section 2, we present some lemmas that are required to
prove the main result. In Section 3, we give the main oscillation result of the problem (1) and provide an example for
illustrating it.

2. Preliminaries

In this section, we give some lemmas for establishing the oscillation result for the problem (1).

Lemma 2.1. Suppose that the conditions (C1)–(C6) (given in the previous section) hold. Also, suppose that there exists a
sufficiently large t1 ∈ [t0,∞)T such that x(t) is a solution of (1) satisfying x(t) > 0 for t ∈ [t1,∞)T. Then there exists a
T ∈ [t1,∞)T such that (

r1(t)(r2(t)(x∆(t))γ)∆

e− p
r1

(t,t0)

)∆

< 0, (r2(t)(x∆(t))γ)∆ > 0,

and
x∆(t) > 0 or x∆(t) < 0,

for t ∈ [T,∞)T.

Proof. Let t1 ∈ [t0,∞)T and x(t) be a solution of (1) satisfying x(t) > 0 for t ∈ [t1,∞)T. Then, we have x(σ(t)) and x(g(t)) > 0.
Using (1) and (C3), we have(

r1(t)(r2(t)(x∆(t))γ)∆

e− p
r1

(t,t0)

)∆

=
(r1(t)(r2(t)(x∆(t))γ)∆)∆

e− p
r1

(σ(t),t0)

−
(e− p

r1
(t,t0))

∆(r1(t)(r2(t)(x∆(t))γ)∆)

e− p
r1

(t,t0)e− p
r1

(σ(t),t0)

=
(r1(t)(r2(t)(x∆(t))γ)∆)∆ + p(t)(r2(t)(x∆(t))γ)∆

e− p
r1

(σ(t),t0)

=
−f(t, x(t), xσ(t), x(g(t)), x∆(t))

e− p
r1

(σ(t),t0)

31



E. Tugla and F. S. Topal / Contrib. Math. 6 (2022) 30–38 32

≤ −q(t)(xγ(σ(t)) + xγ(g(t)))

e− p
r1

(σ(t),t0)

< 0,

for all t ∈ [t1,∞)T. Thus,
r1(t)(r2(t)(x∆(t))γ)∆

e− p
r1

(t,t0)

is strictly decreasing on [t1,∞)T. Since r1(t) > 0 and

e− p
r1

(t,t0) > 0,

we can say that r2(t)(x∆(t))γ)∆ is eventually of one sign. We want to show that the inequality

(r2(t)(x∆(t))γ)∆ > 0

is satisfied for all t ∈ [t1,∞)T; contrarily, suppose that it is not true. Then, there exists a t2 ∈ [t1,∞)T such that
(r2(t)(x∆(t))γ)∆ < 0 for t ∈ [t2,∞)T. Then

r2(t)(x∆(t))γ − r2(t2)(x∆(t2))γ =

∫ t

t2

e− p
r1

(s,t0)r1(s)(r2(s)(x∆(s))γ)∆

e− p
r1

(s,t0)r1(s)
∆s

≤ r1(t2)(r2(t2)(x∆(t2))γ)∆

e− p
r1

(t2,t0)

∫ t

t2

e− p
r1

(s,t0)

r1(s)
∆s.

By using the fact that
r1(t)(r2(t)(x∆(t))γ)∆

e− p
r1

(t,t0)

is strictly decreasing on the interval [t1,∞)T and the condition (C1), we have limt→∞ r2(t)(x∆(t))γ = −∞ and thus there
exists a sufficiently large t3 ∈ [t2,∞)T such that r2(t)(x∆(t))γ < 0. By the assumption (r2(t)(x∆(t))γ)∆ < 0 for t ∈ [t2,∞)T,
we know that r2(t)(x∆(t))γ is strictly decreasing on [t3,∞)T. Thus, we have

r2(t)(x∆(t))γ ≤ r2(t3)(x∆(t3))γ < 0

and hence

x∆(t) ≤ r
1
γ

2 (t3)x∆(t3)
1

r
1
γ

2 (t)
. (3)

Integrating (3) from t3 to t ∈ [σ(t3),∞)T, we get

x(t)− x(t3) ≤ r
1
γ

2 (t3)x∆(t3)

∫ t

t3

∆s

r
1
γ

2 (s)
.

By (C1), we obtain limt→∞ x(t) = −∞, which is a contradiction. Thus, we have (r2(t)(x∆(t))γ)∆ > 0 on [t1,∞)T. So, we
can say that r2(t)(x∆(t))γ is strictly increasing on [t1,∞)T. Because of this, r2(t)(x∆(t))γ is either eventually negative or
eventually positive. Then there exists a T ∈ [t1,∞)T such that x∆(t) > 0 or x∆(t) < 0 on [T,∞)T.

Lemma 2.2. Suppose that the conditions (C1)–(C6) hold. Also, assume that

2
1
γ α

∫ t

t4

(
1

(r2(ξ))
1
γ

∫ ∞
ξ

(e− p
r1

(τ,t0)

r1(τ)

∫ ∞
τ

q(s)

e−p
r1

(σ(s),t0)

∆s

)
∆τ

)
∆ξ =∞. (4)

Then either limt→∞ x(t) = 0 or there exists a sufficiently large t4 such that x∆(t) > 0 on [t4,∞)T.

Proof. Using Lemma 2.1, we conclude that x∆(t) is eventually of one sign. Thus there exists a sufficiently large t4 such
that at least one of the inequalities x∆(t) < 0 and x∆(t) > 0 is satisfied on the interval [t4,∞)T. We suppose that x∆(t) < 0,
by x(t) is a positive solution of (1) on [t0,∞)T, we get limt→∞ x(t) = α ≥ 0 and limt→∞ r2(t)(x∆(t))γ = β ≤ 0. We assert that
α = 0. Otherwise, suppose α > 0. So there exists t5 > t4 such that x(t) ≥ α on [t5,∞)T. If we integrate

r1(t)(r2(t)(x∆(t))γ)∆

e− p
r1

(t,t0)
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from t to∞, we have

−r1(t)(r2(t)(x∆(t))γ)∆

e− p
r1

(t,t0)

= − lim
t→∞

r1(t)(r2(t)(x∆(t))γ)∆

e− p
r1

(t,t0)

+

∫ ∞
t

−f(s, x(s), xσ(s), x(g(s)), x∆(s))

e− p
r1

(σ(s),t0)

∆s

≤ −
∫ ∞
t

2q(s)xγ(s)

e− p
r1

(σ(s),t0)

∆s

≤ −2αγ
∫ ∞
t

q(s)

e− p
r1

(σ(s),t0)

∆s.

Thus, we get

−(r2(t)(x∆(t))γ)∆ ≤ −2αγ
[e− p

r1
(t,t0)

r1(t)

∫ ∞
t

q(s)

e− p
r1

(σ(s),t0)

∆s

]
. (5)

By integrating (5) from t to∞, we get

r2(t)(x∆(t))γ = lim
t→∞

r2(t)(x∆(t))γ − 2αγ
∫ ∞
t

(e− p
r1

(τ,t0)

r1(τ)

∫ ∞
τ

q(s)

e− p
r1

(σ(s),t0)

∆s

)
∆τ

= β − 2αγ
∫ ∞
t

(e− p
r1

(τ,t0)

r1(τ)

∫ ∞
τ

q(s)

e− p
r1

(σ(s),t0)

∆s

)
∆τ

≤ −2αγ
∫ ∞
t

(e− p
r1

(τ,t0)

r1(τ)

∫ ∞
τ

q(s)

e− p
r1

(σ(s),t0)

∆s

)
∆τ

and hence

x∆(t) ≤ − 2
1
γ α

(r2(t))
1
γ

(∫ ∞
t

e− p
r1

(τ,t0)

r1(τ)

∫ ∞
τ

q(s)

e− p
r1

(σ(s),t0)

∆s

)
∆τ. (6)

Again, by integrating both sides of (6) from t5 to t, we have

x(t)− x(t5) ≤ −2
1
γ α

∫ t

t5

(
1

(r2(ξ))
1
γ

∫ ∞
ξ

(e− p
r1

(τ,t0)

r1(τ)

∫ ∞
τ

q(s)

e− p
r1

(σ(s),t0)

∆s

)
∆τ

)
∆ξ. (7)

From (4) and (7), it follows that limt→∞ x(t) = −∞, that gives a contradiction. Thus, we have α = 0.

Lemma 2.3. For 0 < γ < 1, suppose that the conditions (C1)–(C6) hold and let x(t) be a solution of the (1) with x(t) >

0, x∆(t) > 0 for t ∈ [t1,∞)T such that t1 ≥ t0. Then, it holds that(
x∆(t)

xσ(t)

)1−γ

≥ α(t) =

( 2e− p
r1

(t,t0)

e− p
r1

(σ(t),t0)r2(t)
δ(t, t1)

∫ ∞
t

q(s)∆s

) 1−γ
γ

,

for t ∈ [t1,∞)T, where

δ(t, t1) =

∫ t

t1

e− p
r1

(s,t0)

r1(s)
∆s.

Proof. Since x(t) is a solution for (1) and x(t) > 0 on the interval t1,∞)T with t1 ∈ [t0,∞)T, by using Lemma 2.1, we have

(r2(t)(x∆(t))γ)∆ > 0, t ∈ [t1,∞)T. (8)

By (1), we get (
r1(t)(r2(t)(x∆(t))γ)∆

e− p
r1

(t,t0)

)∆

=
(r1(t)(r2(t)(x∆(t))γ)∆)∆

e− p
r1

(σ(t),t0)

−
(e− p

r1
(t,t0))

∆(r1(t)(r2(t)(x∆(t))γ)∆)

e− p
r1

(t,t0)e− p
r1

(σ(t),t0)

=
−f(t, x(t), xσ(t), x(g(t)), x∆(t))

e− p
r1

(σ(t),t0)

≤ −q(t)(xγ(σ(t)) + xγ(g(t)))

e− p
r1

(σ(t),t0)
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≤ −2q(t)xγ(σ(t))

e− p
r1

(σ(t),t0)

. (9)

We integrate (9) from t ∈ [t1,∞)T to∞ and use (8) to obtain

r1(t)(r2(t)(x∆(t))γ)∆

e− p
r1

(t,t0)

≥
∫ t

∞

(
r1(s)(r2(s)(x∆(s))γ)∆

e− p
r1

(s,t0)

)∆

∆s

= −
∫ ∞
t

(
r1(s)(r2(s)(x∆(s))γ)∆

e− p
r1

(s,t0)

)∆

∆s

≥
∫ ∞
t

2q(s)xγ(σ(s))

e− p
r1

(σ(s),t0)

∆s

≥ 2xγ(σ(t))

e− p
r1

(σ(t),t0)

∫ ∞
t

q(s)∆s.

Since r1(t)(r2(t)(x∆(t))γ)∆

e− p
r1

(t,t0)

is strictly decreasing on [t1,∞)T, we have

r2(t)(x∆(t))γ

e− p
r1

(t,t0)

=
r2(t1)(x∆(t1))γ

e− p
r1

(t1,t0)

+

∫ t

t1

r1(s)(r2(s)(x∆(s))γ)∆e− p
r1

(s,t0)

r1(s)e− p
r1

(s,t0)

∆s

≥ (r1(t)(r2(t)(x∆(t))γ)∆)

e− p
r1

(σ(t),t0)

∫ t

t1

e− p
r1

(s,t0)

r1(s)
∆s

≥ 2xγ(σ(t))

e− p
r1

(σ(t),t0)

δ(t)

∫ ∞
t

q(s)∆s,

for t ∈ [σ(t1),∞)T. Thus, for 0 < γ < 1, we get(
x∆(t)

xσ(t)

)γ
≥

2e−p
r1

(t,t0)

e−p
r1

(σ(t),t0)r2(t)
δ(t)

∫ ∞
t

q(s)∆s

and hence (
x∆(t)

xσ(t)

)1−γ

≥ α(t) =

(
2e−p

r1
(t,t0)

e−p
r1

(σ(t),t0)r2(t)
δ(t)

∫ ∞
t

q(s)∆s

) 1−γ
γ

.

3. Main result

In this section, we give a new oscillation criteria for the third-order nonlinear dynamic equation (1) with damping term by
using the inequality technique and the generalized Riccati transformation.

Theorem 3.1. Suppose that the conditions (C1)–(C6) hold. Also, suppose that there exist functionsA(t) ∈ C1
rd([t0,∞)T, (0,∞)),

B(t) ∈ C1
rd([t0,∞)T,R) and a sufficiently large t1 ∈ [t0,∞)T that x(t) is a solution of (1) satisfying x(t) > 0 and x∆(t) > 0 for

t ∈ [t1,∞)T and

lim sup
t→∞

∫ t

t1

(
2A(s)q(s)

e−p
r1

(σ(s),t0)

−B∆(s)− φ(s)

)
∆s =∞, (10)

where

φ(t) ≥


(A∆(t))2r2(t)

4γA(t)αδe− p
r1

(t,t0)

, 0 < γ < 1

r2(t)

δe− p
r1

(t,t0)Aγ

(
A∆(t)

γ + 1

)γ+1

, γ ≥ 1.

Then, every solution of (1) is either oscillatory on [t1,∞)T or satisfies limt→∞ x(t) exists.
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Proof. Suppose that (1) is not oscillatory. Without loss of generality, we suppose that there exists a t1 ∈ [t0,∞)T such
that x(t) > 0 on t1,∞)T. By Lemma 2.1, for t ∈ [t1,∞)T, either x∆(t) < 0 or x∆(t) > 0 holds. Suppose that x∆(t) > 0 for
t ∈ [t1,∞)T. Defining the generalized Riccati function

u(t) = A(t)
r1(t)(r2(t)(x∆(t))γ)∆

e−p
r1

(t,t0)x
γ(t)

+B(t),

we have

u∆(t) =

(
A(t)

xγ(t)

)(
r1(t)(r2(t)(x∆(t))γ)∆

e− p
r1

(t,t0)

)∆

+

(
A(t)

xγ(t)

)∆(
r1(t)(r2(t)(x∆(t))γ)∆

e− p
r1

(t,t0)

)σ
+B∆(t)

=

(
A(t)

xγ(t)

)
−f(t, x(t), xσ(t), x(g(t)), x∆(t))

e− p
r1

(σ(t),t0)

+
A∆(t)xγ(t)−A(t)(xγ)∆(t)

xγ(σ(t))xγ(t)

(
r1(t)(r2(t)(x∆(t))γ)∆

e− p
r1

(t,t0)

)σ
+B∆(t).

Accepting the fact that

f(t, x(t), xσ(t), x(g(t)), x∆(t)) ≥ q(t)(xγ(σ(t)) + xγ(g(t))) ≥ 2q(t)xγ(t),

we obtain

u∆(t) ≤ −2A(t)q(t)

e− p
r1

(σ(t),t0)

+B∆(t) +A∆(t)

(
u(t)−B(t)

A(t)

)σ
−A(t)

(
(xγ(t))∆

xγ(t)

)(
u(t)−B(t)

A(t)

)σ
. (11)

When 0 < γ < 1, by using the Pötzsche chain rule, we get

(xγ)∆ = γ

∫ 1

0

(x+ hµx∆)γ−1dh ≥ γ(xσ)γ−1x∆

and thus
(xγ)∆

xγ
≥ γ(xσ)γ−1x∆

xγ
= γ

(
x∆

xσ

)(
xσ

x

)γ
.

By Lemmas 2.1 and 2.3, we obtain

x∆(t)

xσ(t)
=

e− p
r1

(t,t0)

r2(t)

r2(t)(x∆(t))γ

e− p
r1

(t,t0)(x(σ(t))γ

(
x∆(t)

xσ(t)

)1−γ

≥
α(t)δ(t)e− p

r1
(t,t0)

r2(t)

r1(t)(r2(t)(x∆(t))γ)∆

e− p
r1

(σ(t),t0)(x(σ(t)))γ

≥
α(t)δ(t)e− p

r1
(t,t0)

r2(t)

(
r1(t)(r2(t)(x∆(t))γ)∆

e− p
r1

(t,t0)xγ(t)

)σ

=
α(t)δ(t)e− p

r1
(t,t0)

r2(t)

(
u(t)−B(t)

A(t)

)σ
,

for all t ∈ [t1,∞)T. Also, we know that x
σ

x
≥ 1. So, (11) becomes

u∆(t) ≤ −2A(t)q(t)

e− p
r1

(σ(t),t0)

+B∆(t) +A∆(t)

(
u(t)−B(t)

A(t)

)σ
−
γA(t)α(t)δ(t)e− p

r1
(t,t0)

r2(t)

[(
u(t)−B(t)

A(t)

)σ]2

=
−2A(t)q(t)

e− p
r1

(σ(t),t0)

+B∆(t) +
(A∆(t))2r2(t)

4γA(t)α(t)δ(t)e− p
r1

(t,t0)

−
[
A∆(t)

2

√
r2(t)

γA(t)α(t)δ(t)e− p
r1

(t,t0)

−

√
γA(t)α(t)δ(t)e− p

r1
(t,t0)

r2(t)

(
u(t)−B(t)

A(t)

)σ]2

≤ −2A(t)q(t)

e− p
r1

(σ(t),t0)

+B∆(t) +
(A∆(t))2r2(t)

4γA(t)α(t)δ(t)e− p
r1

(t,t0)

. (12)
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When γ ≥ 1, we have

(xγ)∆ = γ

∫ 1

0

(x+ hµx∆)γ−1 ≥ γxγ−1x∆

and it follows that
(xγ)∆

xγ
≥ γxγ−1x∆

xγ
= γ

x∆

x
.

Also, we obtain (
x∆(t)

x(t)

)γ
=

e− p
r1

(t,t0)

r2(t)

r2(t)(x∆(t))γ

e− p
r1

(t,t0)xγ(t)

≥
δ(t)e− p

r1
(t,t0)

r2(t)

r1(t)(r2(t)(x∆(t))γ)∆

e− p
r1

(σ(t),t0)xγ(t)

≥
δ(t)e− p

r1
(t,t0)

r2(t)

(
r1(t)(r2(t)(x∆(t))γ)∆

e− p
r1

(t,t0)xγ(t)

)σ

=
δ(t)e− p

r1
(t,t0)

r2(t)

(
u(t)−B(t)

A(t)

)σ
and so

x∆(t)

x(t)
≥

(δ(t)e− p
r1

(t,t0)

r2(t)

) 1
γ
[(

u(t)−B(t)

A(t)

)σ] 1
γ

.

Thus, we get

u∆(t) ≤ −2A(t)q(t)

e− p
r1

(σ(t),t0)

+B∆(t) +A∆(t)

(
u(t)−B(t)

A(t)

)σ
− γA(t)

(δ(t)e− p
r1

(t,t0)

r2(t)

) 1
γ
[(

u(t)−B(t)

A(t)

)σ] 1+γ
γ

.

Since Qγ − P γ ≥ γP γ−1(Q− P ), where Q and P are nonnegative constants and γ ≥ 1, we get

λPλ−1Q−Qλ ≤ (λ− 1)Pλ,

with λ = γ+1
γ . If

Qλ = Q
(γ+1)
γ = γA(t)

(δ(t)e− p
r1

(t,t0)

r2(t)

) 1
γ
[(

u(t)−B(t)

A(t)

)σ] 1+γ
γ

and

Pλ−1 = P
1
γ =

γ

γ + 1

(
r2(t)

δ(t)e− p
r1

(t,t0)

) 1
γ+1 A∆(t)

(γA(t))
γ
γ+1

then we have

u∆(t) ≤ −2A(t)q(t)

e− p
r1

(σ(t),t0)

+B∆(t) +
r2(t)

δ(t)e− p
r1

(t,t0)Aγ(t)

(
A∆(t)

γ + 1

)γ+1

. (13)

From (13) and (12), it follows that
u∆(t) ≤ −2A(t)q(t)

e− p
r1

(σ(t),t0)

+B∆(t) + φ(t),

where

φ(t) ≥



(A∆(t))2r2(t)

4γA(t)α(t)δ(t)e− p
r1

(t,t0)

, 0 < γ < 1

r2(t)

δ(t)e− p
r1

(t,t0)Aγ(t)

(
A∆(t)

γ + 1

)γ+1

, γ ≥ 1.

Integrating the last inequality from t1 to t, we obtain

u(t)− u(t1) ≤
∫ t

t1

(
−2A(s)q(s)

e− p
r1

(σ(s),t0)

+B∆(s) + φ(s)

)
∆s
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and so ∫ t

t1

(
2A(s)q(s)

e− p
r1

(σ(s),t0)

−B∆(s)− φ(s)

)
∆s ≤ u(t1)− u(t) ≤ u(t1) <∞,

which contradicts (10). Thus, x∆(t) < 0 on [t1,∞)T, and we see that lim
t→∞

x(t) exists.

Example 3.1. Take T = N0 and consider the equation(
t2
(

1

t2 + 1
(x∆(t))γ

)∆)∆

− t
(

1

t2 + 1
(x∆(t))γ

)∆

+
1 + (x∆(t))2

t
xγ(t+ 1) +

t+ 1

t2
xγ(2t) = 0 (14)

on [1,∞)T with γ ≥ 1. For this equation, we have

r1(t) = t2, r2(t) =
1

t2 + 1
, p(t) = −t, and q(t) =

1

t
.

Since e− p
r1

(t,t0) = t, we get∫ ∞
1

e− p
r1

(s,t0)

r1(s)
∆s =

∫ ∞
1

s

s2
∆s =

∫ ∞
1

∆s

s
=∞,

∫ ∞
1

∆s

(r2(s))
1
γ

=

∫ ∞
1

(s2 + 1)
1
γ ∆s =∞

and
δ(t, t1) =

∫ t

t1

s

s2
∆s =

∫ t

t1

∆s

s
>

∫ t

t1

∆s

s(s+ 1)
=
t+ 1− t1
t1(t+ 1)

.

For (A(s), B(s)) = (s, 1), it holds that∫ ∞
t1

2A(s)q(s)

e− p
r1

(σ(s),t0)

∆s =

∫ ∞
t1

2s

s(s+ 1)
∆s =

∫ ∞
t1

2

(s+ 1)
∆s =∞

and ∫ ∞
t1

r2(s)

δ(s, t1)e− p
r1

(s,t0)Aγ(s)

(
A∆(s)

γ + 1

)γ+1

∆s <

∫ ∞
t1

1

s2 + 1

t1(s+ 1)

(s+ 1− t1)ssγ

(
1

γ + 1

)γ+1

∆s

< t1

(
1

γ + 1

)γ+1 ∫ ∞
t1

∆s

sγ+1

< ∞.

Consequently, we get ∫ ∞
t1

(
2A(s)q(s)

e− p
r1

(σ(s),t0)

−B∆(s)− φ(s)

)
∆s =∞.

Therefore, by Theorem 3.1, every solution of (14) is oscillatory on [1,∞)T.
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