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Abstract
A numbering f of a graph G of order n is a labeling that assigns distinct elements of the set {1, 2, . . . , n} to the vertices of G.
The strength strf (G) of a numbering f : V (G)→ {1, 2, . . . , n} of G is defined by strf (G) = max {f (u) + f (v) | uv ∈ E (G)},
that is, strf (G) is the maximum edge label of G and the strength str(G) of a graph G itself is the minimum of the set
{strf (G) | f is a numbering of G}. In this paper, we present a necessary and sufficient condition for the strength of a graph
G of order n to meet the constraints str (G) = 2n − 2β (G) + 1 and str (G) = n + δ (G) = 2n − 2β (G) + 1, where β (G) and
δ (G) denote the independence number and the minimum degree of G, respectively. This answers open problems posed by
Gao, Lau, and Shiu [Symmetry 13 (2021) #513]. Also, an earlier result leads us to determine a formula for the strength of
graphs containing a particular class of graphs as a subgraph. We also extend what is known in the literature about k-stable
properties.
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1. Introduction

We refer to the book [3] for graph-theoretical notation and terminology not described in this paper. We use the notation
[a, b] for the interval of integers x such that a ≤ x ≤ b. For a graph G of order n, a numbering f of G is a labeling that
assigns distinct elements of the set [1, n] to the vertices of G, where each uv ∈ E (G) is labeled f (u) + f (v). The strength
strf (G) of a numbering f : V (G)→ [1, n] of G is defined by

strf (G) = max {f (u) + f (v) | uv ∈ E (G)} ,

that is, strf (G) is the maximum edge label of G and the strength str(G) of a graph G itself is

str (G) = min {strf (G) | f is a numbering of G} .

A numbering f of a graph G for which strf (G) = str (G) is called a strength labeling of G. Since empty graphs nK1 do not
have edges, this definition does not apply to such graphs. Consequently, we may define str (nK1) = +∞ for every positive
integer n. This type of numberings was introduced in [8] as a generalization of the problem of finding whether a graph
is super edge-magic or not (see [4] for the definition of a super edge-magic graph, and also consult either [1] or [5] for
alternative and often more useful definitions of the same concept).

There are other related parameters that have been studied in the area of graph labelings. Excellent sources for more
information on this topic are found in the extensive survey by Gallian [6], which also includes information on other kinds
of graph labeling problems as well as their applications.

Several bounds for the strength of a graph have been found in terms of other parameters defined on graphs (see [7,8,12]).
Among others, the following result established in [8] that provides a lower bound for the strength of a graph G in terms of
its order and the minimum degree δ (G) is particularly useful.

Lemma 1.1. For every graph G of order n with δ (G) ≥ 1,

str (G) ≥ n+ δ (G) .
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It is worth to mention that the lower bound given in Lemma 1.1 is sharp in the sense that there are infinitely many
graphs G for which str (G) = |V (G)|+ δ (G) (see [7–9,12] for a detailed list of such graphs and other sharp bounds).

For every graphG of order n, it is clear that 3 ≤ str (G) ≤ 2n−1. In fact, it was shown in [10] that for every k ∈ [1, n− 1],
there exists a graph G of order n satisfying δ (G) = k and str (G) = n+ k.

In the process of settling the problem (proposed in [8]) of finding sufficient conditions for a graph G of order n with
δ (G) ≥ 1 to ensure that str (G) = n + δ (G), an equivalent definition of the following class of graphs was defined in [11].
For integers k ≥ 2, let Fk be the graph with V (Fk) = {vi |i ∈ [1, k]} and

E (Fk) = {vivj |i ∈ [1, bk/2c] and j ∈ [1 + i, k + 1− i]} .

Let G denote the complement of a graph G. The following result found in [11] provides a necessary and sufficient condition
for a graph G of order n to hold the inequality str (G) ≤ 2n− k, where k ∈ [2, n− 1].

Theorem 1.1. Let G be a graph of order n. Then str (G) ≤ 2n − k if and only if G contains Fk as a subgraph, where
k ∈ [2, n− 1].

The preceding result plays an important role in the study of the strength of graphs (see [13]). The following result was
deduced from Lemma 1.1 and Theorem 1.1.

Theorem 1.2. Let G be a graph of order n with δ (G) = n− k, where k ∈ [2, n− 1]. Then str (G) = n+ δ (G) if and only if G
contains Fk as a subgraph.

The following lemma taken from [7] provides a lower bound for the strength of a graph G in terms of its independence
number β (G).

Lemma 1.2. For every graph G of order n,
str (G) ≥ 2n− 2β (G) + 1.

It is known from [8] that str (C2n+1) = 2n+ 3 (n ≥ 1). It is also clear that β (C2n+1) = n (n ≥ 1). Using these facts, Gao,
Lau and Shiu [7] pointed out that

str (C2n+1) = 2n+ 3

= |V (C2n+1)|+ δ (C2n+1)

= 2 |V (C2n+1)| − 2β (C2n+1) + 1

for all positive integers n. They also proposed the following two problems in [7].

Problem 1.1. For a graph G of order n, find necessary and/or sufficient conditions for which str (G) = 2n− 2β (G) + 1.

Problem 1.2. Characterize all graphs G of order n for which str (G) = n+ δ (G) = 2n− 2β (G) + 1.

In this paper, we provide an answer to Problem 1.1. This together with Theorem 1.2 gives us an answer to Problem
1.2 under certain conditions. An earlier result also leads us to determine formulas for the strength of Fn and graphs
containing Fn as a subgraph. In addition, we extend what is known in the literature about k-stable properties.

2. Results involving the independence number

In this section, we present the proof of the following theorem. We also provide formulas for the strength of Fn and graphs
containing Fn as a subgraph.

Theorem 2.1. Let G be a graph of order n with β (G) = k, where k ∈ [2, dn/2e]. Then str (G) = 2n− 2β (G) + 1 if and only if
G contains F2k−1 as a subgraph.

Proof. First, suppose that str (G) = 2n − 2k + 1, where β (G) = k (k ∈ [2, dn/2e]). Let V (G) = {vi |i ∈ [1, n]}, and assume,
without loss of generality, that there exists a strength labeling ofG that assigns i to vi (i ∈ [1, n]). Since str (G) = 2n−2k+1,
every two vertices vi and vj for which i+ j > 2n− 2k + 1 are not adjacent in G. This means that every two vertices vi and
vj for which i+ j > 2n− 2k+1 are adjacent in G. Let vi = wn+1−i (i ∈ [1, n]) so that V

(
G
)
= {wi |i ∈ [1, n]}. Then if wn+1−i

and wn+1−j are adjacent in G, it follows that

(n+ 1− i) + (n+ 1− j) = 2n+ 2− (i+ j) < 2n+ 2− (2n− 2k + 1) = 2k + 1.
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Thus, G contains F2k−1 as a subgraph.
Next, suppose that G contains F2k−1 as a subgraph, where β (G) = k (k ∈ [2, dn/2e]). Then it follows from Theorem 1.1

that

str (G) ≤ 2n− (2k − 1) = 2n− 2β (G) + 1.

It also follows from Lemma 1.2 that
str (G) ≥ 2n− 2β (G) + 1

and therefore str (G) = 2n− 2β (G) + 1.

The preceding theorem together with Theorem 1.2 establishes the following result.

Theorem 2.2. Let G be a graph of order n with δ (G) = n− (2k − 1) and β (G) = k, where k ∈ [2, dn/2e]. Then

str (G) = n+ δ (G) = 2n− 2β (G) + 1

if and only if G contains F2k−1 as a subgraph.

The conditions described in Theorem 2.2 are strictly necessary for a graphG to meet str (G) = n+δ (G) = 2n−2β (G)+1.
Indeed, as we have seen earlier, the cycle C2n+1 of odd order meets all the conditions.

Since F 2k−1 = F2k−2 ∪K1, it follows that F2k−2 ⊆ F 2k−1. This together with Theorem 1.1 and Lemma 1.1 gives us the
following result.

Lemma 2.1. For every integer k ≥ 2,
str (F2k−1) = 2k.

The following result is obtained from Theorem 2.1 rather easily.

Lemma 2.2. For every integer k ≥ 2,
str (F2k) = 2k + 1.

Proof. Let S = {vi |i ∈ [1, k]}. Then the vertices v1, v2, . . . , vk+1 are mutually adjacent in F2k, producing Kk+1. Thus,

β (F2k) ≤ 2k − (k + 1) + 1 = k.

On the other hand, vk+1, vk+2, . . . , v2k are k independent vertices in F2k. Thus, β (F2k) ≥ k. Consequently, β (F2k) = k. It
remains to observe that F 2k = F2k−1 ∪ K1, which implies that F2k−1 ⊆ F 2k. Therefore, the result follows from Theorem
2.1.

It is clear that str (F2) = 2 + 1 = 3. Combining this with Lemmas 2.1 and 2.2, we have the following result.

Theorem 2.3. For every integer n ≥ 2,
str (Fn) = n+ 1.

Lemma 2.1 suggests the possibility of determining a formula for the strength of graphs containing F2k−1 as a subgraph
as the next result indicates.

Corollary 2.1. Let G be a graph of order 2k − 1 such that β (G) = k and G contains F2k−1 as a subgraph, where k ≥ 2.
Then str (G) = 2k.

Analogously, we have the following result for graphs containing F2k as a subgraph.

Corollary 2.2. Let G be a graph of order 2k such that β (G) = k and G contains F2k as a subgraph, where k ≥ 2. Then
str (G) = 2k + 1.

We conclude this section with the following formula for the strength of the complement of graphs containing Fn as a
subgraph.

Theorem 2.4. Let G be a graph of order n such that β (G) = dn/2e and G contains Fn as a subgraph, where n ≥ 3. Then
str (G) = n+ 1.
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3. Relations with stability

Motivated by the following theorem of Ore [14], the concept of k-stable was introduced by Bondy and Chvátal [2].

Theorem 3.1. If G is a graph of order n ≥ 3 such that for all distinct non-adjacent vertices u and v,

deg u+ deg v ≥ n,

then G is hamiltonian.

Let P be a property defined on all graphs of order n and let k be a nonnegative integer. Then P is said to be k-stable
if whenever G + uv has property P and degG u + degG v ≥ k then G itself has property P . Therefore, Theorem 3.1 can be
stated as follows: The property of containing a hamiltonian cycle is n-stable.

In [2], Bondy and Chvátal provided a variety of graph theoretical properties for stability. The relations between stability
and strength as well as their related parameters were established in [11]. In this section, we prove the stability of a graph
theoretical property, which combines both the strength and the independence number of a graph.

The proof of the following theorem is similar to the proof provided by Bondy and Chvátal [2] when they established the
property that β (G) ≤ k is (2n− 2k − 1)-stable for positive integers n and k with k ≤ n.

Theorem 3.2. Let n and k be integers with k ∈ [2, dn/2e]. Then the property that

β (G) = k and str (G) = 2n− 2k + 1

is (2n− 2k − 1)-stable.

Proof. Let G+ uv be any graph of order n such that

β (G+ uv) = k and str (G+ uv) = 2n− 2k + 1,

and assume that
degG u+ degG v ≥ 2n− 2k − 1,

where u, v ∈ V (G) and uv /∈ E (G). First, notice that k = β (G+ uv) ≤ β (G), since G ⊆ G + uv. Next, we show that
β (G) ≤ k. For this purpose, suppose, to the contrary, that β (G) > k. Then there is a set S of k − 1 vertices of G such that
u, v /∈ S and S ∪ {u, v} is independent in G. However,

degG u ≤ n− 2− |S| and degG u ≤ n− 2− |S| ,

implying that
degG u+ degG v ≤ 2 (n− 2− |S|) = 2n− 2k − 2.

This contradicts our assumption that degG u+degG v ≥ 2n− 2k− 1 and so β (G) = k for k ∈ [2, dn/2e]. It is now immediate
from Theorem 2.1 that F2k−1 ⊆ G+ uv. However, since G ⊆ G+ uv, it follows that G+ uv ⊆ G and F2k−1 ⊆ G. Therefore,
Theorem 2.1 implies that str (G) = 2n− 2k + 1.

The preceding theorem has the following consequence.

Theorem 3.3. Let n and k be integers with k ∈ [2, dn/2e]. Then the property that

δ (G) = n− (2k − 1) , β (G) = k and str (G) = 2n− 2k + 1

is (2n− 2k)-stable.

Proof. In light of the proof of Theorem 3.2, it suffices to verify that if

δ (G+ uv) = n− 2k + 1 and degG u+ degG v ≥ 2n− 2k

for all distinct non-adjacent vertices u and v in G, then δ (G) = n− 2k + 1. Since G ⊆ G+ uv, it follows that

δ (G) ≤ δ (G+ uv) = n− 2k + 1.

To show the reverse inequality, suppose that δ (G+ uv) = n − 2k + 1, but δ (G) < n − 2k + 1. Then there exists a vertex u
with degG u ≤ n− 2k. Since degG v ≤ n− 1 for all v ∈ V (G), it follows that

degG u+ degG v ≤ (n− 2k) + (n− 1) = 2n− 2k − 1,

producing a contradiction.
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4. Conclusions

In the following lines, we summarize the results established in this work. We have investigated the relation existing
between the strength and independence number of graphs. By means of this, we have found a characterization of the
graphs G of order n with β (G) = k (k ∈ [2, dn/2e]) to satisfy str (G) = 2n− 2β (G) + 1 in terms of their subgraph structure
(see Theorem 2.1). As a consequence of this, we have provided a necessary and sufficient condition for a graph G to meet
str (G) = |V (G)|+ δ (G) = 2 |V (G)| − 2β (G) + 1 under certain conditions (see Theorem 2.2). This and the aforementioned
result answer Problems 1.1 and 1.2 posed by Gao, Lau and Shiu [7], and Theorem 2.1 produces formulas for the strength
of Fn and the complement of graphs containing Fn as a subgraph (see Theorems 2.3 and 2.4, respectively). We have also
extended what is known in the literature about k-stable properties (see Theorems 3.2 and 3.3).
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