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Abstract
In this paper, the authors find necessary and sufficient conditions for a bivariate mean of three parameters to be the Schur
m-power convex or the Schur m-power concave, by using techniques of the majorization theory.
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1. Introduction

In 2009, Kuang [1, p. 61] defined the mean

Kp;ω1,ω2
(a, b) =


(
ω1A(ap, bp) + ω2G(ap, bp)

ω1 + ω2

)1/p

, p 6= 0

G(a, b), p = 0

(1)

for (a, b) ∈ R2
+ = (0,∞) × (0,∞), where p ∈ R = (−∞,∞), ω1, ω2 ∈ R0 = [0,∞) with ω1 + ω2 6= 0, A(a, b) = a+b

2 , and
G(a, b) =

√
ab . In [4], Wang and his two coauthors investigated the Schur m-power convexity of the mean Kp;ω1,ω2

(a, b) and
obtained the following theorem.

Theorem 1.1 (see [4, Theorem 1.1]). Let p,m ∈ R and ω1, ω2 ∈ R0 with m 6= 0 and ω1 + ω2 6= 0.

1. For m > 0,

(a) if p ≥ max
{(

1 + ω2

ω1

)
m, 2m

}
, then the mean Kp;ω1,ω2(a, b) is Schur m-power convex with respect to (a, b) ∈ R2

+;

(b) if m ≤ p ≤ min
{(

1 + ω2

ω1

)
m, 2m

}
, then the mean Kp;ω1,ω2

(a, b) is Schur m-power concave with respect to (a, b) ∈ R2
+;

(c) if 0 ≤ p < m, then the mean Kp;ω1,ω2
(a, b) is Schur m-power concave with respect to (a, b) ∈ R2

+;

(d) if p < 0, then the mean Kp;ω1,ω2(a, b) is Schur m-power concave with respect to (a, b) ∈ R2
+.

2. For m < 0,

(a) if p ≥ 0, then the mean Kp;ω1,ω2
(a, b) is Schur m-power convex with respect to (a, b) ∈ R2

+;

(b) if m ≤ p < 0, then the mean Kp;ω1,ω2
(a, b) is Schur m-power convex with respect to (a, b) ∈ R2

+;

(c) if 2m ≤ p < m, p =
(
1 + ω2

ω1

)
m, and 0 < ω2

ω1
< 1, then the mean Kp;ω1,ω2(a, b) is Schur m-power convex with respect

to (a, b) ∈ R2
+;

(d) if p < 2m, p =
(
1 + ω2

ω1

)
m, and ω2

ω1
> 1, then the mean Kp;ω1,ω2(a, b) is Schur m-power concave with respect to

(a, b) ∈ R2
+.

The main aim of the present paper is to find sufficient and necessary conditions for the mean Kp;ω1,ω2(a, b) to be Schur
m-power convex with respect to (a, b) ∈ R2

+ for p ∈ R and (ω1, ω2) ∈ Ω by using some results reported in the paper [5].
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2. Definitions and lemmas

In order to obtain our main results, we need the following definitions and lemmas.

Definition 2.1 (see [2,3]). Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) belong to Rn.

1. The n-tuple x is said to be majorized by y (in symbols x ≺ y) if

k∑
i=1

x[i] ≤
k∑

i=1

y[i], 1 ≤ k ≤ n− 1

and
n∑

i=1

xi =

n∑
i=1

yi,

where
x[1] ≥ x[2] ≥ · · · ≥ x[n] and y[1] ≥ y[2] ≥ · · · ≥ y[n]

are rearrangements of x and y in descending order.

2. A set D ⊆ Rn is said to be convex if

(αx1 + βy1, αx2 + βy2, . . . , αxn + βyn) ∈ D

for any x,y ∈ D, where α, β ∈ [0, 1] with α+ β = 1.

3. A function ϕ : D → R is said to be Schur-convex (or Schur-concave, respectively) if the majorizing relation x ≺ y on D
implies the inequality ϕ

(
x
)
≤ ϕ

(
y
)

(or ϕ
(
x
)
≥ ϕ

(
y
)
, respectively).

Definition 2.2 (see [5]). Let f : R+ → R be the function defined by

f(x) =


xm − 1

m
, m 6= 0;

lnx, m = 0.

A function ϕ : D ⊆ Rn
+ → R is said to be Schur m-power convex (or Schur m-power concave, respectively) on D if the

majorizing relation
f(x) = (f(x1), f(x2), . . . , f(xn)) ≺ f(y) = (f(y1), f(y2), . . . , f(yn))

on D implies the inequality ϕ
(
x
)
≤ ϕ

(
y
)

(or ϕ
(
x
)
≥ ϕ

(
y
)
, respectively).

In proofs of our main results, we use the following lemmas.

Lemma 2.1 (see [5]). Let D ⊂ Rn
+ be a symmetric set with nonempty interior D◦ and let ϕ : D → R+ be continuous on D

and differentiable in D◦. Then ϕ is Schur m-power convex on D if and only if ϕ is symmetric on D and the function
xm1 − xm2

m

(
x1−m
1

∂ϕ(x)

∂x1
− x1−m

2

∂ϕ(x)

∂x2

)
, m 6= 0

(lnx1 − lnx2)

(
x1
∂ϕ(x)

∂x1
− x2

∂ϕ(x)

∂x2

)
, m = 0

is nonnegative for x ∈ D◦.

In the paper [5], Yang established necessary and sufficient conditions for the Daróczy mean

Hp,ω(a, b) =


(
ap + ω(ab)p/2 + bp

ω + 2

)1/p

, p 6= 0

√
ab , p = 0

(2)

to be Schur m-power convex, where (a, b) ∈ R2
+, p ∈ R, and ω > −2.

Lemma 2.2 (see [5, Theorem 7]). For a fixed p ∈ R, m = 0, and ω > −2, the Daróczy mean Hp,ω(a, b) is Schur m-power
convex (or Schur m-power concave, respectively) with respect to (a, b) ∈ R2

+ if and only if p ≥ 0 (or p ≤ 0, respectively).
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Lemma 2.3 (see [5, Theorems 3 and 4]). For a fixed p ∈ R, m > 0, and ω > −2, the Daróczy mean Hp,ω(a, b) is Schur
m-power convex (or Schur m-power concave, respectively) with respect to (a, b) ∈ R2

+ if and only if (p, ω) ∈ V1 (or (p, ω) ∈ V2,
respectively), where

V1 =

{
(p, ω) : −2 < ω ≤ 0, p ≥ ω + 2

2
m

}
∪
{

(p, ω) : ω > 0, p ≥ max

{
ω + 2

2
m, 2m

}}
and

V2 =

{
(p, ω) : −2 < ω < 0, p < 0

}
∪
{

(p, ω) : ω ≥ 0, p ≤ min

{
ω + 2

2
m, 2m

}}
.

Lemma 2.4 (see [5, Theorems 5 and 6]). For a fixed p ∈ R, m < 0, and ω > −2, the Daróczy mean Hp,ω(a, b) is Schur
m-power convex (or Schur m-power concave, respectively) with respect to (a, b) ∈ R2

+ if and only if (p, ω) ∈ E1 (or (p, ω) ∈ E2,
respectively), where

E1 =

{
(p, ω) : −2 < ω < 0, p > 0

}
∪
{

(p, ω) : ω ≥ 0, p ≥ max

{
ω + 2

2
m, 2m

}}
and

E2 =

{
(p, ω) : −2 < ω ≤ 0, p ≤ ω + 2

2
m

}
∪
{

(p, ω) : ω > 0, p ≤ min

{
ω + 2

2
m, 2m

}}
.

3. Main results and their proofs

The value range of the parameter (ω1, ω2) ∈ R2
0 with ω1 + ω2 6= 0 in (1) can be extended to Ω = Ω1 ∪ Ω2, where

Ω1 =
{

(ω1, ω2) : (ω1, ω2) ∈ R2, ω1ω2 ≥ 0, ω1 + ω2 6= 0
}

and
Ω2 =

{
(ω1, ω2) : (ω1, ω2) ∈ R2, ω1ω2 ≤ 0, |ω1| > |ω2|

}
.

Remark 3.1. Let (ω1, ω2) ∈ Ω.

1. If ω1 = 0 and ω2 6= 0, then Kp;0,ω2(a, b) = G(a, b) for (a, b) ∈ R2
+ and p ∈ R.

2. When ω1 6= 0, we take ω = 2ω2

ω1
. If (ω1, ω2) ∈ Ω1, then we have ω ≥ 0, and if (ω1, ω2) ∈ Ω2, then we obtain −2 < ω ≤ 0.

By the definitions in (1) and (2), we acquire Kp;ω1,ω2(a, b) = Hp,ω(a, b) for (a, b) ∈ R2
+ and p ∈ R.

Now, we are in a position to state and prove our main results.

Theorem 3.1. Let p,m ∈ R and ω2 ∈ R with ω2 6= 0. For every p ∈ R, the symmetric function Kp;0,ω2
(a, b) is Schur m-power

convex (or Schur m-power concave, respectively) with respect to (a, b) ∈ R2
+ if and only if m ≤ 0 (or m ≥ 0, respectively).

Proof. Since Kp;0,ω2
(a, b) = G(a, b) for (a, b) ∈ R2

+ and p ∈ R, the desired conclusion follows from Lemma 2.1 immediately.

Theorem 3.2. Let p ∈ R, m = 0, and (ω1, ω2) ∈ Ω with ω1 6= 0. Then the symmetric function Kp;ω1,ω2(a, b) is Schur m-power
convex (or Schur m-power concave, respectively) with respect to (a, b) ∈ R2

+ if and only if p ≥ 0 (or p ≤ 0, respectively).

Proof. Since ω1 6= 0, using the second item in Remark 3.1, we obtain
ω + 2

2
m =

ω1 + ω2

ω1
m

and
Kp;ω1,ω2

(a, b) = Hp,ω(a, b),

where ω = 2ω2

ω1
. Combining this with Lemma 2.2 leads to the desired conclusion readily.

Theorem 3.3. Let p ∈ R, m > 0, and (ω1, ω2) ∈ Ω with ω1 6= 0. Then the symmetric function Kp;ω1,ω2
(a, b) is Schur m-power

convex (or Schur m-power concave, respectively) with respect to (a, b) ∈ R2
+ if and only if (p, ω1, ω2) ∈ S1 (or (p, ω1, ω2) ∈ S2,

respectively), where

S1 =

{
(p, ω1, ω2) : ω1ω2 < 0, |ω1| > |ω2|, p ≥

ω1 + ω2

ω1
m

}
∪
{

(p, ω1, ω2) : ω1ω2 ≥ 0, ω1 6= 0, p ≥ max

{
ω1 + ω2

ω1
m, 2m

}}
and

S2 =
{

(p, ω1, ω2) : ω1ω2 < 0, |ω1| > |ω2|, p < 0
}
∪
{

(p, ω1, ω2) : ω1ω2 ≥ 0, ω1 6= 0, p ≤ min

{
ω1 + ω2

ω1
m, 2m

}}
.
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Proof. Since ω1 6= 0, for ω = 2ω2

ω1
, by virtue of the second item in Remark 3.1, we have Kp;ω1,ω2(a, b) = Hp,ω(a, b). Combining

this with Lemma 2.3 results in the required conclusion directly.

Theorem 3.4. Let p ∈ R, m < 0, and (ω1, ω2) ∈ Ω with ω1 6= 0. Then the symmetric function Kp;ω1,ω2
(a, b) is Schur m-power

convex (or Schur m-power concave, respectively) with respect to (a, b) ∈ R2
+ if and only if (p, ω1, ω2) ∈ T1 (or (p, ω1, ω2) ∈ T2,

respectively), where

T1 = {(p, ω1, ω2) : ω1ω2 < 0, |ω1| > |ω2|, p > 0} ∪
{

(p, ω1, ω2) : ω1ω2 ≥ 0, ω1 6= 0, p ≥ max

{
ω1 + ω2

ω1
m, 2m

}}
and

T2 =

{
(p, ω1, ω2) : ω1ω2 < 0, |ω1| > |ω2|, p ≤

ω1 + ω2

ω1
m

}
∪
{

(p, ω1, ω2) : ω1ω2 ≥ 0, ω1 6= 0, p ≤ min

{
ω1 + ω2

ω1
m, 2m

}}
.

Proof. Since ω1 6= 0, by combining the second item of Remark 3.1 with Lemma 2.4, we arrive at the desired conclusion.
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