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Abstract
Three determinants for symmetric and skew-symmetric matrices are explicitly evaluated, in closed form, as circular
products. One of them gives a solution to a problem proposed by Dzhumadil’daev [Amer. Math. Monthly 129 (2022) 486].
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1. Introduction and the main results

Evaluating determinants is one of the important topics in mathematics and physics. There are two classical results (cf. [2]
and [3, §4.3]) about a skew-symmetric matrix Ξ. When the order of Ξ is odd, then det Ξ = 0. When the order of Ξ is even,
the determinant det Ξ results in a square of a polynomial in the entries of Ξ. In this paper, we explicitly evaluate three
determinants, in closed form, as circular products. The main results are announced in advance as follows, whose proofs
are given in the next section. The first one is about the symmetric matrix

Un =
[
ui,j
]
1≤i,j≤n : ui,j =

xi − xj , i ≤ j;

xj − xi, i > j.

Theorem 1.1 (Determinant identity for symmetric matrices).

detUn = 2n−2
n∏
k=1

(xk+1 − xk), where xn+1 := x1.

The next two results are concerned with the following skew-symmetric matrices

An =
[
ai,j
]
1≤i,j≤n : ai,j =

 (xi − xj)2, i ≤ j;

−(xi − xj)2, i > j;

Ωn =
[
ωi,j
]
1≤i,j≤n : ωi,j =

x
λ
i (xi − xj), i ≤ j;

xλj (xi − xj), i > j;

where λ and {xk}1≤k≤n are real numbers.

Theorem 1.2 (Determinant identity for skew-symmetric matrices).

detA2n = 4n−1
2n∏
k=1

(xk − xk+1)2, where x2n+1 := x1.

It is remarked here that Theorem 1.2 resolves a monthly problem proposed recently by Dzhumadil’daev [1].

Theorem 1.3 (Determinant identity for skew-symmetric matrices).

det Ω2n = x2λ1

n∏
k=1

(x2k − x2k−1)2
n−1∏
k=1

(xλ2k − xλ2k+1)2.
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2. Proofs of Theorems 1.1, 1.2, 1.3

This section is divided into three subsections, dedicating to proofs of the three corresponding theorems anticipated in the
previous section.

2.1. Proof of Theorem 1.1
By examining the difference between the ith row and the (i + 1)th row, we see that the resulting entry u′i,j in the (i, j)

position equals

u′i,j = ui,j − ui+1,j =

xi − xi+1, i < j;

xi+1 − xi, i ≥ j.

Iterating this operation downwards from the first row to the penultimate row, and then extracting the common row factors,
we get the following equality

detUn =

n−1∏
i=1

(xi − xi+1)× detVn,

where the matrix Vn is given by

Vn =
[
vi,j
]

: vi,j =


1, i < j;

−1, i ≥ j;

xj − xn, i = n.

Next, for the matrix Vn, we make the same row operations. Considering the difference between the ith row and the (i+1)th
row, where 1 ≤ i ≤ n− 2, we can check without difficulty that the resulting entry v′i,j in the (i, j) position becomes

v′i,j = vi,j − vi+1,j =

0, j 6= i+ 1;

2, j = i+ 1.

Repeating this operation for i from 1 to n− 2, we derive another equality

detVn = detWn,

where the matrix Wn is given by

Wn =
[
wi,j

]
: wi,j =



2, i = j − 1;

0, i 6= j − 1;

−1, i = n− 1 & j < n;

1, i = n− 1 & j = n;

xj − xn, i = n.

Write this matrix explicitly

Wn =



0 2 0 0 · · · 0 0
0 0 2 0 · · · 0 0
0 0 0 2 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 2 0
−1 −1 −1 −1 · · · −1 1

x1 − xn x2 − xn x3 − xn · · · xn−2 − xn xn−1 − xn 0


.

Expanding the determinant of Wn with respect to the first and the last columns, we find that

detWn = (−1)n(xn − x1)2n−2

which confirms the circular product formula stated in Theorem 1.1

detUn = 2n−2
n∏
k=1

(xk+1 − xk), where xn+1 := x1.
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2.2. Proof of Theorem 1.2
Firstly, we reduce the matrix A2n by row and column operations. If we subtract the (i+ 1)th row from the ith row, then the
resulting entry a′i,j in the (i, j) position becomes

a′i,j = ai,j − ai+1,j =


(xi − xi+1)(xi + xi+1 − 2xj), i < j − 1;

(xi − xi+1)2, i = j & i = j − 1;

(xi − xi+1)(2xj − xi − xi+1), i > j.

Repeating this operation downwards for all the rows except for the last one and then pulling out the common factors from
the first row to the (2n− 1)th row, we get the equality

detA2n =

2n−1∏
i=1

(xi − xi+1)× detB2n,

where the square matrix B2n is given by

B2n =
[
bi,j
]

: bi,j =



xi + xi+1 − 2xj , 1 ≤ i < j − 1;

xi − xi+1, i = j & i = j − 1;

2xj − xi − xi+1, j < i < 2n;

−(x2n − xj)2, i = 2n.

Analogously, for the matrix B2n, we make the corresponding column operations. By subtracting the (j + 1)th column from
the jth column, the resulting entry b′i,j in the (i, j) position becomes

b′i,j = bi,j − bi,j+1 =



2(xj+1 − xj), i < j;

0, i = j;

2(xj − xj+1), i > j;

(xj+1 − xj)(xj + xj+1 − 2x2n), i = 2n.

Iterating this operation rightwards for all the columns except for the last one and then extracting the common column
factors from the first column to the (2n− 1)th column, we derive another equality

detB2n =

2n−1∏
j=1

(xj − xj+1)× detC2n,

where the matrix C2n returns to skew-symmetric one:

C2n =
[
ci,j
]

: ci,j =



−2, i < j < 2n;

0, i = j;

2, j < i < 2n;

2x2n − xj − xj+1, i = 2n;

xi + xi+1 − 2x2n, j = 2n.

Finally, for each k with 1 ≤ k < 2n, performing simultaneously the operations on the matrixC2n by subtracting the (k+1)th
row and column from the kth row and column, respectively, we find the following reduced expression

detC2n = detD2n,

where D2n is the double bordered skew-symmetric matrix

D2n =
[
di,j
]

: di,j =



2i− 2j, |i− j| = 1 & i, j < 2n;

0, |i− j| 6= 1 & i, j < 2n;

xj+2 − xj , i = 2n & j < 2n− 1,

xj+1 − xj , i = 2n & j = 2n− 1;

xi − xi+2, j = 2n & i < 2n− 1,

xi − xi+1, j = 2n & i = 2n− 1.
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Now, we write the matrix D2n in blocks

D2n =

E2n−1
... −~yt

· · · · · · · · · · · ·

~y
... 0

 , where E2n−1 =
[
ei,j
]

: ei,j =

±2, i− j = ±1;

0, i− j 6= ±1;

and

~y = (y1, y2, · · · , y2n−1) :

yk = xk+2 − xk, 1 ≤ k < 2n− 1;

y2n−1 = x2n − x2n−1, k = 2n− 1.

By means of the Laplace formula, expanding the determinant of D2n along the last row and then the last column, we have
the double sum expression

detD2n =
∑

1≤i,j<2n

(−1)i+jyiyjE2n−1(i, j),

where E2n−1(i, j) stands for the minor of E2n−1 after the ith row and the jth column having been removed. In general, we
have the following remarkable formula

E2n−1(i, j) = 22n−2 ×

0, i× j ≡ 0 (mod 2);

1, i× j ≡ 1 (mod 2).
F

According to this formula, we can rewrite, under the replacements i → 2ı − 1 and j → 2 − 1, the former double sum for
detD2n as

detD2n = 4n−1
∑

1≤ı,≤n

y2ı−1y2−1

= 4n−1
n∑
ı=1

y2ı−1

n∑
=1

y2−1

= 4n−1(x1 − x2n)2,

where the last step is justified by applying twice the telescoping method. Summing up, we have proved that

detA2n = 4n−1
2n∏
k=1

(xk − xk+1)2, where x2n+1 := x1.

Induction principle Now, we return to present an inductive proof for F . It is routine to verify that the formula F is
true for E3. Suppose that the same formula is valid for E2n−1. Then we have to validate it for E2n+1. In order to facilitate
the intuitive reasoning below, we write explicitly the corresponding matrix

n = 4 : E2n+1 =



0 -1 0 0 0 0 0 0 0
1 0 -1 0 0 0 0 0 0
0 1 0 -1 0 0 0 0 0
0 0 1 0 -1 0 0 0 0
0 0 0 1 0 -1 0 0 0
0 0 0 0 1 0 -1 0 0
0 0 0 0 0 1 0 -1 0
0 0 0 0 0 0 1 0 -1
0 0 0 0 0 0 0 1 0


.

Now, we can prove the formula in F for E2n+1 case by case as follows:

• i, j < 2n Expanding the determinant along the last row and then the last column, we see thatE2n+1(i, j) = E2n−1(i, j).

• i = 2n When j 6= 2n + 1, we have directly E2n+1(2n, j) = 0 since all the entries in the last column result in zero.
Instead, for j = 2n + 1, we have E2n+1(2n, 2n + 1) = 0 because we can reduce the related matrix, by simple row and
column operations, to a lower triangular matrix containing zero diagonal entries.

• i = 2n+ 1 When j = 1, we have immediately E2n+1(2n + 1, 1) = 1 since the matrix is lower triangular with all
the diagonal entries equal to −1. When j = 2, the minor E2n+1(2n + 1, 2) = 0 since all the entries in the first row
vanish. Finally for j > 2, by expanding the determinant along the first row and then the first column, we find that
the invariant relation E2n+1(2n+ 1, j) = E2n−1(2n− 1, j − 2).

In conclusion, we have verified that F is true for all the E2n+1 with n > 1.
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2.3. Proof of Theorem 1.3
For the matrix Ω2n, by examining the difference of the ith row minus (i−1)th row and then iterating this operation upwards
for all the rows except for the first one, we get the resulting matrix

Ω′2n =
[
ω′i,j
]

: ω′i,j = ωi,j − ωi−1,j =


xλ1 (x1 − xj), i = 1;

xλi (xi − xj)− xλi−1(xi−1 − xj), i ≤ j;

xλj (xi − xi−1), i > j.

Similarly, by making the column operations leftwards, we transform the matrix Ω′2n into another one

Ω′′2n =
[
ω′′i,j
]

: ω′′i,j = ω′i,j − ω′i,j−1 =



xλ1 (xj−1 − xj), i = 1;

xλ1 (xi − xi−1), j = 1;

0, i = j;

(xλi − xλi−1)(xj − xj−1), i < j;

(xλj − xλj−1)(xi − xi−1), i > j.

Now, extracting the common factor xλ1 from both the first row and the first column, and then xk − xk−1 from the kth row
and the kth column for k from 2 to 2n, we find the following determinant equality

det Ω2n = det Ω′2n = det Ω′′2n = x2λ1

2n∏
k=2

(xk − xk−1)2 det Φ2n(y2, y3, · · · , y2n−1).

The above skew-symmetric matrix Φ2n can be expressed in blocks as

Φ2n(y2, y3, · · · , y2n−1) =
[
φi,j
]

=


0 −1 −1 · · · −1
1
1
...
1

Ψ2n−1

 : φi,j =



−1, i = 1;

1, j = 1;

0, i = j;

−yi, i < j;

yj , i > j;

where the submatrix Ψ2n−1 is defined by

Ψ2n−m =
[
ψi,j

]
m<i,j≤2n : ψi,j =


0, i = j;

−yi, i < j;

yj , i > j;

with yk =
xλk − xλk−1
xk − xk−1

.

Now, by subtracting y2 times the first row and the first column, respectively, from the second row and the second column,
we can further reduce the matrix Φ2n to the following skew-symmetric matrix:

Φ′2n =
[
φ′i,j
]

=



0 −1
1 0

−1 −1 · · · −1
0 0 · · · 0

1 0
1 0
...

...
1 0

Ψ2n−2


: φ′i,j =



0, 1 ≤ i = j ≤ 2n;

−1, i = 1 & j > 1;

1, j = 1 & i > 1;

0, i = 2 & j ≥ 2;

0, j = 2 & i ≥ 2;

−yi, 2 < i < j ≤ 2n;

yj , 2 < j < i ≤ 2n;

where Ψ2n−2 is the skew-symmetric matrix explicitly given by

Ψ2n−2 =
[
ψi,j

]
2<i,j≤2n : ψi,j =


0, i = j;

−yi+2, i < j;

yj+2, i > j.
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Expanding the determinant of Φ′2n along the second row and then the second column, we find the determinant equality

det Φ2n(y2, y3, · · · , y2n−1) = det Φ′2n = det Ψ2n−2.

By pulling out the common factor y3 from the first row and the first column of Ψ2n−2, we derive the recurrence relation
below

det Φ2n(y2, y3, · · · , y2n−1) = y23 × det Φ2n−2(y4, y5, · · · , y2n−1).

Iterating this equation (n− 1) times, we find the closed formula

det Φ2n(y2, y3, · · · , y2n−1) = det Φ2

n−1∏
k=1

y22k+1.

Since det Φ2 = 1, we find finally that

det Ω2n = det Ω
〈1〉
2n = x2λ1

2n∏
k=2

(xk − xk−1)2 det Φ2n(y2, y3, · · · , y2n−1)

= x2λ1

2n∏
k=2

(xk − xk−1)2
n−1∏
k=1

y22k+1

= x2λ1

2n∏
k=2

(xk − xk−1)2
n−1∏
k=1

(xλ2k − xλ2k+1)2

(x2k − x2k+1)2

= x2λ1

n∏
k=1

(x2k − x2k−1)2
n−1∏
k=1

(xλ2k − xλ2k+1)2.
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