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Abstract
Let X ⊂ Pr be a projective embedded variety defined over a field K. Results relating maximum and generic X-rank of points
of Pr(K) and Pr(L) are given, where L is a field containing K. Some of these results are algebraically closed for K and L.
In other results (e.g. on the cactus rank), L is a finite extension of K.
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1. Introduction

In this paper we fix an extension of fields, say K ⊂ L, a projective variety X defined over K and an embedding of X into a
projective space Pr defined over K. Thus Pr(K) ⊂ Pr(L). For each a ∈ Pr(K) there are several different notions of ranks
with respect to X(K) and X(L). In Section 3 we consider the case in which K is not algebraically closed and L is a finite
extension ofK (see Theorem 3.1), and in the rest of the paper we consider the case in which both K and L are algebraically
closed.

Fix algebraically closed fields K ⊂ L. Take F ∈ {K,L}. Let X ⊂ Pr be an integral and non-degenerate variety defined
over K. We also assume that the embedding of X in Pr is defined over K and that X is non-degenerate, i.e. X(K) spans
Pk(K). Thus X(L) spans Pr(L). Set n := dimX. For any scheme or algebraic subset Z ⊂ Pr(K) (respectively, Z ⊂ Pr(L))
defined over K (respectively, over L) let 〈Z〉K ⊆ Pr(K) (respectively, 〈Z〉L ⊆ Pr(L)) denote the linear span of Z over K
(respectively, over L). Note that 〈〈Z〉K〉L = 〈Z〉L for any Z ⊆ Pr(K). For all positive integers t let S(X(F ), t) denote the set
of all subsets of X(F ) with cardinality t. The set S(X(F ), t) is an irreducible quasi-projective variety of dimension nt. For
any o ∈ Pr(F ) theX(F )-rank rX(F )(o) of o is the minimal cardinality of a subset ofX(F ) containing o in its linear span. For
any positive integer t let S(X(F ), o, t) denote the set of all S ∈ S(X(F ), t) such that o ∈ 〈S〉F and o /∈ 〈S′〉F for any S′ ( S.
Each set S(X(F ), o, t) is constructible by a theorem of Chevalley (see [8, Ex. II.3.18]). Note that rX(F )(o) is the minimal
integer t such that S ∈ S(X(F ), t) 6= ∅. Now assume o ∈ Pr(K). SinceK is algebraically closed, it is easy to check (and well-
known) that rX(L)(o) = rX(K)(o) and that S(X(L), o, t) is the constructible L-set associated to S(X(K), o, t) (see Remark
2.1 for more details). In particular S(X(L), o, t) and S(X(K), o, t) have the same number of irreducible components and the
bijection between their irreducible components preserves the dimension of the components. In particular S(X(L), o, t) =

S(X(K), o, t) if and only if either S(X(K), o, t) = ∅ or S(X(K), o, t) is finite. For any positive integer t let σt(X(F )) ⊆ Pr(F )

denote the closure in Pn(F ) of the union of all 〈S〉F , S ∈ S(X(F ), t). Each σt(X(F )) is irreducible and σt(X(L)) is the
L-variety associated to the K-variety σt(X(K)). The first integer a such that σa(X(F )) = Pr(F ) is the same for F = K

and F = L. It is often call the generic X(K)-rank (respectively, generic X(L)), because it is the X(K)-rank (respectively,
X(L)-rank) of a non-empty open subset of Pr(K) (respectively, Pr(L)). For any positive integer t let R(X(F ), t) denote the
set of all o ∈ Pr(F ) such that rX(F ))(o) = t. Each R(X(F ), t) is constructible (Lemma 2.1). See Remark 2.1 for the definition
and construction of the L-associated set of any constructible subset of Pr(K).

It is easy to prove the following result (its proof is given after Lemma 2.1).

Theorem 1.1. For each positive integer t the constructible L-set R(X(L), t) is the L-set associated to R(X(K), t).

The maximum among all X(F )-rank is the largest integer a such that R(X(F ), a) 6= ∅. Thus Theorem 1.1 has the
following corollary.

Corollary 1.1. The maxima of the X(K)-ranks and of the X(L)-ranks are the same.
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Take any o ∈ Pr(F ). The open X(F )-rank orX(F )(o) of o is the minimal integer t > 0 such that for all closed sets
T ( X(F ) there is S ∈ S(X(F ), t) such that o ∈ 〈S〉F and S ∩ T = ∅ (see [1, 9]). Obviously orX(F )(o) ≥ rX(F )(o), but
very often the strict inequality holds. For instance, orX(F )(o) > 1 for all o ∈ Pr(F ). Since X(K) is Zariski dense in X(L),
orX(L)(o) ≤ orX(K)(o) for all o ∈ Pr(K). Let O(X(F ), t) denote the set of all o ∈ Pr(F ) such that orX(F )(t). We also prove
the following results.

Theorem 1.2. We have orX(L)(o) = orX(K)(o) for all o ∈ Pr(K).

Theorem 1.3. The following properties are true:

1. The generic open X(F )-rank is the same for F = K and F = L.

2. The maximum open X(F )-rank is the same for F = K and F = L.

3. Each set O(X(F ), t) is constructible and O(X(L), t) is the L-constructible set associated to O(X(K), t).

2. Proofs of Theorems 1.1, 1.2, and 1.3

Remark 2.1. Let Y (K) be a projective variety defined over K and let E ⊆ Y (K) be a constructible subset. We define the
L-constructible set E(L) ⊆ Y (L) associated to E in the following way. If E is a finite set, then take E(L) := E. Thus we
may assume dimE > 0 and use induction on the integer dimE. Let E be the closure of E in Y (K). Let E = A1 ∪ · · · ∪ Ax

be the irreducible components of E. Set Ei := Ai ∩ E. Each set Ei is constructible. Note that each Ei contains a non-empty
open subset Ui of Ai. Thus the set Ei \ Ui is a constructible set of dimension < dimE. By the inductive assumption we have
defined the constructible sets (Ei \ Ui)(L). Set Ei(L) := Ui(L) ∪ (Ei \ Ui)(L) and E(L) := E1(L) ∪ · · · ∪ Ex(L). It is easy to
check that the definition of E(L) does not depend on the choice of Y (K), we only need a K-variety containing E. Note that
there is a bijection between the irreducible component of E(L) and E (respectively, E(L) \ E(L) and E \ E) which preserves
the dimension.

Observation 2.1. Note that E(L) = E if and only if E is finite. In all other cases E(L) (respectively, E) has the cardinality
of L (respectively, K) and hence E(L) \ E(K) is infinite and its Zariski closure contains all non-isolated points of E(L).

Observation 2.1 is applied to R(X(K), t) and R(X(L), t) by Theorem 1.1 and to all constructible sets used in the proofs
of the results stated in the introduction. By [6, Theorem 3.1] each R(X(F ), t) has positive dimension, except at most when t
is the maximal X(F )-rank.

Lemma 2.1. Each set R(X(F ), t) is constructible.

Proof. SinceR(X(F ), 1) = X(F ), we may assume t > 1 and use induction on the integer t. SinceR(X(F ), t)∩R(X(F ), x) = ∅
for all x < t, it is sufficient to prove that A := ∪1≤x≤tR(X(F ), x) is constructible. The set E is the image of S(X(F ), t) by
the evaluation map.

Proof of Theorem 1.1. Lemma 2.1 says that R(X(K), t) and R(X(L), t) are constructible. Since X(L) is the L-set of X(K),
we may use induction on t to prove the theorem. It is sufficient to mimic the proof of Lemma 2.1.

Proof of Theorem 1.2. For any positive integer t set

X(F )(t) := ∪S∈S(X(F ),t)S ⊆ X(F ).

Since S(X(F ), t) is constructible, a theorem of Chevalley gives thatX(F )(t) is constructible and that for each constructible
set Σ ⊆ S(X(F ), t) the set ev(Σ) := ∪S∈S(X(F ),t)S ⊆ X(F ) is constructible (see [8, Ex. II.3.18, II.3.19]). Fix any o ∈ Pr(F ).

Observation: The open X(F )-rank orX(F )(o) of o is the first positive integer t such that ev(S(X(F ), o, t)) is Zariski dense
in X(F ).

Now assume o ∈ Pr(K). Since K is algebraically closed, the Observation gives orX(L)(o) = orX(K)(o).

Proof of Theorem 1.3. It is sufficient to prove Part (3). The observation in the proof of Theorem 1.2 and a theorem of
Chevalley (see [8, Ex. II.3.18, II.3.19]) first gives that each O(X(F ), t) is constructible and then that O(X(L), t) is the
L-constructible set associated to O(X(K), t).
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3. When K is not algebraically closed

Let K be a field which is not algebraically closed. We fix an inclusion K ⊂ K. Let X ⊂ Pr be an embedding (defined over
K) of the integral projective variety X defined over K. We assume that X(K) is non-degenerate, but we do not assume
that X(K) spans Pr(K) (we allow the case X(K) = ∅). For each a ∈ K let deg(a) be the degree of the minimum polynomial
of a over K, i.e. the dimension of the K-vector space K(a). We fix a system of homogeneous coordinates x0, . . . , xr of Pr(K).
For each a = (a0 : · · · : ar) ∈ Pr(K) with, say, ai 6= 0 the degree deg1(a) of a is the maximum of all integers deg(aj/ai),
0 ≤ j ≤ r, and let deg2(a) be the the degree of the extension K(a0/a1, . . . , ar/ai) of K. The integer deg3(a) is the degree of
the normal closure of K(a0/a1, . . . , ar/ai) as an extension of K. The integers deg1(a), deg2(a) and deg3(a) are well-defined,
i.e. they do not depend upon the choice of the index i such that ai 6= 0. If K is a finite field Fq, then deg2(a) = deg3(a) for all
a, because all finite extensions of Fq are Galois extensions. However, even for a finite field we may have deg1(a) < deg2(a) if
r ≥ 2 (Example 3.1). If K is real closed ( [4]), then K = K(i) and any a has deg1(a) = deg2(a) = deg3(a) ∈ {1, 2}. For K = Q
and any r ≥ 2 there are easy examples with deg1(a) < deg2(a) < deg3(a). For any finite set S ⊂ Pr(K), S 6= ∅ let deg1(S) be
the maximum of all deg1(a), a ∈ S. Let deg2(S) (respectively, deg3(S)) be the degree of the extension (respectively, normal
extension) of K generated by the ratios of the homogeneous coordinates of all a ∈ S.

Take o ∈ Pr(K) and fix i ∈ {1, 2, 3}. Set t := rX(K)(o). Let DRi(X,K, o) denote the minimum of all degi(S) for some
S ∈ S(X(K, t). We say that a = (a0 : · · · : ar) ∈ Pr(K) is separable over K if all ratios aj/ai with ai 6= 0 are separable over
K. Obviously if ai 6= 0 it is sufficient to test all aj/ai. If K is perfect, then every a ∈ Pr(K) is separable over K. The field
K is perfect if either K is a finite field or char(K) = 0.

Example 3.1. Take r = 2,K = Fq and a = (1 : u : v) with u ∈ Fq3 \Fq and v ∈ Fq2 \Fq. We have deg1(a) = 3 and deg2(a) = 6.

The fact that all finite extensions of a finite field are Galois extensions has the following byproduct.

Proposition 3.1. Take K = Fq. Fix o ∈ Pr(K) and set t := rX(K)(o). Assume #S(X(K), o, t) = 1. Then

DR2(X,K, o) ≤ tdeg2(o).

Proof. Set x := deg2(o) and y := DR2(X,K, o). Write {S} = S(X(K), o, t). Consider X over Fqx . Since o ∈ Pr(Fqx) and
S is the unique element of S(X(K), t) computing the X(K)-rank of o, S is invariant for the Galois group of the extension
Fqy/Fqx . Thus y ≤ (#S)x. We have t = #S.

For any field E ⊇ K let ρ(X(E)) denote the maximal integer t such that any subset ofX(F ) with cardinality t is linearly
independent. Of course, if E ⊂ E′, then X(E) ⊆ E′ and hence ρ(X(E′)) ≤ ρ(X(E)). If E is algebraically closed, it is easy
to check that ρ(X(E′)) = ρ(X(E)) for any field E′ ⊃ E.

Remark 3.1. Fix o ∈ Pr(K) and assume 2rX(K) ≤ ρ(X(K)). Then we have

#S
(
X(K), o, rX(K)

)
= 1.

Remark 3.2. Let νd : Pn −→ Pr, r =
(
n+d
n

)
−1, be the d-Veronese embedding of Pn, i.e. the embedding induced The cohomology

of a projective space easily gives that ρ(νd(Pn)(E)) = d + 1 for any field E. In particular we may apply Remark 3.1 to any
o ∈ Pr(K) such that

rX(K)(o) ≤
⌊
d+ 1

2

⌋
.

The proof of Proposition 3.1 gives the following result.

Proposition 3.2. Fix a separable o ∈ Pr(K) and assume #S(X(K), o, rX(K)(o)) = 1. ThenDR3(X,K, o) ≤ rX(K)(o) deg3(o).

By Remark 3.2, Proposition 3.2 may be applied to the d-Veronese embedding of any projective space, but just in a very
restricted range of ranks.

Other notions of ranks for homogeneous polynomials are the slice rank and the Schmidt rank (often called strength).
The recent preprint [10] by Lempert and Ziegler proves stronger versions of all our attempts related to this notion over a
non-algebraically closed field with characteristic 0.

Remark 3.3. Take any field K such that char(K) = 0 and let X ⊂ Pr, r =
(
n+d
n

)
− 1, be the image of the the d-Veronese

embedding of Pn. Fix a ∈ X(K) and o ∈ Pr(K).
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If we do not search for a small degree extension of K on which it is defined all points (or the set) defining the X(K)-
rank, then we may get far better bounds. We recall that the cactus X(K)-rank of a ∈ Pr(K) is the minimal degree of a
zero-dimensional scheme Z ⊂ X(K) whose linear span contains a (see [2,3,5,7]). Fix a finite extension L of K such that a
is defined over K. We call cactus L-rank the minimal degree of a zero-dimensional scheme Z ⊂ X(K) defined over L and
whose linear span contains a. We call strong cactus L-rank the minimal degree of a zero-dimensional scheme Z ⊂ X(K)

such that all connected components of Z are defined over L and the linear span of Z contains a. Obviously every connected
Z defined over L may be use to test the strong cactus rank.

Theorem 3.1. Assume char(K) = 0. Let L be any finite extension of K. Fix an integer d ≥ 3. Let X(K) ⊂ Pr, r =
(
n+d
n

)
− 1,

be the image of the d-Veronese embedding of Pn. If d = 2k + 1 is odd, set N := 2
(
n+k
n

)
. If d = 2k + 2 is even, set

N :=

(
n+ k

n

)
+

(
n+ k + 1

n

)
.

Then every a ∈ Pr(L) has strong cactus L-rank ≤ N .

Proof. Fix b ∈ X(L). The proof of [3, Theorem 3] gives the existence of a zero-dimensional scheme Z ⊂ X(K) defined over
L, spanning a and with Zred = {b}. Since Z is connected, it gives an upper bound for the strict cactus L-rank of a.
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