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Abstract

The purpose of this paper is to investigate the existence and uniqueness of weak solutions for a class of nonlinear degenerate
elliptic problems of the form:

−div [ν1 a(y,∇ϕ) + ν2 b(y, ϕ,∇ϕ)] + ν3 g(y, ϕ) = φ(y),

where ν1, ν2, and ν3 areAp-weight functions and the operators a, b and g are Caratéodory functions that satisfy some certain
conditions, and φ ∈ Lp′(Ω, ν1−p′

1 ). The approach used for attaining the mentioned purpose is based on the Browder-Minty
theorem and the theory of weighted Sobolev spaces.
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1. Introduction

The goal of this paper is to show that there is a unique weak solution in W 1,p
0 (Ω, ν1) (p is not necessarily equal to 2) for the

Dirichlet problem associated with the nonlinear degenerate elliptic equation of the form:−div
[
ν1a(y,∇ϕ) + ν2b(y, ϕ,∇ϕ)

]
+ ν3g(y, ϕ) = φ(y) in Ω,

ϕ(y) = 0 on ∂Ω,
(1)

where Ω is a bounded open set in RN ; ν1, ν2, and ν3 are Ap-weight functions, and the functions b : Ω × R × RN −→ RN ,
a : Ω× RN −→ RN and g : Ω× R −→ R are Caratéodory functions that satisfy some assumptions with φ ∈ Lp′(Ω, ν1−p′

1 ).
The problems of the type (1) have already been studied for the case ν1 ≡ ν2 ≡ ν3 ≡ 1; the existence results have been

reported in [4] (see also [7]) when a(y,∇ϕ) = 0. Also, the degenerate case with different conditions have been investigated
in many papers; for example, see [1–3, 9, 14–23]. Moreover, Cavalheiro established the existence of solution for (1) in [5]
when a(y,∇ϕ) = 0 and in [6] when g(y, ϕ) = 0.

The remaining part of this paper consists of five sections. Definitions and some preliminary results are presented in
the next section. The assumptions on a, b, and g, as well as the notion of weak solutions for (1) are outlined in Section 3.
Section 4 is concerned with the main result and its proof. An example is presented in Section 5.

2. Preliminaries

In this section, we recall some definitions and basic properties of weighted Lebesgue and Sobolev spaces. Detailed expositions
on these concepts can be found in [10,24].

Let ν be a weight function on RN such that ν is measurable and strictly positive a.e. in RN . The space Lp(Ω, ν) is defined
as

Lp(Ω, ν) :=

{
f : Ω −→ R such that ||f ||Lp(Ω,ν) =

(∫
Ω

|f(y)|pν(y)dy

) 1
p

<∞

}
.

We now establish conditions on ν that ensure Lp(Ω, ν) ⊂ L1
loc(Ω).
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Proposition 2.1 (see [12,13]). Let 1 ≤ p <∞ and B ⊂ Ω be a ball. If ν
−1
p−1 ∈ L1

loc(Ω) for p > 1 and

ess sup
y∈B

1

ν(y)
< +∞ for p = 1,

then Lp(Ω, ν) ⊂ L1
loc(Ω).

The class of Ap-weight is a particularly well-understood class of weights. In harmonic analysis, these classes have a
variety of applications (see [24]).

Definition 2.1. For 1 ≤ p <∞, one has ν ∈ Ap-weight, if there exists θ = θ(p, ν) so that(
1

|B|

∫
B

ν(y)dy

)(
1

|B|

∫
B

(ν(y))
−1
p−1 dy

)p−1

6 θ for p > 1, and
(

1

|B|

∫
B

ν(y)dy

)
ess sup

x∈B

1

ν(y)
6 θ for p = 1.

The Ap constant of ν is the infimum over all such constants θ. The set of all Ap-weights is denoted by Ap. Additional
information on Ap-weights can be found in [12,25].

Example 2.1. In this example, we have two parts.

1. ν ∈ Ap ⇔ a ≤ ν(z) ≤ b for a.e. z ∈ RN with a, b > 0.

2. For z ∈ RN , we have ν(z) := |Z|λ ∈ Ap ⇔ −N < λ < N(p− 1).

Definition 2.2. Let Ω ⊂ Rn and ν ∈ Ap. The space W 1,p(Ω, ν) is defined as

W 1,p(Ω, ν) :=

{
u ∈ Lp(Ω, ν) and Diu ∈ Lp(Ω, ν), i = 1, . . . , N

}
.

The norm of u in W 1,p(Ω, ω) is given by

||ϕ||W 1,p(Ω,ν) :=

(∫
Ω

|ϕ(y)|pν(y)dy +

N∑
i=1

∫
Ω

|Diϕ(y)|pν(y)dy

) 1
p

.

In addition, we define W 1,p
0 (Ω, ν) as the closure of C∞0 (Ω) in W 1,p(Ω, ν).

Proposition 2.2 (see [12,13]). The spaces (W 1,p(Ω, ν), ||·||W 1,p(Ω,ν)) and (W 1,p
0 (Ω, ν), ||·||W 1,p(Ω,ν)) are separable and reflexive

Banach spaces. The dual of W 1,p
0 (Ω, ν) is given by

W−1,p′

0 (Ω, ν1−p′) =

{
u0 −

N∑
i=1

Diui :
ui
ν
∈ Lp

′
(Ω, ν), i = 0, . . . , n

}
.

Theorem 2.1 (see [11]). Let ν ∈ Ap and Ω ⊂ RN . If vi −→ v inLp(Ω, ν), then there exists a subsequence (vil) and ψ ∈ Lp(Ω, ν)

such that

(i) uil(z) −→ v(z), il −→∞.

(ii) |vil(z)| 6 ψ(z).

Theorem 2.2 (see [8]). If ν ∈ Ap and Ω ⊂ RN , then there exist BΩ, ε, κ > 0 with 1 6 κ 6 N
N−1 + ε such that

||v||Lκp(Ω,ν) 6 BΩ||∇v||Lp(Ω,ν).

The Browder-Minty theorem is stated as follows

Theorem 2.3 (Browder-Minty theorem, see [26]). Let L : W −→ W∗ where W is a reflexive, real, and separable Banach
space. The following assertions hold:

1. If L is coercive, hemicontinuous and monotone operator onW, the problem Lv = T, T ∈W ∗ admits a solution inW.

2. If L is coercive, hemicontinuous and strictly monotone on W, the problem Lv = T, T ∈ W ∗ admits a unique solution
inW.

8



M. E. Ouaarabi, C. Allalou, and S. Melliani / Contrib. Math. 5 (2022) 7–16 9

3. Hypotheses and the concept of weak solution

Hypotheses
We now present some hypotheses on the problem (1). Suppose that Ω ⊂ RN (N ≥ 2), ν1, ν2 and ν3 are Ap-weights,
am : Ω × RN −→ R, bm : Ω × R × RN −→ R (m = 1, . . . , N ), with a(y, δ) =

(
a1(y, δ), . . . , aN (y, δ)

)
and b(y, µ, δ) =(

b1(y, µ, δ), . . . , bN (y, µ, δ)
)

and g : Ω× R −→ R such that

(H1) am, bm and g are Caratéodory functions;

(H2) there are h1, h2, h3t, h4 ∈ L∞(Ω) and f1 ∈ Lp
′
(Ω, ν1)

(
with 1

p + 1
p′ = 1

)
, f2 ∈ Lq

′
(Ω, ν2) and f3 ∈ Ls

′
(Ω, ν3) such that

|a(y, δ)| ≤ f1(y) + h1(y)|δ|p−1,

|b(y, µ, δ)| ≤ f2(y) + h2(y)|µ|q−1 + h3(y)|δ|q−1,

|g(y, µ)| ≤ f3(y) + h4(y)|µ|s−1,

where (µ, δ) ∈ R× Rn;

(H3) there exits λ > 0 such that 〈
a(y, δ)− a(y, δ

′
), δ − δ

′
〉
> λ|δ − δ

′
|p,〈

b(y, µ, δ)− b(y, µ
′
, δ
′
), δ − δ

′
〉
> 0,(

g(y, µ)− g(y, µ
′
)
)(
µ− µ

′
)
> 0,

where µ, µ′ ∈ R and δ, δ′ ∈ Rn with µ 6= µ
′ and δ 6= δ

′ ;

(H4) there exist κ1, κ2, κ3 > 0 such that 〈a(y, δ), δ〉 > κ1|δ|p, 〈b(y, µ, δ), δ〉 > κ2|δ|q + κ3|µ|q, g(y, µ)µ > 0.

The concept of weak solution
The definition of a weak solution of (1) is stated as follows.

Definition 3.1. A function ϕ ∈W 1,p
0 (Ω, ν1) is a weak solution of (1) if for any v ∈W 1,p

0 (Ω, ν1) it holds that∫
Ω

〈a(y,∇ϕ),∇v〉ν1dy +

∫
Ω

〈b(y, ϕ,∇ϕ),∇v〉ν2dy +

∫
Ω

g(y, ϕ)vν3dy =

∫
Ω

φvdy.

Remark 3.1. For all ν1, ν2, ν3 ∈ Ap the following statements hold.

(i) If 1 < q < p <∞ and ν2
ν1
∈ Lk1(Ω, ν1) where k1 = p

p−q , then ||ϕ||Lq(Ω,ν2) 6 ϑp,q||ϕ||Lp(Ω,ν1) with ϑp,q = ||ν2ν1 ||
1/q

Lk1 (Ω,ν1)
.

(ii) If 1 < s < p <∞ and ν3
ν1
∈ Lk2(Ω, ν1) where k2 = p

p−s , then ||ϕ||Ls(Ω,ν3) 6 ϑp,s||ϕ||Lp(Ω,ν1) with ϑp,s = ||ν3ν1 ||
1/s

Lk2 (Ω,ν1)
.

4. Main general result

The next theorem presents the paper’s main result.

Theorem 4.1. If the conditions (H1)–(H4) hold, then the problem (1) admits a unique solution in W 1,p
0 (Ω, ν1).

Proof. We reduce the problem (1) to a new one, governed by the operator problem Ψϕ = Υ, and we apply Theorem 2.3. We
define

Φ : W 1,p
0 (Ω, ν1)×W 1,p

0 (Ω, ν1) −→ R

and
Υ : W 1,p

0 (Ω, ν1) −→ R,

where Φ and Υ are specified in the following paragraphs.
Hence

ϕ ∈W 1,p
0 (Ω, ν1) is a weak solution of (1) ⇔ Φ(ϕ, v) = Υ(v) for all v ∈W 1,p

0 (Ω, ν1).

The theorem is proved in four steps.
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Step 1.
We utilize some tools and the condition (H2) to show the existence of the operator Ψ and that the problem (1) is identical
to the operator equation Ψϕ = Υ. By employing the Hölder’s inequality and Theorem 2.2, we get

|Υ(ϕ)| ≤
∫

Ω

|φ|
ν1
|ϕ|ν1 dy

≤ ||φ/ν1||Lp′ (Ω,ν1)||ϕ||Lp(Ω,ν1)

≤ CΩ||φ/ν1||Lp′ (Ω,ν1)||ϕ||W 1,p
0 (Ω,ν1).

Since φ ∈ Lp′(Ω, ν1−p′
1 ), then Υ ∈W−1,p′

0 (Ω, ν1−p′
1 ).

The operator Φ can be written as
Φ(ϕ, v) = Φ1(ϕ, v) + Φ2(ϕ, v) + Φ3(ϕ, v),

where
Φ1 : W 1,p

0 (Ω, ν1)×W 1,p
0 (Ω, ν1) −→ R

Φ1(ϕ, v) =

∫
Ω

〈a(y,∇ϕ),∇v〉ν1dy,

Φ2 : W 1,p
0 (Ω, ν1)×W 1,p

0 (Ω, ν1) −→ R

Φ2(ϕ, v) =

∫
Ω

〈b(y, ϕ,∇ϕ),∇v〉ν2dy,

Φ3 : W 1,p
0 (Ω, ν1)×W 1,p

0 (Ω, ν1) −→ R

Φ3(ϕ, v) =

∫
Ω

g(y, ϕ)vν3dy.

Then, we have
|Φ(ϕ, v)| ≤ |Φ1(ϕ, v)|+ |Φ2(ϕ, v)|+ |Φ3(ϕ, v)|. (2)

Also, by utilizing Hölder inequality, Remark 3.1(i), (H2) and Theorem 2.2, we have

|Φ1(ϕ, v)| ≤
∫

Ω

|a(y,∇ϕ)||∇v|ν1dy

≤
∫

Ω

(
f1 + h1|∇ϕ|p−1

)
|∇v|ν1dy

≤ ||f1||Lp′ (Ω,ν1)||∇v||Lp(Ω,ν1) + ||h1||L∞(Ω)||∇ϕ||p−1
Lp(Ω,ν1)||∇v||Lp(Ω,ν1)

≤
(
||f1||Lp′ (Ω,ν1) + ||h1||L∞(Ω)||ϕ||p−1

W 1,p
0 (Ω,ν1)

)
||v||W 1,p

0 (Ω,ν1),

and

|Φ2(ϕ, v)| ≤
∫

Ω

|b(y, ϕ,∇ϕ)||∇v|ν2dy

≤
∫

Ω

(
f2 + h2|ϕ|q−1 + h3|∇ϕ|q−1

)
|∇v|ν2dy

≤ ||f2||Lq′ (Ω,ν2)||∇v||Lq(Ω,ν2) + ||h2||L∞(Ω)||ϕ||q−1
Lq(Ω,ν2)||∇v||Lq(Ω,ν2) + ||h3||L∞(Ω)||∇ϕ||q−1

Lq(Ω,ν2)||∇v||Lq(Ω,ν2)

≤
[
ϑp,q||f2||Lq′ (Ω,ν2) + ϑqp,q

(
Cq−1

Ω ||h2||L∞(Ω) + ||h3||L∞(Ω)

)
||ϕ||q−1

W 1,p
0 (Ω,ν1)

]
||v||W 1,p

0 (Ω,ν1).

Similarly, by using Hölder inequality, Theorem 2.2, (H2) and Remark 3.1, we get

|Φ3(ϕ, v)| ≤
∫

Ω

|g(y, ϕ)||v|ν3dy

≤
[
CΩϑp,s||f3||Ls′ (Ω,ν3) + ϑsp,sC

s
Ω||h4||L∞(Ω)||ϕ||s−1

W 1,p
0 (Ω,ν1)

]
||v||W 1,p

0 (Ω,ν1).

Therefore, we have

|Φ(ϕ, v)| ≤
[
||f1||Lp′ (Ω,ν1) + ||h1||L∞(Ω)||ϕ||p−1

W 1,p
0 (Ω,ν1)

+ CΩϑp,s||f3||Ls′ (Ω,ν3) + ϑp,q||f2||Lq′ (Ω,ν2)

+ ϑsp,sC
s
Ω||h4||L∞(Ω)||ϕ||s−1

W 1,p
0 (Ω,ν1)

+ ϑqp,q

(
Cq−1

Ω ||h2||L∞(Ω) + ||h3||L∞(Ω)

)
||ϕ||q−1

W 1,p
0 (Ω,ν1)

]
‖v‖W 1,p

0 (Ω,ν1).

10
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Thus, Φ(ϕ, .) is linear and continuous for every ϕ ∈ W 1,p
0 (Ω, ν1). As a result, there is a linear and continuous operator on

W 1,p
0 (Ω, ν1) labeled by Ψ that provides 〈Ψϕ, v〉 = Φ(ϕ, v) for all ϕ, v ∈W 1,p

0 (Ω, ν1). We also have

‖Ψϕ‖∗ ≤ ||f1||Lp′ (Ω,ν1) + ||h1||L∞(Ω)||ϕ||p−1

W 1,p
0 (Ω,ν1)

+ CΩϑp,s||f3||Ls′ (Ω,ν3) + ϑp,q||f2||Lq′ (Ω,ν2)

+ ϑsp,sC
s
Ω||h4||L∞(Ω)||ϕ||s−1

W 1,p
0 (Ω,ν1)

+ ϑqp,q

(
Cq−1

Ω ||h2||L∞(Ω) + ||h3||L∞(Ω)

)
||ϕ||q−1

W 1,p
0 (Ω,ν1)

,

where
‖Ψϕ‖∗ := sup

{
|〈Ψϕ, v〉| = |Φ(ϕ, v)| : v ∈W 1,p

0 (Ω, ν1), ‖v‖W 1,p
0 (Ω,ν1) = 1

}
is the norm in W−1,p′

0 (Ω, ν1−p′
1 ). Therefore, we get the operator

Ψ : W 1,p
0 (Ω, ν1) −→W−1,p′

0 (Ω, ν1−p′
1 )

ϕ 7−→ Ψϕ.

Therefore, the problem (1) is equivalent to the operator equation

Ψϕ = Υ, ϕ ∈W 1,p
0 (Ω, ν1).

Step 2.
In this step, we demonstrate that Ψ is strictly monotonic. For all ϕ1, ϕ2 ∈W 1,p

0 (Ω, ν1) with ϕ1 6= ϕ2, we have

〈Ψϕ1 − Ψϕ2, ϕ1 − ϕ2〉 = Φ(ϕ1, ϕ1 − ϕ2)− Φ(ϕ2, ϕ1 − ϕ2)

=

∫
Ω

〈a(y,∇ϕ1),∇(ϕ1 − ϕ2)〉ν1dy −
∫

Ω

〈a(y,∇ϕ2),∇(ϕ1 − ϕ2)〉ν1dy

+

∫
Ω

〈b(y, ϕ1,∇ϕ1),∇(ϕ1 − ϕ2)〉ν2dy −
∫

Ω

〈b(y, ϕ2,∇ϕ2),∇(ϕ1 − ϕ2)〉ν2dy

+

∫
Ω

g(y, ϕ1)(ϕ1 − ϕ2)ν3dy −
∫

Ω

g(y, ϕ2)(ϕ1 − ϕ2)ν3dy

=

∫
Ω

〈a(y,∇ϕ1)− a(y,∇ϕ2),∇(ϕ1 − ϕ2)〉ν1dy +

∫
Ω

(
g(y, ϕ1)− g(y, ϕ2)

)(
ϕ1 − ϕ2

)
ν3dy

+

∫
Ω

〈b(y, ϕ1,∇ϕ1)− b(y, ϕ2,∇ϕ2),∇(ϕ1 − ϕ2)〉ν2dy.

By usung (H3), we obtain

〈Ψϕ1 − Ψϕ2, ϕ1 − ϕ2〉 ≥
∫

Ω

λ|∇(ϕ1 − ϕ2)|pν1dy ≥ λ‖∇(ϕ1 − ϕ2)‖pLp(Ω,ν1),

and by Theorem 2.2, we conclude that

〈Ψϕ1 − Ψϕ2, ϕ1 − ϕ2〉 ≥
λ

(CpΩ + 1)
‖ϕ1 − ϕ2‖pW 1,p

0 (Ω,ν1)
,

which implies that Ψ is strictly monotone.

Step 3.
This step establishes the coerciveness of the operator Ψ . For all ϕ ∈W 1,p

0 (Ω, ν1), we get

〈Ψϕ, ϕ〉 = Φ(ϕ,ϕ)

=

∫
Ω

〈a(y,∇ϕ),∇ϕ〉ν1dy +

∫
Ω

〈b(y, ϕ,∇ϕ),∇ϕ〉ν2dy +

∫
Ω

g(y, ϕ)u ν3dy.

From Theorem 2.2 and (H4), it follows that

〈Ψϕ, ϕ〉 ≥ κ1

∫
Ω

|∇ϕ|pν1dy + κ2

∫
Ω

|∇ϕ|qν2dy + κ3

∫
Ω

|ϕ|qν2dy

≥ κ1

∫
Ω

|∇ϕ|pν1dy +min(κ2, κ3)

[∫
Ω

|∇ϕ|qν2dy +

∫
Ω

|ϕ|qν2dy

]
= κ1‖∇ϕ‖pLp(Ω,ν1) +min(κ2, κ3)‖ϕ‖q

W
1,q
0 (Ω,ν2)

≥ κ1‖∇ϕ‖pLp(Ω,ν1)

≥ κ1

(CpΩ + 1)
‖ϕ‖p

W
1,p
0 (Ω,ν1)

.

11
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Hence, we obtain
〈Ψϕ, ϕ〉

‖ϕ‖W 1,p
0 (Ω,ν1)

≥ κ1

(CpΩ + 1)
‖ϕ‖p−1

W 1,p
0 (Ω,ν1)

.

Therefore, as p > 1, we conclude that

〈Ψϕ, ϕ〉
‖ϕ‖W 1,p

0 (Ω,ν1)

−→ +∞ as ‖ϕ‖W 1,p
0 (Ω,ν1) −→ +∞,

which means that Ψ is coercive.

Step 4.
In this step, we show that Ψ is continuous. To do this, consider ϕk −→ ϕ in W 1,p

0 (Ω, ν1) as k −→ ∞. Then ϕk −→ ϕ

in Lp(Ω, ν1), ∇ϕk −→ ∇ϕ in (Lp(Ω, ν1))
n. Therefore, according to Theorem 2.1, there exist (ϕki), ψ1 ∈ Lp(Ω, ν1) and

ψ2 ∈ Lp(Ω, ν1) in such a way that
ϕki(y) −→ ϕ(y), in Ω

|ϕki(y)| ≤ ψ1(y), in Ω

∇ϕki(y) −→ ∇ϕ(y), in Ω

|∇ϕki(y)| ≤ ψ2(y), in Ω.

(3)

We are going to establish that Ψϕk −→ Ψϕ in W−1,p′

0 (Ω, ν1−p′
1 ). It is proved in three steps.

Step 4.1.
Let us define the operator Bj : W 1,p

0 (Ω, ν1) −→ Lp
′
(Ω, ν1) by (Bjϕ)(y) = aj(y,∇ϕ(y)). We now show that Bjϕk −→ Bjϕ in

Lp
′
(Ω, ν1).

(i) For all ϕ ∈W 1,p
0 (Ω, ν1), by Theorem 2.2 and (H2), we have

‖Bjϕ‖p
′

Lp′ (Ω,ν1)
=

∫
Ω

|Bjϕ(y)|p
′
ν1dy =

∫
Ω

|aj(y,∇ϕ)|p
′
ν1dy

≤
∫

Ω

(
f1 + h1|∇ϕ|p−1

)p′
ν1dy

≤ Cp

∫
Ω

(
fp
′

1 + hp
′

1 |∇ϕ|p
)
ν1dy

≤ Cp

[
‖f1‖p

′

Lp′ (Ω,ν1)
+ ‖h1‖p

′

L∞(Ω)‖∇ϕ‖
p
Lp(Ω,ν1)

]
≤ Cp

[
‖f1‖p

′

Lp′ (Ω,ν1)
+ ‖h1‖p

′

L∞(Ω)‖u‖
p

W 1,p
0 (Ω,ν1)

]
.

(ii) By (H2) and (3), we obtain

‖Bjϕki −Bjϕ‖
p′

Lp′ (Ω,ν1)
=

∫
Ω

|Bjϕki(y)−Bjϕ(y)|p
′
ν1dy

≤
∫

Ω

(
|aj(y,∇ϕki)|+ |aj(y,∇ϕ)|

)p′
ν1dy

≤ Cp

∫
Ω

(
|aj(y,∇ϕki)|p

′
+ |aj(y,∇ϕ)|p

′
)
ν1dy

≤ Cp

∫
Ω

[(
f1 + h1|∇ϕki |p−1

)p′
+
(
f1 + h1|∇ϕ|p−1

)p′]
ν1dy

≤ Cp

∫
Ω

[(
f1 + h1ψ

p−1
2

)p′
+
(
f1 + h1ψ

p−1
2

)p′]
ν1dy

≤ 2CpC
′

p

∫
Ω

(
fp
′

1 + hp
′

1 ψ
p
2

)
ν1dy

≤ 2CpC
′

p

[
‖f1‖p

′

Lp′ (Ω,ν1)
+ ‖h1‖p

′

L∞(Ω)‖ψ2‖pLp(Ω,ν1)

]
.

12
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As k −→∞, by using (H1), we get

Bjϕki(y) = aj(y,∇ϕki(y)) −→ aj(y,∇ϕ(y)) = Bjϕ(y), for almost all x ∈ Ω.

Consequently, by Lebesgue’s theorem, we have

‖Bjϕki −Bjϕ‖Lp′ (Ω,ν1) −→ 0⇔ Bjϕki −→ Bjϕ in Lp
′
(Ω, ν1).

Finally, considering the principle of convergence in Banach spaces, we conclude

Bjϕk −→ Bjϕ in Lp
′
(Ω, ν1). (4)

Step 4.2.
Define Gj : W 1,p

0 (Ω, ν1) −→ Lq
′
(Ω, ν2) by (Gjϕ)(y) = bj(y, ϕ(y),∇ϕ(y)). We have

Gjϕk −→ Gjϕ in Lq
′
(Ω, ν2). (5)

(i) For all ϕ ∈W 1,p
0 (Ω, ν1), by Remark 3.1(i), (H2) and Theorem 2.2, we get

‖Gjϕ‖q
′

Lq′ (Ω,ν2)
=

∫
Ω

|bj(y, ϕ,∇ϕ)|q
′
ν2dy

≤
∫

Ω

(
f2 + h2|ϕ|q−1 + h3|∇ϕ|q−1

)q′
ν2dy

≤ Cq

∫
Ω

[
fq
′

2 + hq
′

2 |ϕ|q + hq
′

3 |∇ϕ|q
]
ν2dy

≤ Cq

[
‖f2‖q

′

Lq′ (Ω,ν2)
+ ‖h2‖q

′

L∞(Ω)‖ϕ‖
q
Lq(Ω,ν2) + ‖h3‖q

′

L∞(Ω)‖∇ϕ‖
q
Lq(Ω,ν2)

]
≤ Cq

[
‖f2‖q

′

Lq′ (Ω,ν2)
+ Cqp,q

(
CqΩ‖h2‖q

′

L∞(Ω) + ‖h3‖q
′

L∞(Ω)

)
‖u‖q

W 1,p
0 (Ω,ν1)

]
.

(ii) By using Remark 3.1(i), (H2), and the similar reasoning as employed in Step 4.1(ii), we get

Gjϕk −→ Gjϕ in Lq
′
(Ω, ν2). (6)

Step 4.3.
We define the operator H : W 1,p

0 (Ω, ν1) −→ Ls
′
(Ω, ν3) by (Hϕ)(y) = g(y, ϕ(y)). In this step, we show that Hϕk −→ Hϕ in

Ls
′
(Ω, ν3).

(i) For all ϕ ∈W 1,p
0 (Ω, ν1), by using Remark 3.1(ii) and (H2), we get

‖Hϕ‖s′
Ls′ (Ω,ν3)

=

∫
Ω

|g(y, ϕ)|s
′
ν3dy

≤
∫

Ω

(
f3 + h4|ϕ|s−1

)s′
ν3dy

≤ Cs

∫
Ω

(
fs
′

3 + hs
′

4 |ϕ|s
)
ν3dy

≤ Cs

[
‖f3‖s

′

Ls′ (Ω,ν3)
+ ‖h4‖p

′

L∞(Ω)‖ϕ‖
s
Ls(Ω,ν3)

]
≤ Cs

[
‖f3‖s

′

Ls′ (Ω,ν3)
+ Csp,s‖h4‖p

′

L∞(Ω)‖ϕ‖
s
Lp(Ω,ν1)

]
≤ Cs

[
‖f3‖Ls′ (Ω,ν1) + Csp,sC

s
Ω‖h4‖s

′

L∞(Ω)‖ϕ‖
s
W 1,p

0 (Ω,ν1)

]
.

13
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(ii) From Remark 3.1(ii) and (H2), it follows that

‖Hϕki −Hϕ‖s
′

Ls′ (Ω,ν3)
=

∫
Ω

|Hϕki(y)−Hϕ(y)|p
′
ν3dy

≤
∫

Ω

(
|g(y, ϕki)|+ |g(y, ϕ)|

)s′
ν3dy

≤ Cs

∫
Ω

(
|g(y, ϕki)|s

′
+ |g(y, ϕ)|s

′
)
ν3dy

≤ Cs

∫
Ω

[(
f3 + h4|ϕki |s−1

)s′
+
(
f3 + h4|ϕ|s−1

)s′]
ν3dy

≤ Cs

∫
Ω

[(
f3 + h4|ψ1|s−1

)s′
+
(
f3 + h4ψ

s−1
1

)s′]
ν3dy

≤ 2CsC
′
s

[
‖f3‖s

′

Ls′ (Ω,ν3)
+ ‖h4‖s

′

L∞(Ω)‖ψ1‖sLs(Ω,ν3)

]
≤ 2CsC

′
s

[
‖f3‖s

′

Ls′ (Ω,ν3)
+ ϑsp,s‖h4‖s

′

L∞(Ω)‖ψ1‖sLp(Ω,ν1)

]
.

As k −→∞, by using (H1), we obtain

Hϕki(y) = g(y, ϕki(y)) −→ g(y, u(y)) = Hϕ(y), a.e. x ∈ Ω.

Consequently, by means of Lebesgue’s theorem, we have

‖Hϕki −Hϕ‖Ls′ (Ω,ν3) −→ 0,

that is,
Hϕki −→ Hϕ in Ls

′
(Ω, ν3).

Finally, considering the principle of convergence in Banach spaces, we conclude that

Hϕk −→ Hϕ in Ls
′
(Ω, ν3). (7)

At last, by considering v ∈W 1,p
0 (Ω, ν1) and with the help of Theorem 2.2, Hölder inequality, and Remark 3.1, we arrive at

|Φ1(ϕk, v)− Φ1(ϕ, v)| =

∣∣∣∣∫
Ω

〈a(y,∇ϕk)− a(y,∇ϕ),∇v〉ν1dy

∣∣∣∣
≤

n∑
j=1

∫
Ω

|aj(y,∇ϕk)− aj(y,∇ϕ)||Djv|ν1dy

=

n∑
j=1

∫
Ω

|Bjϕk −Bjϕ||Djv|ν1dy

≤
n∑
j=1

‖Bjϕk −Bjϕ‖Lp′ (Ω,ν1)‖Djv‖Lp(Ω,ν1)

≤

 n∑
j=1

‖Bjϕk −Bjϕ‖Lp′ (Ω,ν1)

 ‖v‖W 1,p
0 (Ω,ν1),
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|Φ2(ϕk, v)− Φ2(ϕ, v)| =

∣∣∣∣∫
Ω

〈b(y, ϕk,∇ϕk)− b(y, ϕ,∇ϕ),∇v〉ν2dy

∣∣∣∣
≤

n∑
j=1

∫
Ω

|bj(y, ϕk,∇ϕk)− bj(y, ϕ,∇ϕ)||Djv|ν2dy

=

n∑
j=1

∫
Ω

|Gjϕk −Gjϕ||Djv|ν2dy

≤

 n∑
j=1

‖Gjϕk −Gjϕ‖Lq′ (Ω,ν2)

 ‖∇v‖Lq(Ω,ν2)

≤ ϑp,q

 n∑
j=1

‖Gjϕk −Gjϕ‖Lq′ (Ω,ν2)

 ‖∇v‖Lp(Ω,ν1)

≤ ϑp,q

 n∑
j=1

‖Gjϕk −Gjϕ‖Lq′ (Ω,ν2)

 ‖v‖W 1,p
0 (Ω,ν1),

|Φ3(ϕk, v)− Φ3(ϕ, v)| ≤
∫

Ω

|g(y, ϕk)− g(y, ϕ)||v|ν3dy

=

∫
Ω

|Hϕk −Hϕ||v|ν3dy

≤ ‖Hϕk −Hϕ‖Ls′ (Ω,ν3)‖v‖Ls(Ω,ν3)

≤ ϑp,s‖Hϕk −Hϕ‖Ls′ (Ω,ν3)‖v‖Lp(Ω,ν1)

≤ ϑp,sCΩ‖Hϕk −Hϕ‖Ls′ (Ω,ν3)‖v‖W 1,p
0 (Ω,ν1).

Hence, for all v ∈W 1,p
0 (Ω, ν1), we have

|Φ(ϕk, v)− Φ(ϕ, v)| ≤ |Φ1(ϕk, v)− Φ1(ϕ, v)|+ |Φ2(ϕk, v)− Φ2(ϕ, v)|+ |Φ3(ϕk, v)− Φ3(ϕ, v)|

≤
[ n∑
j=1

(
‖Bjϕk −Bjϕ‖Lp′ (Ω,ν1) + ϑp,q‖Gjϕk −Gjϕ‖Lq′ (Ω,ν2)

)
+ ϑp,sCΩ‖Hϕk −Hϕ‖Ls′ (Ω,ν3)

]
‖v‖W 1,p

0 (Ω,ν1),

and consequently, we get

‖Ψϕk − Ψϕ‖∗ ≤
n∑
j=1

(
‖Bjϕk −Bjϕ‖Lp′ (Ω,ν1) + ϑp,q‖Gjϕk −Gjϕ‖Lq′ (Ω,ν2)

)
+ ϑp,sCΩ‖Hϕk −Hϕ‖Ls′ (Ω,ν3).

Combining (4), (6) and (7), we deduce that

‖Ψϕk − Ψϕ‖∗ −→ 0 as m −→∞,

that is, Ψϕk −→ Ψϕ in W−1,p′

0 (Ω, ν1−p′
1 ), which implies that Ψ is continuous.

We have now proved that Ψ is strictly monotone, coercive and hemicontinuous, and Υ ∈ W−1,p′

0 (Ω, ν1−p′
1 ). Thus, we have

verified all the conditions of Theorem 2.3. As a result, from Theorem 2.3, it follows that the operator equation Ψϕ = Υ

admits the unique weak solution ϕ ∈ W 1,p
0 (Ω, ν1) and it also follows that u is the unique weak solution for (1). This

completes the proof of Theorem 4.1.

5. Example

Set Ω = {(y, z) ∈ R2 : x2 + y2 < 1}, and let ν1(y, z) =
(
y2 + z2

)−1/2, ν2(y, z) =
(
y2 + z2

)−1/3 and ν3(y, z) =
(
y2 + z2

)−1 (note
that ν1, ν2, ν3 ∈ A4, p = 4, q = 3 and s = 2

)
, and we define b : Ω× R× R2 −→ R2, a : Ω× R2 −→ R2 and g : Ω× R −→ R by

a
(

(y, z), δ
)

= h1(y, z)|δ|3sgn(δ),
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b
(

(y, z), µ, δ
)

= |δ|2sgn(δ),

g
(

(y, z), µ
)

= h4(y, z)|µ|sgn(µ),

with h1(y, z) = 2e(y2+z2) and h4(y, z) = 2− cos2(yz). Let us look at the problemAϕ(y, z) = cos(y + z) in Ω,

ϕ(y, z) = 0 on ∂Ω,
(8)

where

Aϕ(y, z) = −div
[
ν1a
(

(y, z),∇ϕ(y, z)
)

+ ν2b
(

(y, z), ϕ(y, z),∇ϕ(y, z)
)]

+ ν3g
(

(y, z), ϕ(y, z)
)
.

From Theorem 4.1, it follows that the problem (8) admits the unique weak solution in W 1,4
0 (Ω, ν1).
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[20] M. A. Ragusa, Local Hölder regularity for solutions of elliptic systems, Duke Math. J. 113 (2002) 385–397.
[21] M. A. Ragusa, Parabolic Herz spaces and their applications, Appl. Math. Lett. 25 (2012) 1270–1273.
[22] M. A. Ragusa, A. Razani, Weak solutions for a system of quasilinear elliptic equations, Contrib. Math. 1 (2020) 11–26.
[23] M. A. Ragusa, A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal. 9 (2020)

710–728.
[24] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, Orlando, 1986.
[25] B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer-Verlag, Berlin, 2000.
[26] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. II/B, Springer-Verlag, Berlin, 1990.

16


	Introduction
	Preliminaries
	Hypotheses and the concept of weak solution
	Main general result
	Example

