Research Article

On the existence and uniqueness of solutions for a class of nonlinear degenerate elliptic problems via Browder-Minty theorem*

Mohamed El Ouaarabi ${ }^{\dagger}$, Chakir Allalou, Said Melliani
Applied Mathematics and Scientific Computing Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco

(Received: 1 January 2022. Received in revised form: 25 February 2022. Accepted: 11 March 2022. Published online: 15 March 2022.)
(C) 2022 the authors. This is an open access article under the CC BY (International 4.0) license (www. creativecommons.org/licenses/by/4.0/).

Abstract

The purpose of this paper is to investigate the existence and uniqueness of weak solutions for a class of nonlinear degenerate elliptic problems of the form: $$
-\operatorname{div}\left[\nu_{1} a(y, \nabla \varphi)+\nu_{2} b(y, \varphi, \nabla \varphi)\right]+\nu_{3} g(y, \varphi)=\phi(y),
$$ where ν_{1}, ν_{2}, and ν_{3} are A_{p}-weight functions and the operators a, b and g are Caratéodory functions that satisfy some certain conditions, and $\phi \in L^{p^{\prime}}\left(\Omega, \nu_{1}^{1-p^{\prime}}\right)$. The approach used for attaining the mentioned purpose is based on the Browder-Minty theorem and the theory of weighted Sobolev spaces.

Keywords: nonlinear degenerate elliptic problems; Browder-Minty theorem; weighted Sobolev spaces; weak solution.
2020 Mathematics Subject Classification: 35J60, 35J66, 35D30.

1. Introduction

The goal of this paper is to show that there is a unique weak solution in $W_{0}^{1, p}\left(\Omega, \nu_{1}\right)$ (p is not necessarily equal to 2) for the Dirichlet problem associated with the nonlinear degenerate elliptic equation of the form:

$$
\begin{cases}-\operatorname{div}\left[\nu_{1} a(y, \nabla \varphi)+\nu_{2} b(y, \varphi, \nabla \varphi)\right]+\nu_{3} g(y, \varphi)=\phi(y) & \text { in } \Omega \tag{1}\\ \varphi(y)=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded open set in $\mathbb{R}^{N} ; \nu_{1}, \nu_{2}$, and ν_{3} are A_{p}-weight functions, and the functions $b: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \longrightarrow \mathbb{R}^{N}$, $a: \Omega \times \mathbb{R}^{N} \longrightarrow \mathbb{R}^{N}$ and $g: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ are Caratéodory functions that satisfy some assumptions with $\phi \in L^{p^{\prime}}\left(\Omega, \nu_{1}^{1-p^{\prime}}\right)$.

The problems of the type (1) have already been studied for the case $\nu_{1} \equiv \nu_{2} \equiv \nu_{3} \equiv 1$; the existence results have been reported in [4] (see also [7]) when $a(y, \nabla \varphi)=0$. Also, the degenerate case with different conditions have been investigated in many papers; for example, see [1-3, 9, 14-23]. Moreover, Cavalheiro established the existence of solution for (1) in [5] when $a(y, \nabla \varphi)=0$ and in [6] when $g(y, \varphi)=0$.

The remaining part of this paper consists of five sections. Definitions and some preliminary results are presented in the next section. The assumptions on a, b, and g, as well as the notion of weak solutions for (1) are outlined in Section 3. Section 4 is concerned with the main result and its proof. An example is presented in Section 5.

2. Preliminaries

In this section, we recall some definitions and basic properties of weighted Lebesgue and Sobolev spaces. Detailed expositions on these concepts can be found in [10,24].

Let ν be a weight function on \mathbb{R}^{N} such that ν is measurable and strictly positive a.e. in \mathbb{R}^{N}. The space $L^{p}(\Omega, \nu)$ is defined as

$$
L^{p}(\Omega, \nu):=\left\{f: \Omega \longrightarrow \mathbb{R} \text { such that }\|f\|_{L^{p}(\Omega, \nu)}=\left(\int_{\Omega}|f(y)|^{p} \nu(y) d y\right)^{\frac{1}{p}}<\infty\right\}
$$

We now establish conditions on ν that ensure $L^{p}(\Omega, \nu) \subset L_{l o c}^{1}(\Omega)$.

[^0]Proposition 2.1 (see [12,13]). Let $1 \leq p<\infty$ and $B \subset \Omega$ be a ball. If $\nu^{\frac{-1}{p-1}} \in L_{\text {loc }}^{1}(\Omega)$ for $p>1$ and

$$
\text { ess } \sup _{y \in B} \frac{1}{\nu(y)}<+\infty \text { for } p=1 \text {, }
$$

then $L^{p}(\Omega, \nu) \subset L_{\text {loc }}^{1}(\Omega)$.
The class of A_{p}-weight is a particularly well-understood class of weights. In harmonic analysis, these classes have a variety of applications (see [24]).

Definition 2.1. For $1 \leq p<\infty$, one has $\nu \in A_{p}$-weight, if there exists $\theta=\theta(p, \nu)$ so that

$$
\left(\frac{1}{|B|} \int_{B} \nu(y) d y\right)\left(\frac{1}{|B|} \int_{B}(\nu(y))^{\frac{-1}{p-1}} d y\right)^{p-1} \leqslant \theta \text { for } p>1 \text {, and }\left(\frac{1}{|B|} \int_{B} \nu(y) d y\right) \text { ess } \sup _{x \in B} \frac{1}{\nu(y)} \leqslant \theta \text { for } p=1 \text {. }
$$

The A_{p} constant of ν is the infimum over all such constants θ. The set of all A_{p}-weights is denoted by A_{p}. Additional information on A_{p}-weights can be found in [12,25].

Example 2.1. In this example, we have two parts.

1. $\nu \in A_{p} \Leftrightarrow a \leq \nu(z) \leq b$ for a.e. $z \in \mathbb{R}^{N}$ with $a, b>0$.
2. For $z \in \mathbb{R}^{N}$, we have $\nu(z):=|Z|^{\lambda} \in A_{p} \Leftrightarrow-N<\lambda<N(p-1)$.

Definition 2.2. Let $\Omega \subset \mathbb{R}^{n}$ and $\nu \in A_{p}$. The space $W^{1, p}(\Omega, \nu)$ is defined as

$$
W^{1, p}(\Omega, \nu):=\left\{u \in L^{p}(\Omega, \nu) \text { and } D_{i} u \in L^{p}(\Omega, \nu), i=1, \ldots, N\right\} .
$$

The norm of u in $W^{1, p}(\Omega, \omega)$ is given by

$$
\|\varphi\|_{W^{1, p}(\Omega, \nu)}:=\left(\int_{\Omega}|\varphi(y)|^{p} \nu(y) d y+\sum_{i=1}^{N} \int_{\Omega}\left|D_{i} \varphi(y)\right|^{p} \nu(y) d y\right)^{\frac{1}{p}} .
$$

In addition, we define $W_{0}^{1, p}(\Omega, \nu)$ as the closure of $\mathcal{C}_{0}^{\infty}(\Omega)$ in $W^{1, p}(\Omega, \nu)$.
Proposition 2.2 (see [12,13]). The spaces $\left(W^{1, p}(\Omega, \nu),\|\cdot\|_{W^{1, p}(\Omega, \nu)}\right)$ and $\left(W_{0}^{1, p}(\Omega, \nu),\|\cdot\|_{W^{1, p}(\Omega, \nu)}\right)$ are separable and reflexive Banach spaces. The dual of $W_{0}^{1, p}(\Omega, \nu)$ is given by

$$
W_{0}^{-1, p^{\prime}}\left(\Omega, \nu^{1-p^{\prime}}\right)=\left\{u_{0}-\sum_{i=1}^{N} D_{i} u_{i}: \frac{u_{i}}{\nu} \in L^{p^{\prime}}(\Omega, \nu), i=0, \ldots, n\right\} .
$$

Theorem 2.1 (see [11]). Let $\nu \in A_{p}$ and $\Omega \subset \mathbb{R}^{N}$. If $v_{i} \longrightarrow$ vin $L^{p}(\Omega, \nu)$, then there exists a subsequence ($v_{i_{l}}$) and $\psi \in L^{p}(\Omega, \nu)$ such that
(i) $u_{i_{l}}(z) \longrightarrow v(z), i_{l} \longrightarrow \infty$.
(ii) $\left|v_{i_{l}}(z)\right| \leqslant \psi(z)$.

Theorem 2.2 (see [8]). If $\nu \in A_{p}$ and $\Omega \subset \mathbb{R}^{N}$, then there exist $B_{\Omega}, \varepsilon, \kappa>0$ with $1 \leqslant \kappa \leqslant \frac{N}{N-1}+\varepsilon$ such that

$$
\|v\|_{L^{\kappa p}(\Omega, \nu)} \leqslant B_{\Omega}\|\nabla v\|_{L^{p}(\Omega, \nu)} .
$$

The Browder-Minty theorem is stated as follows
Theorem 2.3 (Browder-Minty theorem, see [26]). Let $L: \mathcal{W} \longrightarrow \mathcal{W}^{*}$ where \mathcal{W} is a reflexive, real, and separable Banach space. The following assertions hold:

1. If L is coercive, hemicontinuous and monotone operator on \mathcal{W}, the problem $L v=T, T \in W^{*}$ admits a solution in \mathcal{W}.
2. If L is coercive, hemicontinuous and strictly monotone on \mathcal{W}, the problem $L v=T, T \in W^{*}$ admits a unique solution in \mathcal{W}.

3. Hypotheses and the concept of weak solution

Hypotheses

We now present some hypotheses on the problem (1). Suppose that $\Omega \subset \mathbb{R}^{N}(N \geq 2), \nu_{1}, \nu_{2}$ and ν_{3} are A_{p}-weights, $a_{m}: \Omega \times \mathbb{R}^{N} \longrightarrow \mathbb{R}, b_{m}: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \longrightarrow \mathbb{R}(m=1, \ldots, N)$, with $a(y, \delta)=\left(a_{1}(y, \delta), \ldots, a_{N}(y, \delta)\right)$ and $b(y, \mu, \delta)=$ $\left(b_{1}(y, \mu, \delta), \ldots, b_{N}(y, \mu, \delta)\right)$ and $g: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ such that
(H1) a_{m}, b_{m} and g are Caratéodory functions;
(H2) there are $h_{1}, h_{2}, h_{3} t, h_{4} \in L^{\infty}(\Omega)$ and $f_{1} \in L^{p^{\prime}}\left(\Omega, \nu_{1}\right)\left(\right.$ with $\left.\frac{1}{p}+\frac{1}{p^{\prime}}=1\right), f_{2} \in L^{q^{\prime}}\left(\Omega, \nu_{2}\right)$ and $f_{3} \in L^{s^{\prime}}\left(\Omega, \nu_{3}\right)$ such that

$$
\begin{gathered}
|a(y, \delta)| \leq f_{1}(y)+h_{1}(y)|\delta|^{p-1} \\
|b(y, \mu, \delta)| \leq f_{2}(y)+h_{2}(y)|\mu|^{q-1}+h_{3}(y)|\delta|^{q-1} \\
|g(y, \mu)| \leq f_{3}(y)+h_{4}(y)|\mu|^{s-1}
\end{gathered}
$$

where $(\mu, \delta) \in \mathbb{R} \times \mathbb{R}^{n}$;
(H3) there exits $\lambda>0$ such that

$$
\begin{gathered}
\left\langle a(y, \delta)-a\left(y, \delta^{\prime}\right), \delta-\delta^{\prime}\right\rangle \geqslant \lambda\left|\delta-\delta^{\prime}\right|^{p} \\
\left\langle b(y, \mu, \delta)-b\left(y, \mu^{\prime}, \delta^{\prime}\right), \delta-\delta^{\prime}\right\rangle \geqslant 0 \\
\quad\left(g(y, \mu)-g\left(y, \mu^{\prime}\right)\right)\left(\mu-\mu^{\prime}\right) \geqslant 0
\end{gathered}
$$

where $\mu, \mu^{\prime} \in \mathbb{R}$ and $\delta, \delta^{\prime} \in \mathbb{R}^{n}$ with $\mu \neq \mu^{\prime}$ and $\delta \neq \delta^{\prime}$;
(H4) there exist $\kappa_{1}, \kappa_{2}, \kappa_{3}>0$ such that $\langle a(y, \delta), \delta\rangle \geqslant \kappa_{1}|\delta|^{p}, \quad\langle b(y, \mu, \delta), \delta\rangle \geqslant \kappa_{2}|\delta|^{q}+\kappa_{3}|\mu|^{q}, \quad g(y, \mu) \mu \geqslant 0$.

The concept of weak solution

The definition of a weak solution of (1) is stated as follows.
Definition 3.1. A function $\varphi \in W_{0}^{1, p}\left(\Omega, \nu_{1}\right)$ is a weak solution of (1) if for any $v \in W_{0}^{1, p}\left(\Omega, \nu_{1}\right)$ it holds that

$$
\int_{\Omega}\langle a(y, \nabla \varphi), \nabla v\rangle \nu_{1} d y+\int_{\Omega}\langle b(y, \varphi, \nabla \varphi), \nabla v\rangle \nu_{2} d y+\int_{\Omega} g(y, \varphi) v \nu_{3} d y=\int_{\Omega} \phi v d y
$$

Remark 3.1. For all $\nu_{1}, \nu_{2}, \nu_{3} \in A_{p}$ the following statements hold.
(i) If $1<q<p<\infty$ and $\frac{\nu_{2}}{\nu_{1}} \in L^{k_{1}}\left(\Omega, \nu_{1}\right)$ where $k_{1}=\frac{p}{p-q}$, then $\|\varphi\|_{L^{q}\left(\Omega, \nu_{2}\right)} \leqslant \vartheta_{p, q}\|\varphi\|_{L^{p}\left(\Omega, \nu_{1}\right)}$ with $\vartheta_{p, q}=\left\|\frac{\nu_{2}}{\nu_{1}}\right\|_{L^{k_{1}}\left(\Omega, \nu_{1}\right)}^{1 / q}$.
(ii) If $1<s<p<\infty$ and $\frac{\nu_{3}}{\nu_{1}} \in L^{k_{2}}\left(\Omega, \nu_{1}\right)$ where $k_{2}=\frac{p}{p-s}$, then $\|\varphi\|_{L^{s}\left(\Omega, \nu_{3}\right)} \leqslant \vartheta_{p, s}\|\varphi\|_{L^{p}\left(\Omega, \nu_{1}\right)}$ with $\vartheta_{p, s}=\left\|\frac{\nu_{3}}{\nu_{1}}\right\|_{L^{k_{2}}\left(\Omega, \nu_{1}\right)}^{1 / s}$.

4. Main general result

The next theorem presents the paper's main result.
Theorem 4.1. If the conditions (H1)-(H4) hold, then the problem (1) admits a unique solution in $W_{0}^{1, p}\left(\Omega, \nu_{1}\right)$.
Proof. We reduce the problem (1) to a new one, governed by the operator problem $\Psi \varphi=\Upsilon$, and we apply Theorem 2.3. We define

$$
\Phi: W_{0}^{1, p}\left(\Omega, \nu_{1}\right) \times W_{0}^{1, p}\left(\Omega, \nu_{1}\right) \longrightarrow \mathbb{R}
$$

and

$$
\Upsilon: W_{0}^{1, p}\left(\Omega, \nu_{1}\right) \longrightarrow \mathbb{R}
$$

where Φ and Υ are specified in the following paragraphs.
Hence

$$
\varphi \in W_{0}^{1, p}\left(\Omega, \nu_{1}\right) \text { is a weak solution of (1) } \Leftrightarrow \Phi(\varphi, v)=\Upsilon(v) \text { for all } v \in W_{0}^{1, p}\left(\Omega, \nu_{1}\right) \text {. }
$$

The theorem is proved in four steps.

Step 1.

We utilize some tools and the condition (H2) to show the existence of the operator Ψ and that the problem (1) is identical to the operator equation $\Psi \varphi=\Upsilon$. By employing the Hölder's inequality and Theorem 2.2, we get

$$
\begin{aligned}
|\Upsilon(\varphi)| & \leq \int_{\Omega} \frac{|\phi|}{\nu_{1}}|\varphi| \nu_{1} d y \\
& \leq\left\|\phi / \nu_{\nu^{\prime}}\right\|_{L^{p^{\prime}}\left(\Omega, \nu_{1}\right.}| | \varphi \|_{L^{p}\left(\Omega, \nu_{1}\right)} \\
& \leq C_{\Omega}\left\|\phi / \nu_{1}\right\|_{L^{p^{\prime}}\left(\Omega, \nu_{1}\right)}\|\varphi\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)} .
\end{aligned}
$$

Since $\phi \in L^{p^{\prime}}\left(\Omega, \nu_{1}^{1-p^{\prime}}\right)$, then $\Upsilon \in W_{0}^{-1, p^{\prime}}\left(\Omega, \nu_{1}^{1-p^{\prime}}\right)$.
The operator Φ can be written as

$$
\Phi(\varphi, v)=\Phi_{1}(\varphi, v)+\Phi_{2}(\varphi, v)+\Phi_{3}(\varphi, v),
$$

where

$$
\begin{aligned}
& \Phi_{1}: W_{0}^{1, p}\left(\Omega, \nu_{1}\right) \times W_{0}^{1, p}\left(\Omega, \nu_{1}\right) \longrightarrow \mathbb{R} \\
& \Phi_{1}(\varphi, v)=\int_{\Omega}\langle a(y, \nabla \varphi), \nabla v\rangle \nu_{1} d y, \\
& \Phi_{2}: W_{0}^{1, p}\left(\Omega, \nu_{1}\right) \times W_{0}^{1, p}\left(\Omega, \nu_{1}\right) \longrightarrow \mathbb{R} \\
& \Phi_{2}(\varphi, v)=\int_{\Omega}\langle b(y, \varphi, \nabla \varphi), \nabla v\rangle \nu_{2} d y, \\
& \Phi_{3}: W_{0}^{1, p}\left(\Omega, \nu_{1}\right) \times W_{0}^{1, p}\left(\Omega, \nu_{1}\right) \longrightarrow \mathbb{R} \\
& \Phi_{3}(\varphi, v)=\int_{\Omega} g(y, \varphi) v \nu_{3} d y .
\end{aligned}
$$

Then, we have

$$
\begin{equation*}
|\Phi(\varphi, v)| \leq\left|\Phi_{1}(\varphi, v)\right|+\left|\Phi_{2}(\varphi, v)\right|+\left|\Phi_{3}(\varphi, v)\right| . \tag{2}
\end{equation*}
$$

Also, by utilizing Hölder inequality, Remark 3.1(i), (H2) and Theorem 2.2, we have

$$
\begin{aligned}
\left|\Phi_{1}(\varphi, v)\right| & \leq \int_{\Omega}|a(y, \nabla \varphi)||\nabla v|_{\nu_{1}} d y \\
& \leq \int_{\Omega}\left(f_{1}+h_{1}|\nabla \varphi|^{p-1}\right)|\nabla v| \nu_{1} d y \\
& \leq\left\|f_{1}\right\|_{L^{p^{\prime}}\left(\Omega, \nu_{1}\right)}\|\nabla v\|_{L^{p}\left(\Omega, \nu_{1}\right)}+\left\|h_{1}\right\|_{L^{\infty}(\Omega)} \mid\|\varphi\|_{L^{p}\left(\Omega, \nu_{1}\right)}^{p-1}\|\nabla v\|_{L^{p}\left(\Omega, \nu_{1}\right)} \\
& \leq\left(\left\|f_{1}\right\|_{L^{p^{\prime}}\left(\Omega, \nu_{1}\right)}+\left\|h_{1}\right\|_{L^{\infty}(\Omega)}\|\varphi\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)}^{p-1}\right)\|v\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)},
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\Phi_{2}(\varphi, v)\right| & \leq \int_{\Omega}|b(y, \varphi, \nabla \varphi)||\nabla v|_{\nu_{2}} d y \\
& \leq \int_{\Omega}\left(f_{2}+h_{2}|\varphi|^{q-1}+h_{3}|\nabla \varphi|^{q-1}\right)|\nabla v| \nu_{2} d y \\
& \leq\left\|f_{2}\right\|_{L^{q^{\prime}}\left(\Omega, \nu_{2}\right)}\|\nabla v\|_{L^{q}\left(\Omega, \nu_{2}\right)}+\left\|h_{2}\right\|_{L^{\infty}(\Omega)}\|\varphi\|_{L^{q}\left(\Omega, \nu_{2}\right)}^{q-1}\|\nabla v\|_{L^{q}\left(\Omega, \nu_{2}\right)}+\left\|h_{3}\right\|_{L^{\infty}(\Omega)}\|\nabla \varphi\|_{L^{q}\left(\Omega, \nu_{2}\right)}^{q-1}\|\nabla v\|_{L^{q}\left(\Omega, \nu_{2}\right)} \\
& \leq\left[\vartheta_{p, q}\left\|f_{2}\right\|_{L^{q^{\prime}}\left(\Omega, \nu_{2}\right)}+\vartheta_{p, q}^{q}\left(C_{\Omega}^{q-1}\left\|h_{2}\right\|_{L^{\infty}(\Omega)}+\left\|h_{3}\right\|_{L^{\infty}(\Omega)}\right)\|\varphi\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)}^{q-1}\right]\|v\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)} .
\end{aligned}
$$

Similarly, by using Hölder inequality, Theorem 2.2, (H2) and Remark 3.1, we get

$$
\begin{aligned}
\left|\Phi_{3}(\varphi, v)\right| & \leq \int_{\Omega}|g(y, \varphi) \| v| \nu_{3} d y \\
& \leq\left[C_{\Omega} \vartheta_{p, s}\left\|f_{3}\right\|_{L^{s^{\prime}}\left(\Omega, \nu_{3}\right)}+\vartheta_{p, s}^{s} C_{\Omega}^{s}\left\|h_{4}\right\|_{L^{\infty}(\Omega)}\|\varphi\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)}^{s-1}\right]\|v\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)} .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
|\Phi(\varphi, v)| \leq & {\left[\left\|f_{1}\right\|_{L^{p^{\prime}}\left(\Omega, \nu_{1}\right)}+\left\|h_{1}\right\|_{L^{\infty}(\Omega)}\|\varphi\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)}^{p-1}+C_{\Omega} \vartheta_{p, s}\left\|f_{3}\right\|_{L^{s^{\prime}}\left(\Omega, \nu_{3}\right)}+\vartheta_{p, q}\left\|f_{2}\right\|_{L^{q^{\prime}}\left(\Omega, \nu_{2}\right)}\right.} \\
& \left.+\vartheta_{p, s}^{s} C_{\Omega}^{s}\left\|h_{4}\right\|_{L^{\infty}(\Omega)}\|\varphi\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)}^{s-1}+\vartheta_{p, q}^{q}\left(C_{\Omega}^{q-1}\left\|h_{2}\right\|_{L^{\infty}(\Omega)}+\left\|h_{3}\right\|_{L^{\infty}(\Omega)}\right)\|\varphi\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)}^{q-1}\right]\|v\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)} .
\end{aligned}
$$

Thus, $\Phi(\varphi,$.$) is linear and continuous for every \varphi \in W_{0}^{1, p}\left(\Omega, \nu_{1}\right)$. As a result, there is a linear and continuous operator on $W_{0}^{1, p}\left(\Omega, \nu_{1}\right)$ labeled by Ψ that provides $\langle\Psi \varphi, v\rangle=\Phi(\varphi, v)$ for all $\varphi, v \in W_{0}^{1, p}\left(\Omega, \nu_{1}\right)$. We also have

$$
\begin{aligned}
\|\Psi \varphi\|_{*} \leq & \left\|f_{1}\right\|_{L^{p^{\prime}}\left(\Omega, \nu_{1}\right)}+\left\|h_{1}\right\|_{L^{\infty}(\Omega)}\|\varphi\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)}^{p-1}+C_{\Omega} \vartheta_{p, s}\left\|f_{3}\right\|_{L^{s^{\prime}}\left(\Omega, \nu_{3}\right)}+\vartheta_{p, q}\left\|f_{2}\right\|_{L^{q^{\prime}}\left(\Omega, \nu_{2}\right)} \\
& +\vartheta_{p, s}^{s} C_{\Omega}^{s}\left\|h_{4}\right\|_{L^{\infty}(\Omega)}\|\varphi\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)}^{s-1}+\vartheta_{p, q}^{q}\left(C_{\Omega}^{q-1}\left\|h_{2}\right\|_{L^{\infty}(\Omega)}+\left\|h_{3}\right\|_{L^{\infty}(\Omega)}\right)\|\varphi\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)}^{q-1},
\end{aligned}
$$

where

$$
\|\Psi \varphi\|_{*}:=\sup \left\{|\langle\Psi \varphi, v\rangle|=|\Phi(\varphi, v)|: v \in W_{0}^{1, p}\left(\Omega, \nu_{1}\right),\|v\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)}=1\right\}
$$

is the norm in $W_{0}^{-1, p^{\prime}}\left(\Omega, \nu_{1}^{1-p^{\prime}}\right)$. Therefore, we get the operator

$$
\Psi: W_{0}^{1, p}\left(\Omega, \nu_{1}\right) \longrightarrow W_{0}^{-1, p^{\prime}}\left(\Omega, \nu_{1}^{1-p^{\prime}}\right)
$$

Therefore, the problem (1) is equivalent to the operator equation

$$
\Psi \varphi=\Upsilon, \quad \varphi \in W_{0}^{1, p}\left(\Omega, \nu_{1}\right)
$$

Step 2.

In this step, we demonstrate that Ψ is strictly monotonic. For all $\varphi_{1}, \varphi_{2} \in W_{0}^{1, p}\left(\Omega, \nu_{1}\right)$ with $\varphi_{1} \neq \varphi_{2}$, we have

$$
\begin{aligned}
\left\langle\Psi \varphi_{1}-\Psi \varphi_{2}, \varphi_{1}-\varphi_{2}\right\rangle= & \Phi\left(\varphi_{1}, \varphi_{1}-\varphi_{2}\right)-\Phi\left(\varphi_{2}, \varphi_{1}-\varphi_{2}\right) \\
= & \int_{\Omega}\left\langle a\left(y, \nabla \varphi_{1}\right), \nabla\left(\varphi_{1}-\varphi_{2}\right)\right\rangle \nu_{1} d y-\int_{\Omega}\left\langle a\left(y, \nabla \varphi_{2}\right), \nabla\left(\varphi_{1}-\varphi_{2}\right)\right\rangle \nu_{1} d y \\
& +\int_{\Omega}\left\langle b\left(y, \varphi_{1}, \nabla \varphi_{1}\right), \nabla\left(\varphi_{1}-\varphi_{2}\right)\right\rangle \nu_{2} d y-\int_{\Omega}\left\langle b\left(y, \varphi_{2}, \nabla \varphi_{2}\right), \nabla\left(\varphi_{1}-\varphi_{2}\right)\right\rangle \nu_{2} d y \\
& +\int_{\Omega} g\left(y, \varphi_{1}\right)\left(\varphi_{1}-\varphi_{2}\right) \nu_{3} d y-\int_{\Omega} g\left(y, \varphi_{2}\right)\left(\varphi_{1}-\varphi_{2}\right) \nu_{3} d y \\
= & \int_{\Omega}\left\langle a\left(y, \nabla \varphi_{1}\right)-a\left(y, \nabla \varphi_{2}\right), \nabla\left(\varphi_{1}-\varphi_{2}\right)\right\rangle \nu_{1} d y+\int_{\Omega}\left(g\left(y, \varphi_{1}\right)-g\left(y, \varphi_{2}\right)\right)\left(\varphi_{1}-\varphi_{2}\right) \nu_{3} d y \\
& +\int_{\Omega}\left\langle b\left(y, \varphi_{1}, \nabla \varphi_{1}\right)-b\left(y, \varphi_{2}, \nabla \varphi_{2}\right), \nabla\left(\varphi_{1}-\varphi_{2}\right)\right\rangle \nu_{2} d y
\end{aligned}
$$

By usung (H3), we obtain

$$
\left\langle\Psi \varphi_{1}-\Psi \varphi_{2}, \varphi_{1}-\varphi_{2}\right\rangle \geq \int_{\Omega} \lambda\left|\nabla\left(\varphi_{1}-\varphi_{2}\right)\right|^{p} \nu_{1} d y \geq \lambda\left\|\nabla\left(\varphi_{1}-\varphi_{2}\right)\right\|_{L^{p}\left(\Omega, \nu_{1}\right)}^{p}
$$

and by Theorem 2.2, we conclude that

$$
\left\langle\Psi \varphi_{1}-\Psi \varphi_{2}, \varphi_{1}-\varphi_{2}\right\rangle \geq \frac{\lambda}{\left(C_{\Omega}^{p}+1\right)}\left\|\varphi_{1}-\varphi_{2}\right\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)}^{p},
$$

which implies that Ψ is strictly monotone.

Step 3.

This step establishes the coerciveness of the operator Ψ. For all $\varphi \in W_{0}^{1, p}\left(\Omega, \nu_{1}\right)$, we get

$$
\begin{aligned}
\langle\Psi \varphi, \varphi\rangle & =\Phi(\varphi, \varphi) \\
& =\int_{\Omega}\langle a(y, \nabla \varphi), \nabla \varphi\rangle \nu_{1} d y+\int_{\Omega}\langle b(y, \varphi, \nabla \varphi), \nabla \varphi\rangle \nu_{2} d y+\int_{\Omega} g(y, \varphi) u \nu_{3} d y
\end{aligned}
$$

From Theorem 2.2 and (H4), it follows that

$$
\begin{aligned}
\langle\Psi \varphi, \varphi\rangle & \geq \kappa_{1} \int_{\Omega}|\nabla \varphi|^{p} \nu_{1} d y+\kappa_{2} \int_{\Omega}|\nabla \varphi|^{q} \nu_{2} d y+\kappa_{3} \int_{\Omega}|\varphi|^{q} \nu_{2} d y \\
& \geq \kappa_{1} \int_{\Omega}|\nabla \varphi|^{p} \nu_{1} d y+\min \left(\kappa_{2}, \kappa_{3}\right)\left[\int_{\Omega}|\nabla \varphi|^{q} \nu_{2} d y+\int_{\Omega}|\varphi|^{q} \nu_{2} d y\right] \\
& =\kappa_{1}\|\nabla \varphi\|_{L^{p}\left(\Omega, \nu_{1}\right)}^{p}+\min \left(\kappa_{2}, \kappa_{3}\right)\|\varphi\|_{W_{0}^{1, q}\left(\Omega, \nu_{2}\right)}^{q} \\
& \geq \kappa_{1}\|\nabla \varphi\|_{L^{p}\left(\Omega, \nu_{1}\right)}^{p} \\
& \geq \frac{\kappa_{1}}{\left(C_{\Omega}^{p}+1\right)}\|\varphi\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)}^{p} .
\end{aligned}
$$

Hence, we obtain

$$
\frac{\langle\Psi \varphi, \varphi\rangle}{\|\varphi\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)}^{1,}} \geq \frac{\kappa_{1}}{\left(C_{\Omega}^{p}+1\right)}\|\varphi\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)}^{p-1} .
$$

Therefore, as $p>1$, we conclude that

$$
\frac{\langle\Psi \varphi, \varphi\rangle}{\|\varphi\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)}} \longrightarrow+\infty \text { as }\|\varphi\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)} \longrightarrow+\infty,
$$

which means that Ψ is coercive.

Step 4.

In this step, we show that Ψ is continuous. To do this, consider $\varphi_{k} \longrightarrow \varphi$ in $W_{0}^{1, p}\left(\Omega, \nu_{1}\right)$ as $k \longrightarrow \infty$. Then $\varphi_{k} \longrightarrow \varphi$ in $L^{p}\left(\Omega, \nu_{1}\right), \nabla \varphi_{k} \longrightarrow \nabla \varphi$ in $\left(L^{p}\left(\Omega, \nu_{1}\right)\right)^{n}$. Therefore, according to Theorem 2.1, there exist $\left(\varphi_{k_{i}}\right), \psi_{1} \in L^{p}\left(\Omega, \nu_{1}\right)$ and $\psi_{2} \in L^{p}\left(\Omega, \nu_{1}\right)$ in such a way that

$$
\begin{array}{ll}
\varphi_{k_{i}}(y) \longrightarrow \varphi(y), & \text { in } \Omega \\
\left|\varphi_{k_{i}}(y)\right| \leq \psi_{1}(y), & \text { in } \Omega \\
\nabla \varphi_{k_{i}}(y) \longrightarrow \nabla \varphi(y), & \text { in } \Omega \tag{3}\\
\left|\nabla \varphi_{k_{i}}(y)\right| \leq \psi_{2}(y), & \text { in } \Omega .
\end{array}
$$

We are going to establish that $\Psi \varphi_{k} \longrightarrow \Psi \varphi$ in $W_{0}^{-1, p^{\prime}}\left(\Omega, \nu_{1}^{1-p^{\prime}}\right)$. It is proved in three steps.
Step 4.1.
Let us define the operator $B_{j}: W_{0}^{1, p}\left(\Omega, \nu_{1}\right) \longrightarrow L^{p^{\prime}}\left(\Omega, \nu_{1}\right)$ by $\left(B_{j} \varphi\right)(y)=a_{j}(y, \nabla \varphi(y))$. We now show that $B_{j} \varphi_{k} \longrightarrow B_{j} \varphi$ in $L^{p^{\prime}}\left(\Omega, \nu_{1}\right)$.
(i) For all $\varphi \in W_{0}^{1, p}\left(\Omega, \nu_{1}\right)$, by Theorem 2.2 and (H2), we have

$$
\begin{aligned}
\left\|B_{j} \varphi\right\|_{L^{p^{\prime}}\left(\Omega, \nu_{1}\right)}^{p^{\prime}} & =\int_{\Omega}\left|B_{j} \varphi(y)\right|^{p^{\prime}} \nu_{1} d y=\int_{\Omega}\left|a_{j}(y, \nabla \varphi)\right|^{p^{\prime}} \nu_{1} d y \\
& \leq \int_{\Omega}\left(f_{1}+h_{1}|\nabla \varphi|^{p-1}\right)^{p^{p^{\prime}}} \nu_{1} d y \\
& \leq C_{p} \int_{\Omega}\left(f_{1}^{p^{\prime}}+h_{1}^{p^{\prime}}|\nabla \varphi|^{p}\right) \nu_{1} d y \\
& \leq C_{p}\left[\left\|f_{1}\right\|_{L^{p^{\prime}}\left(\Omega, \nu_{1}\right)}^{p^{\prime}}+\left\|h_{1}\right\|_{L^{\infty}(\Omega)}^{p^{\prime}}\|\nabla \varphi\|_{L^{p}\left(\Omega, \nu_{1}\right)}^{p}\right] \\
& \leq C_{p}\left[\left\|f_{1}\right\|_{L^{p^{\prime}}\left(\Omega, \nu_{1}\right)}^{p^{\prime}}+\left\|h_{1}\right\|_{L^{\infty}(\Omega)}^{p^{\prime}}\|u\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)}^{p}\right] .
\end{aligned}
$$

(ii) By (H2) and (3), we obtain

$$
\begin{aligned}
\left\|B_{j} \varphi_{k_{i}}-B_{j} \varphi\right\|_{L^{p^{\prime}}\left(\Omega, \nu_{1}\right)}^{p^{\prime}} & =\int_{\Omega}\left|B_{j} \varphi_{k_{i}}(y)-B_{j} \varphi(y)\right|^{p^{p^{\prime}}} \nu_{1} d y \\
& \leq \int_{\Omega}\left(\left|a_{j}\left(y, \nabla \varphi_{k_{i}}\right)\right|+\left|a_{j}(y, \nabla \varphi)\right|\right)^{p^{\prime}} \nu_{1} d y \\
& \left.\leq C_{p} \int_{\Omega}\left(\left|a_{j}\left(y, \nabla \varphi_{k_{i}}\right)\right|^{p^{\prime}}+\mid a_{j}(y, \nabla \varphi)\right)^{p^{\prime}}\right) \nu_{1} d y \\
& \leq C_{p} \int_{\Omega}\left[\left(f_{1}+h_{1}\left|\nabla \varphi_{k_{i}}\right|^{p-1}\right)^{p^{\prime}}+\left(f_{1}+h_{1}|\nabla \varphi|^{p-1}\right)^{p^{\prime}}\right] \nu_{1} d y \\
& \leq C_{p} \int_{\Omega}\left[\left(f_{1}+h_{1} \psi_{2}^{p-1}\right)^{p^{\prime}}+\left(f_{1}+h_{1} \psi_{2}^{p-1}\right)^{p^{\prime}}\right] \nu_{1} d y \\
& \leq 2 C_{p} C_{p}^{\prime} \int_{\Omega}\left(f_{1}^{p^{p^{\prime}}}+h_{1}^{p^{\prime}} \psi_{2}^{p}\right) \nu_{1} d y \\
& \leq 2 C_{p} C_{p}^{\prime}\left[\left\|f_{1}\right\|_{L^{p^{\prime}}\left(\Omega, \nu_{1}\right)}^{p^{\prime}}+\left\|h_{1}\right\|_{L^{\infty}(\Omega)}^{p^{\prime}}\left\|\psi_{2}\right\|_{L^{p}\left(\Omega, \nu_{1}\right)}^{p}\right] .
\end{aligned}
$$

As $k \longrightarrow \infty$, by using (H1), we get

$$
B_{j} \varphi_{k_{i}}(y)=a_{j}\left(y, \nabla \varphi_{k_{i}}(y)\right) \longrightarrow a_{j}(y, \nabla \varphi(y))=B_{j} \varphi(y), \text { for almost all } x \in \Omega .
$$

Consequently, by Lebesgue's theorem, we have

$$
\left\|B_{j} \varphi_{k_{i}}-B_{j} \varphi\right\|_{L^{p^{\prime}}\left(\Omega, \nu_{1}\right)} \longrightarrow 0 \Leftrightarrow B_{j} \varphi_{k_{i}} \longrightarrow B_{j} \varphi \quad \text { in } \quad L^{p^{\prime}}\left(\Omega, \nu_{1}\right) .
$$

Finally, considering the principle of convergence in Banach spaces, we conclude

$$
\begin{equation*}
B_{j} \varphi_{k} \longrightarrow B_{j} \varphi \quad \text { in } \quad L^{p^{\prime}}\left(\Omega, \nu_{1}\right) . \tag{4}
\end{equation*}
$$

Step 4.2.

Define $G_{j}: W_{0}^{1, p}\left(\Omega, \nu_{1}\right) \longrightarrow L^{q^{\prime}}\left(\Omega, \nu_{2}\right)$ by $\left(G_{j} \varphi\right)(y)=b_{j}(y, \varphi(y), \nabla \varphi(y))$. We have

$$
\begin{equation*}
G_{j} \varphi_{k} \longrightarrow G_{j} \varphi \quad \text { in } \quad L^{q^{\prime}}\left(\Omega, \nu_{2}\right) . \tag{5}
\end{equation*}
$$

(i) For all $\varphi \in W_{0}^{1, p}\left(\Omega, \nu_{1}\right)$, by Remark 3.1(i), (H2) and Theorem 2.2, we get

$$
\begin{aligned}
\left\|G_{j} \varphi\right\|_{L^{q^{\prime}}\left(\Omega, \nu_{2}\right)}^{q^{\prime}} & =\int_{\Omega}\left|b_{j}(y, \varphi, \nabla \varphi)\right|^{q^{\prime}} \nu_{2} d y \\
& \leq \int_{\Omega}\left(f_{2}+h_{2}|\varphi|^{q-1}+h_{3}|\nabla \varphi|^{q-1}\right)^{q^{\prime}} \nu_{2} d y \\
& \leq C_{q} \int_{\Omega}\left[f_{2}^{q^{\prime}}+h_{2}^{q^{\prime}}|\varphi|^{q}+h_{3}^{q^{\prime}}|\nabla \varphi|^{q}\right] \nu_{2} d y \\
& \leq C_{q}\left[\left\|f_{2}\right\|_{L^{q^{\prime}}\left(\Omega, \nu_{2}\right)}^{q^{\prime}}+\left\|h_{2}\right\|_{L^{\infty}(\Omega)}^{q^{\prime}}\|\varphi\|_{L^{q}\left(\Omega, \nu_{2}\right)}^{q}+\left\|h_{3}\right\|_{L^{\infty}(\Omega)}^{q^{\prime}}\|\nabla \varphi\|_{L^{q}\left(\Omega, \nu_{2}\right)}^{q}\right] \\
& \leq C_{q}\left[\left\|f_{2}\right\|_{L^{q^{\prime}}\left(\Omega, \nu_{2}\right)}^{q^{\prime}}+C_{p, q}^{q}\left(C_{\Omega}^{q}\left\|h_{2}\right\|_{L^{\infty}(\Omega)}^{q^{\prime}}+\left\|h_{3}\right\|_{L^{\infty}(\Omega)}^{q^{\prime}}\right)\|u\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)}^{q}\right] .
\end{aligned}
$$

(ii) By using Remark 3.1(i), (H2), and the similar reasoning as employed in Step 4.1(ii), we get

$$
\begin{equation*}
G_{j} \varphi_{k} \longrightarrow G_{j} \varphi \quad \text { in } \quad L^{q^{\prime}}\left(\Omega, \nu_{2}\right) . \tag{6}
\end{equation*}
$$

Step 4.3.

We define the operator $H: W_{0}^{1, p}\left(\Omega, \nu_{1}\right) \longrightarrow L^{s^{\prime}}\left(\Omega, \nu_{3}\right)$ by $(H \varphi)(y)=g(y, \varphi(y))$. In this step, we show that $H \varphi_{k} \longrightarrow H \varphi$ in $L^{s^{\prime}}\left(\Omega, \nu_{3}\right)$.
(i) For all $\varphi \in W_{0}^{1, p}\left(\Omega, \nu_{1}\right)$, by using Remark 3.1(ii) and (H2), we get

$$
\begin{aligned}
\|H \varphi\|_{L^{s^{\prime}}\left(\Omega, \nu_{3}\right)}^{s^{\prime}} & =\int_{\Omega}|g(y, \varphi)|^{s^{\prime}} \nu_{3} d y \\
& \leq \int_{\Omega}\left(f_{3}+h_{4}|\varphi|^{s-1}\right)^{s^{\prime}} \nu_{3} d y \\
& \leq C_{s} \int_{\Omega}\left(f_{3}^{s^{\prime}}+h_{4}^{s^{\prime}}|\varphi|^{s}\right) \nu_{3} d y \\
& \leq C_{s}\left[\left\|f_{3}\right\|_{L^{s^{\prime}}\left(\Omega, \nu_{3}\right)}^{s^{\prime}}+\left\|h_{4}\right\|_{L^{\infty}(\Omega)}^{p^{\prime}}\|\varphi\|_{L^{s}\left(\Omega, \nu_{3}\right)}^{s}\right] \\
& \leq C_{s}\left[\left\|f_{3}\right\|_{L^{s^{s}\left(\Omega, \nu_{3}\right)}}^{s^{\prime}}+C_{p, s}^{s}\left\|h_{4}\right\|_{L^{\infty}(\Omega)}^{p^{\prime}}\|\varphi\|_{L^{p}\left(\Omega, \nu_{1}\right)}^{s}\right] \\
& \leq C_{s}\left[\left\|f_{3}\right\|_{L^{s^{\prime}}\left(\Omega, \nu_{1}\right)}+C_{p, s}^{s} C_{\Omega}^{s}\left\|h_{4}\right\|_{L^{\infty}(\Omega)}^{s^{\prime}}\|\varphi\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)}^{s}\right] .
\end{aligned}
$$

(ii) From Remark 3.1(ii) and (H2), it follows that

$$
\begin{aligned}
\left\|H \varphi_{k_{i}}-H \varphi\right\|_{L^{s^{\prime}}\left(\Omega, \nu_{3}\right)}^{s^{\prime}} & =\int_{\Omega}\left|H \varphi_{k_{i}}(y)-H \varphi(y)\right|^{p^{p^{\prime}}} \nu_{3} d y \\
& \leq \int_{\Omega}\left(\left|g\left(y, \varphi_{k_{i}}\right)\right|+|g(y, \varphi)|\right)^{s^{\prime}} \nu_{3} d y \\
& \leq C_{s} \int_{\Omega}\left(\left|g\left(y, \varphi_{k_{i}}\right)\right|^{s^{\prime}}+|g(y, \varphi)|^{s^{\prime}}\right) \nu_{3} d y \\
& \leq C_{s} \int_{\Omega}\left[\left(f_{3}+h_{4}\left|\varphi_{k_{i}}\right|^{s-1}\right)^{s^{\prime}}+\left(f_{3}+h_{4}|\varphi|^{s-1}\right)^{s^{\prime}}\right] \nu_{3} d y \\
& \leq C_{s} \int_{\Omega}\left[\left(f_{3}+h_{4}\left|\psi_{1}\right|^{s-1}\right)^{s^{\prime}}+\left(f_{3}+h_{4} \psi_{1}^{s-1}\right)^{s^{\prime}}\right] \nu_{3} d y \\
& \leq 2 C_{s} C_{s}^{\prime}\left[\left\|f_{3}\right\|\left\|_{L^{s^{\prime}}\left(\Omega, \nu_{3}\right)}^{s^{\prime}}+\right\| h_{4}\left\|_{L^{\infty}(\Omega)}^{s^{\prime}}\right\| \psi_{1} \|_{L^{s}\left(\Omega, \nu_{3}\right)}^{s}\right] \\
& \leq 2 C_{s} C_{s}^{\prime}\left[\left\|f_{3}\right\|\left\|_{L^{s^{\prime}}\left(\Omega, \nu_{3}\right)}^{s^{\prime}}+\vartheta_{p, s}^{s}\right\| h_{4}\left\|_{L^{\infty}(\Omega)}^{s^{\prime}}\right\| \psi_{1} \|_{L^{p}\left(\Omega, \nu_{1}\right)}^{s}\right] .
\end{aligned}
$$

As $k \longrightarrow \infty$, by using (H1), we obtain

$$
H \varphi_{k_{i}}(y)=g\left(y, \varphi_{k_{i}}(y)\right) \longrightarrow g(y, u(y))=H \varphi(y), \quad \text { a.e. } x \in \Omega .
$$

Consequently, by means of Lebesgue's theorem, we have

$$
\left\|H \varphi_{k_{i}}-H \varphi\right\|_{L_{s^{\prime}}\left(\Omega, \nu_{3}\right)} \longrightarrow 0,
$$

that is,

$$
H \varphi_{k_{i}} \longrightarrow H \varphi \quad \text { in } \quad L^{s^{\prime}}\left(\Omega, \nu_{3}\right) .
$$

Finally, considering the principle of convergence in Banach spaces, we conclude that

$$
\begin{equation*}
H \varphi_{k} \longrightarrow H \varphi \quad \text { in } \quad L^{s^{\prime}}\left(\Omega, \nu_{3}\right) . \tag{7}
\end{equation*}
$$

At last, by considering $v \in W_{0}^{1, p}\left(\Omega, \nu_{1}\right)$ and with the help of Theorem 2.2, Hölder inequality, and Remark 3.1, we arrive at

$$
\begin{aligned}
\left|\Phi_{1}\left(\varphi_{k}, v\right)-\Phi_{1}(\varphi, v)\right| & =\left|\int_{\Omega}\left\langle a\left(y, \nabla \varphi_{k}\right)-a(y, \nabla \varphi), \nabla v\right\rangle \nu_{1} d y\right| \\
& \leq \sum_{j=1}^{n} \int_{\Omega}\left|a_{j}\left(y, \nabla \varphi_{k}\right)-a_{j}(y, \nabla \varphi) \| D_{j} v\right| \nu_{1} d y \\
& =\sum_{j=1}^{n} \int_{\Omega}\left|B_{j} \varphi_{k}-B_{j} \varphi\right|\left|D_{j} v\right| \nu_{1} d y \\
& \leq \sum_{j=1}^{n}\left\|B_{j} \varphi_{k}-B_{j} \varphi\right\|_{L^{p^{\prime}}\left(\Omega, \nu_{1}\right)}\left\|D_{j} v\right\|_{L^{p}\left(\Omega, \nu_{1}\right)} \\
& \leq\left(\sum_{j=1}^{n}\left\|B_{j} \varphi_{k}-B_{j} \varphi\right\|_{L^{p^{\prime}}\left(\Omega, \nu_{1}\right)}\right)\|v\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)},
\end{aligned}
$$

$$
\begin{aligned}
& \left|\Phi_{2}\left(\varphi_{k}, v\right)-\Phi_{2}(\varphi, v)\right|=\left|\int_{\Omega}\left\langle b\left(y, \varphi_{k}, \nabla \varphi_{k}\right)-b(y, \varphi, \nabla \varphi), \nabla v\right\rangle \nu_{2} d y\right| \\
& \leq \sum_{j=1}^{n} \int_{\Omega}\left|b_{j}\left(y, \varphi_{k}, \nabla \varphi_{k}\right)-b_{j}(y, \varphi, \nabla \varphi)\right|\left|D_{j} v\right| \nu_{2} d y \\
& =\sum_{j=1}^{n} \int_{\Omega}\left|G_{j} \varphi_{k}-G_{j} \varphi\right|\left|D_{j} v\right| \nu_{2} d y \\
& \leq\left(\sum_{j=1}^{n}\left\|G_{j} \varphi_{k}-G_{j} \varphi\right\|_{L^{q^{\prime}}\left(\Omega, \nu_{2}\right)}\right)\|\nabla v\|_{L^{q}\left(\Omega, \nu_{2}\right)} \\
& \leq \vartheta_{p, q}\left(\sum_{j=1}^{n}\left\|G_{j} \varphi_{k}-G_{j} \varphi\right\|_{L^{q^{\prime}}\left(\Omega, \nu_{2}\right)}\right)\|\nabla v\|_{L^{p}\left(\Omega, \nu_{1}\right)} \\
& \leq \vartheta_{p, q}\left(\sum_{j=1}^{n}\left\|G_{j} \varphi_{k}-G_{j} \varphi\right\|_{L^{q^{\prime}}\left(\Omega, \nu_{2}\right)}\right)\|v\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)}, \\
& \left|\Phi_{3}\left(\varphi_{k}, v\right)-\Phi_{3}(\varphi, v)\right| \leq \int_{\Omega}\left|g\left(y, \varphi_{k}\right)-g(y, \varphi)\right||v| \nu_{3} d y \\
& =\int_{\Omega}\left|H \varphi_{k}-H \varphi\right||v| \nu_{3} d y \\
& \leq\left\|H \varphi_{k}-H \varphi\right\|_{L^{s^{\prime}}\left(\Omega, \nu_{3}\right)}\|v\|_{L^{s}\left(\Omega, \nu_{3}\right)} \\
& \leq \vartheta_{p, s}\left\|H \varphi_{k}-H \varphi\right\|_{L^{s^{\prime}}\left(\Omega, \nu_{3}\right)}\|v\|_{L^{p}\left(\Omega, \nu_{1}\right)} \\
& \leq \vartheta_{p, s} C_{\Omega}\left\|H \varphi_{k}-H \varphi\right\|_{L^{s^{\prime}}\left(\Omega, \nu_{3}\right)}\|v\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)} .
\end{aligned}
$$

Hence, for all $v \in W_{0}^{1, p}\left(\Omega, \nu_{1}\right)$, we have

$$
\begin{aligned}
&\left|\Phi\left(\varphi_{k}, v\right)-\Phi(\varphi, v)\right| \leq\left|\Phi_{1}\left(\varphi_{k}, v\right)-\Phi_{1}(\varphi, v)\right|+\left|\Phi_{2}\left(\varphi_{k}, v\right)-\Phi_{2}(\varphi, v)\right|+\left|\Phi_{3}\left(\varphi_{k}, v\right)-\Phi_{3}(\varphi, v)\right| \\
& \leq\left[\sum_{j=1}^{n}\left(\left\|B_{j} \varphi_{k}-B_{j} \varphi\right\|_{L^{p^{\prime}}\left(\Omega, \nu_{1}\right)}+\vartheta_{p, q}\left\|G_{j} \varphi_{k}-G_{j} \varphi\right\|_{L^{q^{\prime}}\left(\Omega, \nu_{2}\right)}\right)+\vartheta_{p, s} C_{\Omega}\left\|H \varphi_{k}-H \varphi\right\|_{L^{s^{\prime}}\left(\Omega, \nu_{3}\right)}\right]\|v\|_{W_{0}^{1, p}\left(\Omega, \nu_{1}\right)}
\end{aligned}
$$

and consequently, we get

$$
\left\|\Psi \varphi_{k}-\Psi \varphi\right\|_{*} \leq \sum_{j=1}^{n}\left(\left\|B_{j} \varphi_{k}-B_{j} \varphi\right\|_{L^{p^{\prime}}\left(\Omega, \nu_{1}\right)}+\vartheta_{p, q}\left\|G_{j} \varphi_{k}-G_{j} \varphi\right\|_{L^{q^{\prime}}\left(\Omega, \nu_{2}\right)}\right)+\vartheta_{p, s} C_{\Omega}\left\|H \varphi_{k}-H \varphi\right\|_{L^{s^{\prime}}\left(\Omega, \nu_{3}\right)}
$$

Combining (4), (6) and (7), we deduce that

$$
\left\|\Psi \varphi_{k}-\Psi \varphi\right\|_{*} \longrightarrow 0 \text { as } m \longrightarrow \infty
$$

that is, $\Psi \varphi_{k} \longrightarrow \Psi \varphi$ in $W_{0}^{-1, p^{\prime}}\left(\Omega, \nu_{1}^{1-p^{\prime}}\right)$, which implies that Ψ is continuous.
We have now proved that Ψ is strictly monotone, coercive and hemicontinuous, and $\Upsilon \in W_{0}^{-1, p^{\prime}}\left(\Omega, \nu_{1}^{1-p^{\prime}}\right)$. Thus, we have verified all the conditions of Theorem 2.3. As a result, from Theorem 2.3, it follows that the operator equation $\Psi \varphi=\Upsilon$ admits the unique weak solution $\varphi \in W_{0}^{1, p}\left(\Omega, \nu_{1}\right)$ and it also follows that u is the unique weak solution for (1). This completes the proof of Theorem 4.1.

5. Example

Set $\Omega=\left\{(y, z) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$, and let $\nu_{1}(y, z)=\left(y^{2}+z^{2}\right)^{-1 / 2}, \nu_{2}(y, z)=\left(y^{2}+z^{2}\right)^{-1 / 3}$ and $\nu_{3}(y, z)=\left(y^{2}+z^{2}\right)^{-1}$ (note that $\nu_{1}, \nu_{2}, \nu_{3} \in A_{4}, p=4, q=3$ and $s=2$), and we define $b: \Omega \times \mathbb{R} \times \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, a: \Omega \times \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ and $g: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ by

$$
a((y, z), \delta)=h_{1}(y, z)|\delta|^{3} \operatorname{sgn}(\delta)
$$

$$
\begin{gathered}
b((y, z), \mu, \delta)=|\delta|^{2} \operatorname{sgn}(\delta) \\
g((y, z), \mu)=h_{4}(y, z)|\mu| \operatorname{sgn}(\mu)
\end{gathered}
$$

with $h_{1}(y, z)=2 e^{\left(y^{2}+z^{2}\right)}$ and $h_{4}(y, z)=2-\cos ^{2}(y z)$. Let us look at the problem

$$
\left\{\begin{array}{lc}
\mathcal{A} \varphi(y, z)=\cos (y+z) & \text { in } \Omega \tag{8}\\
\varphi(y, z)=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where

$$
\mathcal{A} \varphi(y, z)=-\operatorname{div}\left[\nu_{1} a((y, z), \nabla \varphi(y, z))+\nu_{2} b((y, z), \varphi(y, z), \nabla \varphi(y, z))\right]+\nu_{3} g((y, z), \varphi(y, z)) .
$$

From Theorem 4.1, it follows that the problem (8) admits the unique weak solution in $W_{0}^{1,4}\left(\Omega, \nu_{1}\right)$.

Acknowledgement

The authors appreciate the helpful comments and suggestions from the referees, which significantly improved the paper's quality.

References

[1] A. Abbassi, C. Allalou, A. Kassidi, Topological degree methods for a Neumann problem governed by nonlinear elliptic equation, Moroccan J. Pure Appl. Anal. 6 (2020) 231-242.
[2] A. Abbassi, C. Allalou, A. Kassidi, Existence results for some nonlinear elliptic equations via topological degree methods, J. Elliptic Parabol. Equ. 7 (2021) 121-136.
[3] Y. Akdim, C. Allalou, Existence and uniqueness of renormalized solution of nonlinear degenerated elliptic problems, Anal. Theory Appl. 30 (2014) 318-343.
[4] A. Bensoussan, L. Boccardo, F. Murat, On a non linear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988) 347-364.
[5] A. C. Cavalheiro, Existence results for degenerate quasilinear elliptic equations in weighted Sobolev spaces, Bull. Belg. Math. Soc. Simon Stevin 17 (2010) 141-153.
[6] A. C. Cavalheiro, Existence results for a class of nonlinear degenerate elliptic equations, Moroccan J. Pure Appl. Anal. 5 (2019) $164-178$.
[7] F. Chiarenza, Regularity for solutions of quasilinear elliptic equations under minimal assumptions, In: M. Biroli (Ed.), Potential Theory and Degenerate Partial Differential Operators, Springer, Dordrecht, 1995, pp. 325-334.
[8] P. Drabek, A. Kufner, V. Mustonen, Pseudo-monotonicity and degenerated or singular elliptic operators, Bull. Aust. Math. Soc. 56 (1998) $213-221$.
[9] S. Gala, M. A. Ragusa, Y. Sawano, H. Tanaka, Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz-Morrey spaces, Appl. Anal. 93 (2014) 356-368.
[10] J. Garcia-Cuerva, J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Elsevier, Amsterdam, 2011.
[11] A. Kufner, O. John, S. Fučík, Function Spaces, Noordhoff International Publishing, Leyden, 1977.
[12] A. Kufner, B. Opic, How to define reasonably weighted Sobolev spaces, Comment. Math. Univ. Carolin. 25 (1984) 537-554.
[13] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. (1972) $207-226$.
[14] M. E. Ouaarabi, A. Abbassi, C. Allalou, Existence result for a Dirichlet problem governed by nonlinear degenerate elliptic equation in weighted Sobolev spaces, J. Elliptic Parabol. Equ. 7 (2021) 221-242.
[15] M. E. Ouaarabi, A. Abbassi, C. Allalou, Existence result for a general nonlinear degenerate elliptic problems with measure datum in weighted Sobolev spaces, Int. J. Optim. Appl. 1 (2021) 1-9.
[16] M. E. Ouaarabi, A. Abbassi, C. Allalou, Existence and uniqueness of weak solution in weighted Sobolev spaces for a class of nonlinear degenerate elliptic problems with measure data, Int. J. Nonlinear Anal. Appl. 13 (2022) 2635-2653.
[17] M. E. Ouaarabi, C. Allalou, A. Abbassi, Strongly nonlinear degenerated elliptic equations with weight and L^{1} data, International Conference on Research in Applied Mathematics and Computer Science, Casablanca, 2021, \#174.
[18] M. E. Ouaarabi, C. Allalou, A. Abbassi, On the Dirichlet problem for some nonlinear degenerated elliptic equations with weight, 7th International Conference on Optimization and Applications, Wolfenbüttel, 2021, pp. 1-6.
[19] M. A. Ragusa, On weak solutions of ultraparabolic equations, Nonlinear Anal. 47 (2001) 503-511.
[20] M. A. Ragusa, Local Hölder regularity for solutions of elliptic systems, Duke Math. J. 113 (2002) 385-397.
[21] M. A. Ragusa, Parabolic Herz spaces and their applications, Appl. Math. Lett. 25 (2012) 1270-1273.
[22] M. A. Ragusa, A. Razani, Weak solutions for a system of quasilinear elliptic equations, Contrib. Math. 1 (2020) 11-26.
[23] M. A. Ragusa, A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal. 9 (2020) 710-728.
[24] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, Orlando, 1986.
[25] B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer-Verlag, Berlin, 2000.
[26] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. II/B, Springer-Verlag, Berlin, 1990.

[^0]: *This paper is dedicated to the memory of Professor Adil Abbassi.
 ${ }^{\dagger}$ Corresponding author (mohamedelouaarabi93@gmail.com).

