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Abstract

In this paper, using a generalized integral operator, new Hermite-Hadamard type inequalities are obtained for differentiable
modified (h,m)-convex functions of the second type.
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1. Introduction

In recent years, integral inequalities became one of the most attractive areas in mathematics. Consequently, in this area,
there has been a significant growth in the number of researchers and the findings gained in recent years. In this field of
research, there is a classic inequality: the Hermite-Hadamard inequality (1) for convex functions, which is more than 130
years old and continues to attract mathematicians all over the world (for example, see [10,19,21]).

Let R, R+, and N be the sets of real numbers, positive real numbers, and positive integers, respectively. Also, we take
R+

0 := R+ ∪ {0} and N0 := N ∪ {0}. If I ⊂ R is an interval and φ : I → R is a convex function, then for a, b ∈ I with a < b,
the inequality

φ

(
a+ b

2

)
≤ 1

b− a

∫ b

a

φ (x)dx ≤ φ(a) + φ(b)

2
(1)

holds. Convexity is a fundamental concept in geometry, but it is also utilized frequently in other areas of mathematics;
for example, theory of optimization, theory of inequalities, functional analysis, mathematical programming, game theory,
number theory, and variational calculus. The relationship between convexity and these branches becomes deeper and more
beneficial day by day [14–16,41]. We recommend the paper [35] to readers who want a more comprehensive understanding
of the many expansions and generalizations of the classical notion of convexity.

The inequality (1) has become an object of research for many mathematicians, not only with the refinement of the
classical concept of convexity, but also with the use of new integral operators, such as Riemann integral, fractional integrals
of Riemann-Liouville type, and generalized integrals; for example, see [1, 3, 5, 8, 11–13, 20, 23, 25, 30, 33, 34, 36, 37, 44, 46]
and the references cited therein.

The concept of m-convexity was introduced by Toader in [45]. The definition of an m-convex function is given as follows.

Definition 1.1. The function φ : [0, ξ2]→ R, ξ2 > 0, is said to be m-convex, where m ∈ [0, 1], if the inequality

φ (tx+m(1− t)y) ≤ tφ(x) +m(1− t)φ(y) (2)

holds for all x, y ∈ [0, ξ2] and t ∈ [0, 1].

In Definition 1.1, the function φ is said to be m-concave if the reverse case in (2) is fulfilled. The following definitions
are successive extensions of the concept of convex functions.

Definition 1.2 (see [6,22]). Let s ∈ (0, 1] be a real number. A function φ : [0, ξ2]→ [0,+∞), with ξ2 > 0, is said to be s-convex
in the first sense if the inequality

φ(tx+ (1− t)y) ≤ tsφ(x) + (1− ts)φ(y), (3)

holds for all x, y ∈ [0, ξ2] and t ∈ (0, 1).
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Definition 1.3 (see [6,22]). Let s ∈ (0, 1] be a real number. A function φ : [0, ξ2]→ [0,+∞), with ξ2 > 0, is said to be s-convex
in the second sense if the inequality

φ(tx+ (1− t)y) ≤ tsφ(x) + (1− t)sφ(y) (4)

holds for all x, y ∈ [0, ξ2] and t ∈ (0, 1).

Definition 1.4 (see [48]). Let s ∈ [−1, 1] be a real number. A function φ : [0, ξ2]→ [0,+∞), with ξ2 > 0, is said to be extended
s-convex if the inequality

φ(tx+ (1− t)y) ≤ tsφ(x) + (1− t)sφ(y), (5)

holds for all x, y ∈ [0, ξ2] and t ∈ (0, 1).

Definition 1.5 (see [29]). The function φ : [0, ξ2]→ [0,+∞), with ξ2 > 0, is said to be (a,m)-convex, where (α,m) ∈ [0, 1]2, if
for every x, y ∈ [0, ξ2] and t ∈ [0, 1] the following inequality holds:

φ(tx+m(1− t)y) ≤ taφ(x) +m(1− ta)φ(y). (6)

Definition 1.6 (see [31]). Let h : [0, 1]→ R be a non-negative function. The non-negative function φ : [0, ξ2]→ [0,+∞), with
ξ2 > 0, is said to be (h,m)-convex on [0, ξ2] if the inequality

φ (tx+ (1− t)y) ≤ h(t)φ(x) +mh(1− t)φ(y) (7)

is fulfilled for m ∈ [0, 1] and for all x, y ∈ I, and t ∈ [0, 1].

If (7) is reversed, then φ is said to be (h,m)-concave. In Definition 1.6, note that if h(t) = t then this definition coincides
with the definition of an m-convex function; if in addition, we put m = 1 then we obtain the definition of a convex function.
In [32], the authors presented the class of s-(a,m)-convex functions as follows (“redefined” in [47]).

Definition 1.7. A function φ : [0,+∞) → [0,+∞) is said to be s-(a,m)-convex in the second sense if for all ξ1, ξ2 ∈ [0,+∞)

and t ∈ [0, 1], the inequality
φ
(
tξ1 +m(1− t)ξ2

)
≤
(
ta
)s
φ(ξ1) +m

(
1− ta

)s
φ(ξ2), (8)

holds, where (a,m) ∈ [0, 1]2 and s ∈ (0, 1].

On the basis of the definitions listed before, we now present the classes of functions that are crucial for our main results
(see [2]).

Definition 1.8. Let h : [0, 1]→ R be a non-negative function. The non-negative function φ : [0,+∞)→ [0,+∞) is said to be
modified (h,m)-convex of the second type on [0,+∞) if the inequality

φ (tx+m(1− t)y) ≤ hs(t)φ(x) +m(1− h(t))sφ(y) (9)

holds for m ∈ [0, 1], s ∈ [−1, 1], for all x, y ∈ I, and t ∈ [0, 1].

Remark 1.1. Here, we list some special cases of Definition 1.8.

(1). If we take h(t) = t and m = s = 1, then φ is a convex function on [0,+∞) (see [7]).

(2). If h(t) = t, m, s = 1, then φ is an m-convex function on [0,+∞) (see [45]).

(3). If h(t) = t, m = 1, and s ∈ (0, 1], then φ is a s-convex function on [0,+∞) (see [6,22]).

(4). If we take h(t) = t, m = 1, and s ∈ [−1, 1], then φ is an extended s-convex function on [0,+∞) (see [48]).

(5). If h(t) = t, m, and s ∈ (0, 1], then φ is an (s,m)-convex function on [0,+∞) (see [39]).

(6). If h(t) = tα, m = 1, s, with α ∈ (0, 1], then φ is an (α, s)-convex function on [0,+∞) (see [4]).

(7). If h(t) = tα, m, s = 1, with α ∈ (0, 1], then φ is an (α,m)-convex function on [0,+∞) (see [29]).

(8). If h(t) = tα, m, s, with α ∈ (0, 1], then φ is an s-(α,m)-convex function on [0,+∞) (see [47]).

(9). If we take h(t), m, s = 1, then we have a variant of the (h,m)-convex function on [0,+∞) (see [38]).
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In the rest of this paper, we utilize the functions Γ (see [40,41,49,50]) and Γk (see [10]) as defined below:

Γ(z) =

∫ ∞
0

tz−1e−t dt, <(z) > 0, (10)

Γk(z) =

∫ ∞
0

tz−1e−t
k/k dt, k > 0. (11)

It is noted here that

Γk(z)→ Γ(z) whenever k → 1, Γk(z) = (k)
z
k−1Γ

( z
k

)
, and Γk(z + k) = zΓk(z).

Next, we provide some of the most well-known fractional operators (with the assumption that 0 ≤ ξ1 < t < ξ2 ≤ ∞) to
make the main results of this paper easier to read. The well-known Riemann-Liouville fractional integrals are the first of
these operators.

Definition 1.9. If φ ∈ L1[ξ1, ξ2], then Riemann-Liouville fractional integrals of order α ∈ C, with <(α) > 0, are defined by
(right and left, respectively):

αIξ1+φ(x) =
1

Γ (α)

∫ x

ξ1

(x− t)α−1φ(t) dt, x > ξ1 (12)

αIξ2−φ(x) =
1

Γ (α)

∫ ξ2

x

(t− x)α−1φ(t) dt, x < ξ2. (13)

The generalized integral operators that we use in this paper are defined in the next definition (see [18]).

Definition 1.10. The generalized fractional Riemann-Liouville integrals (of order α ∈ R) of an integrable function f(x) on
[0,∞) are given as follows: (

βJαF,ξ1+φ
)

(x) =
1

Γ(β)

∫ x

ξ1

φ(t)dt

F (F(x, t), β)F (t, α)
, (14)

(
βJαF,ξ2−φ

)
(x) =

1

Γ(β)

∫ ξ2

x

φ(t)dt

F (F(x, t), β)F (t, α)
, (15)

where
F(x, t) =

∫ x

t

ds

F (t, s)
,

and F is an absolutely continuous positive function.

Definition 1.11. The left and right fractional generalized integrals of order β ∈ C, with Re(β) > 0, are defined by

(
βJαF,ξ1+φ

)
(x) =

1

Γ(β)

∫ x

ξ1

φ(t)dt

F (F+(x, t), β)F (t− a, α)
(16)

(
βJαF,ξ2−φ

)
(x) =

1

Γ(β)

∫ ξ2

x

φ(t)dt

F (F−(x, t), β)F (b− t, α)
(17)

where
F+(x, t) =

∫ x

t

ds

F (x− s, α)
= JαF,x+(t),

F−(x, t) =

∫ t

x

ds

F (s− x, α)
= JαF,x−(t),

and F (F+(t, x), 1) = F (F−(t, x), 1) = 1.

Remark 1.2. If we take F (z, r) = z(1−r) in the previous definitions, then the integral operators used in [42,43] and defined
in [24] are obtained. A generalization of the classical Riemann-Liouville fractional integral is obtained from the operators
of the kernel pointed at the beginning when β = 1. Obviously, we get the classical Riemann integral under the case of the
previous kernel if α = 1. Other well-known fractional integrals, such as Hadamard’s [19, 27] and Katugampola’s [9, 26],
can also be easily obtained from our definition.

In this paper, we present some variants of the inequality (1) for modified (h,m)-convex functions, within the framework
of the generalized integral operators given in Definition 1.11.
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2. Main results

Theorem 2.1. Let ψ : [0,+∞) → R be a modified (h,m)-convex function of the second type such that m ∈ (0, 1]. If
0 ≤ ξ1 < mξ2 < +∞, ψ ∈ L1[ξ1,mξ2] and h ∈ L1[0, 1], then the following inequality holds:

Fψ
(
ξ1 + ξ2

2

)
≤ 1

ξ2 − ξ1

(
hs
(

1

2

)
JαF,ξ1+(ψ)(ξ2) +

(
1− h

(
1

2

))s
JαF,ξ2−(ψ)(ξ1)

)

≤
(
hs
(

1

2

)
ψ(ξ1) +

(
1− h

(
1

2

))s
ψ(ξ2)

)∫ 1

0

hs(t)dt

F (t, α)

+m

(
hs
(

1

2

)
ψ

(
ξ1
m

)
+

(
1− h

(
1

2

))s
ψ

(
ξ2
m

))∫ 1

0

(1− h(t))sdt

F (t, α)
, (18)

where
F =

∫ 1

0

dt

F (t, α)
.

Proof. For x, y ∈ [0,+∞), t = 1
2 , and m = 1, we have

ψ

(
x+ y

2

)
≤ hs

(
1

2

)
ψ(x) +

(
1− h

(
1

2

))s
ψ(y),

If we choose x = tξ1 + (1− t)ξ2 and y = tξ2 + (1− t)ξ1, with t ∈ [0, 1], we get

ψ

(
ξ1 + ξ2

2

)
≤ hs

(
1

2

)
ψ(tξ1 + (1− t)ξ2) +

(
1− h

(
1

2

))s
ψ(tξ2 + (1− t)ξ1). (19)

By integrating (19) with respect to t, on [0, 1], and then by changing variables, brings us to the first inequality of (18).
Rewriting the right member of (19), we have

hs
(

1

2

)
ψ(tξ1 + (1− t)ξ2) +

(
1− h

(
1

2

))s
ψ(tξ2 + (1− t)ξ1)

= hs
(

1

2

)
ψ

(
tξ1 +m(1− t)ξ2

m

)
+

(
1− h

(
1

2

))s
ψ

(
tξ2 +m(1− t)ξ1

m

)

≤ hs
(

1

2

)(
hs(t)ψ(ξ1) +m(1− h(t))sψ

(
ξ2
m

)
+ hs(t)ψ(ξ2) +m(1− h(t))sψ

(
ξ1
m

))
.

After integrating this inequality with respect to t, between 0 and 1, we obtain

1

ξ2 − ξ1

(
hs
(

1

2

)
JαF,ξ1+(ψ)(ξ2) +

(
1− h

(
1

2

))s
JαF,ξ2−(ψ)(ξ1)

)

≤
(
hs
(

1

2

)
ψ(ξ1) +

(
1− h

(
1

2

))s
ψ(ξ2)

)∫ 1

0

hs(t)dt

F (t, α)

+m

(
hs
(

1

2

)
ψ

(
ξ1
m

)
+

(
1− h

(
1

2

))s
ψ

(
ξ2
m

))∫ 1

0

(1− h(t))sdt

F (t, α)
.

Thus, we obtain the second inequality.

Remark 2.1. In Theorem 2.1, if we consider the Riemann integral (or equivalently, if we take F ≡ 1 and ψ as a convex
function (h(t) = t, s = 1, a = 1 and m = 1)), then from (19) we obtain the classical Hermite-Hadamard inequality (1). Also,
this result is a variant of Theorem 9 of [38].

As we will see, the following result “complements” Theorem 2.1.

Theorem 2.2. Let ψ : [0,+∞) → R be a modified (h,m)-convex function of the second type such that m ∈ (0, 1]. If
0 < mξ1 ≤ ξ1 < mξ2 < +∞, ψ ∈ L1[mξ1,mξ2] and h ∈ L1[0, 1], then the following inequality holds:

1

ξ2 − ξ1
{
JαF,ξ1+(ψ)(ξ2) + JαF,ξ2−(ψ)(ξ1)

}
≤ (ψ(ξ1) + ψ(ξ2))

∫ 1

0

hs(t)dt

F (t, α)
+m

(
ψ

(
ξ1
m

)
+ ψ

(
ξ2
m

))∫ 1

0

(1− h(t))sdt

F (t, α)
. (20)
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Proof. By using the modified (h,m)-convexity of the second type of ψ, we have

ψ(tξ1 + (1− t)ξ2) ≤ hs(t)ψ(ξ1) +m(1− h(t))sψ

(
ξ2
m

)
,

ψ(tξ2 + (1− t)ξ1) ≤ hs(t)ψ(ξ2) +m(1− h(t))sψ

(
ξ1
m

)
.

Integrating these two inequalities, with respect to t between 0 and 1, and then adding member to member, we obtain the
required result by changing variables in the first integrals.

Remark 2.2. If F ≡ 1 and ψ is a convex function, then from (20) we get the right member of the classical Hermite-Hadamard
inequality (1). Similarly, working with the classical Riemann integral, that is, by taking F ≡ 1 and simultaneously taking
ψ(tξ1 + (1 − t)ξ2) with ψ(tξ2 + (1 − t)ξ1), and s = 1, we obtain Theorem 10 of [38]. Analogously, in Theorem 2.2, if we put
F ≡ 1 and m = s = 1, then we obtain Theorem 2.1 of [31] (Remark 2.1 of the aforementioned work remains valid). If, on the
contrary, we consider the kernel F (t, α) = Γ(α)t1−α, then the following inequality (not reported in the literature) is obtained,
which is valid for Riemann-Liouville fractional integrals:

1

(ξ2 − ξ1)α

[
RLJαξ1+ψ(ξ2) +RL Jαξ2−ψ(ξ1)

]
≤ (ψ(ξ1) + ψ(ξ2))

[
RLJα0+(hs(t))(1) +mRLJα0+((1− h(t))s)(1)

]
.

Of course, if we consider different kernels, then we get new variants of (20).

The next result is a more general variation of the previous two results, in which two modified (h,m)-convex functions
of second type are involved.

Theorem 2.3. Let ψ1 be a modified (h1,m)-convex of the second type and ψ2 be a modified (h2,m)-convex function of the
second type such that ψ1ψ2 ∈ L1[mξ1,mξ2] and h1h2 ∈ L1[ξ1, ξ2]. The following inequality

1

ξ2 − ξ1
{
JαF,ξ1+(ψ1ψ2)(mξ2) + JαF,ξ2−(ψ1ψ2)(mξ1)

}
≤ (ψ1(ξ1)ψ2(ξ1) + ψ1(ξ2)ψ2(ξ2)) JαF,0(hs1h

s
2)(1)

+mψ1(ξ1)ψ2(ξ2)

∫ 1

0

hs1(t)(1− h2(t))sdF t+mψ1(ξ2)ψ2(ξ1)

∫ 1

0

(1− h1(t))shs2(t)dF t

+mψ1(ξ2)ψ2(ξ1)

∫ 1

0

hs1(t)(1− h2(t))sdF t+mψ1(ξ1)ψ2(ξ2)

∫ 1

0

(1− h1(t))shs2(t)dF t

+m2 (ψ1(ξ1)ψ2(ξ1) + ψ1(ξ2)ψ2(ξ2))

∫ 1

0

(1− h1(t))s(1− h2(t))sdF t (21)

holds, where
dF t =

dt

F (t, α)
.

Proof. By using the definitions of the functions ψ1 and ψ2, we have

ψ1(tξ1 +m(1− t)ξ2)ψ2(tξ1 +m(1− t)ξ2)

≤ (hs1(t)ψ1(ξ1) +m(1− h1(t))sψ1(ξ2)) (hs2(t)ψ2(ξ1) +m(1− h2(t))sψ2(ξ2)) , (22)

ψ1(tξ2 +m(1− t)ξ1)ψ2(tξ2 +m(1− t)ξ1)

≤ (hs1(t)ψ1(ξ2) +m(1− h1(t))sψ1(ξ1)) (hs2(t)ψ2(ξ2) +m(1− h2(t))sψ2(ξ1)) . (23)

After multiplying and ordering, we get from (22) and (23)

ψ1(tξ1 +m(1− t)ξ2)ψ2(tξ1 +m(1− t)ξ2) + ψ1(tξ2 +m(1− t)ξ1)ψ2(tξ2 +m(1− t)ξ1)

≤ hs1(t)hs2(t) (ψ1(ξ1)ψ2(ξ1) + ψ1(ξ2)ψ2(ξ2))

+mhs1(t)(1− h2(t))sψ1(ξ1)ψ2(ξ2) +m(1− h1(t))shs2(t)ψ1(ξ2)ψ2(ξ1)

+mhs1(t)(1− h2(t))sψ1(ξ2)ψ2(ξ1) +m(1− h1(t))shs2(t)ψ1(ξ1)ψ2(ξ2)

+m2(1− h1(t))s(1− h2(t))s (ψ1(ξ1)ψ2(ξ1) + ψ1(ξ2)ψ2(ξ2)) .

The desired inequality is obtained after integrating this last inequality, with respect to t between 0 and 1 and change of
variables in the integrals of the left member.
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Remark 2.3. In Theorem 2.3, if we put F ≡ 1, s = 1, and if we consider only (22), then we obtain a complement to Theorem
2.2 of [31] for (h,m)-convex. If we consider the kernel F (t, α) = t1−α, then we obtain new inequalities under Riemann-
Liouville fractional integrals. If we use another kernel F , then we obtain inequalities not reported in the literature.

The next result gives a more general conclusion than Theorem 2.2.

Theorem 2.4. Under the conditions on ψ1 and ψ2 specified in Theorem 2.3, the following inequality is satisfied:

1

mξ2 − ξ1
[
JαF,ξ1+ψ1ψ2(ξ2) + JαF,ξ2−ψ1ψ2(ξ1)

]
≤MinA (24)

where

A = (ψ1(ξ1)ψ2(ξ1) + ψ1(ξ2)ψ2(ξ2)) JαF,0(hs1h
s
2)(1) +m1m2

[
ψ1

(
ξ2
m1

)
ψ2

(
ξ2
m2

)]
JαF,0(hs1h

s
2)(1)

+

[
ψ1

(
ξ2
m1

)
ψ2(ξ1) +m1ψ1

(
ξ1
m1

)
ψ2(ξ2)

] ∫ 1

0

((1− h1(t))shs2(t)) dF t

+m2

[
ψ1(ξ1)ψ2

(
ξ2
m2

)
+ ψ1(ξ2)ψ2

(
ξ1
m2

)]∫ 1

0

(hs1(t)(1− h2(t))s) dF t.

Proof. We have

ψ1(tξ1 + (1− t)ξ2)ψ2(tξ1 + (1− t)ξ2) = ψ1

(
tξ1 +m1(1− t) ξ2

m1

)
ψ2

(
tξ1 +m2(1− t) ξ2

m2

)

≤
(
hs1(t)ψ1(ξ1) +m1(1− h1(t))sψ1

(
ξ2
m1

))(
hs2(t)ψ2(ξ1) +m2(1− h2(t))sψ2

(
ξ2
m1

))
,

(25)

ψ1(tξ2 + (1− t)ξ1)ψ2(tξ2 + (1− t)ξ1) = ψ1

(
tξ2 +m1(1− t) ξ1

m1

)
ψ2

(
tξ2 +m2(1− t) ξ1

m2

)

≤
(
hs1(t)ψ1(ξ2) +m1(1− h1(t))sψ1

(
ξ1
m1

))(
hs2(t)ψ2(ξ2) +m2(1− h2(t))sψ2

(
ξ1
m2

))
.

(26)

By adding member to member of (25) and (26), we obtain

ψ1(tξ1 + (1− t)ξ2)ψ2(tξ1 + (1− t)ξ2) + ψ1(tξ2 + (1− t)ξ1)ψ2(tξ2 + (1− t)ξ1)

≤
(
hs1(t)ψ1(ξ1) +m1(1− h1(t))sψ1

(
ξ2
m1

))(
hs2(t)ψ2(ξ1) +m2(1− h2(t))sψ2

(
ξ2
m1

))

+

(
hs1(t)ψ1(ξ2) +m1(1− h1(t))sψ1

(
ξ1
m1

))(
hs2(t)ψ2(ξ2) +m2(1− h2(t))sψ2

(
ξ1
m2

))
.

By proceeding in the same way as in Theorem 2.3, we obtain the required inequality.

Remark 2.4. In Theorem 2.3, if we take F ≡ 1, m = s = 1, and use only (25), then we get Theorem 2.3 of [31]. By using
different kernels, we obtain new integral inequalities.

3. Conclusions

In this work, we have obtained several extensions and generalizations of the classical Hermite-Hadamard inequality, in
the context of generalized integral operators. We have shown that several previously published results are particular cases
of the ones that we have obtained. As a future work, it seems to be interesting to study other inequalities (for example,
see [17]) by using generalized operators.
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