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Abstract

For the given bipartite graphs G1, . . . , Gn, the bipartite Ramsey number BR(G1, . . . , Gn) is the least positive integer b such
that any complete bipartite graph Kb,b having edges coloured with 1, 2, . . . , n, contains a copy of some Gi (1 ≤ i ≤ n), where
all the edges of Gi have colour i. For the given bipartite graphs G1, . . . , Gn and a positive integer m, the m-bipartite Ramsey
number BRm(G1, . . . , Gn) is defined as the least positive integer b (b ≥ m) such that any complete bipartite graph Km,b

having edges coloured with 1, 2, . . . , n, contains a copy of some Gi (1 ≤ i ≤ n), where all the edges of Gi have colour i. The
values of BRm(G1, G2) (for each m), BRm(K3,3,K3,3) and BRm(K2,2,K5,5) (for particular values of m) have already been
determined in several articles, where G1 = K2,2 and G2 ∈ {K3,3,K4,4}. In this article, the value of BRm(K2,2,K6,6) is
computed for each m ∈ {2, 3, . . . , 8}.

Keywords: Ramsey numbers; bipartite Ramsey numbers; complete graphs; m-bipartite Ramsey number.

2020 Mathematics Subject Classification: 05D10, 05C55.

1. Introduction

Extremal graph theory problems generally ask for the maximum or minimum order or size of a graph having certain
characteristics. Such problems are often quite natural in the construction of networks or circuits. Ramsey theory explores
the question of how big a structure must be to contain a certain substructure or substructures. For the graphs G and H,
the Ramsey number R(G,H) is the smallest order of a complete graph such that any 2-colouring of the edges results in
either a copy of G in the first colour or a copy of H in the second colour. It is a well-known fact that R(G,H) ≤ R(Km,Kn),
where G and H are two arbitrary graphs of orders m and n, respectively. Bipartite Ramsey problems deal with the same
questions but the graph under investigation in this case is the complete bipartite graph instead of the complete graph. For
the given bipartite graphs G1, . . . , Gn, the bipartite Ramsey number BR(G1, . . . , Gn) is the least positive integer b such
that any complete bipartite graph Kb,b having edges coloured with 1, 2, . . . , n contains a copy of some Gi (1 ≤ i ≤ n), where
all the edges of Gi have colour i. One can refer to [3,4,6–10,15,16] and their references for further detail on this topic.

For the given bipartite graphs G1, . . . , Gn and a positive integer m, the m-bipartite Ramsey number BRm(G1, . . . , Gn)

is defined as the least positive integer b (b ≥ m) such that any complete bipartite graph Km,b having edges coloured with
1, 2, . . . , n, contains a copy of some Gi (1 ≤ i ≤ n), where all the edges of Gi have colour i. The value of BRm(G1, G2) have
already been determined in several papers for G1 ∈ {K2,2,K3,3} and G2 ∈ {K3,3,K4,4,K5,5}. One can refer to [1,2,5,11–14]
and their references for further studies on m-bipartite Ramsey numbers.

Theorem 1.1 (see [1,14]). If m ≥ 2, then

BRm(K2,2,K3,3) =


does not exist, where m = 2, 3,
15 where m = 4,
12 where m = 5, 6,
9 where m = 7, 8,
m where m ≥ 9.

Theorem 1.2 (see [2]). If m ∈ {2, 3, . . . , 8}, then

BRm(K3,3,K3,3) =

 does not exist, where m = 2, 3, 4,
41 where m = 5, 6,
29 where m = 7, 8.
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Theorem 1.3 (see [13]). If m ∈ {2, 3, . . . , 8}, then

BRm(K2,2,K5,5) =

 does not exist, where m = 2, 3, 4, 5,
40 where m = 6,
30 where m = 7, 8.

In this paper, the exact value of BRm(K2,2,K6,6) is computed for some m ≥ 2, as given in the following theorem.

Theorem 1.4. If m ∈ {2, 3, . . . , 8}, then

BRm(K2,2,K6,6) =

 does not exist, where m = 2, 3, 4, 5, 6,
57 where m = 7,
45 where m = 8.

Suppose that G[X,Y ] is a bipartite graph with the partite sets X and Y . Let E(G[X ′, Y ′]) be the edge set of G[X ′, Y ′],
whereX ′ ⊆ X and Y ′ ⊆ Y . We use ∆(GX) and ∆(GY ) to denote the maximum degree of vertices in the partsX and Y ofG,
respectively. The degree of a vertex v ∈ V (G) is denoted by degG(v). For each v ∈ V (G), NG(v) = {u ∈ V (G), vu ∈ E(G)}.
For the given graphs G, H, and F , we say G is 2-colourable to (H,F ) if there is a subgraph of G, say G′, such that H * G′

and F * G′. We use G → (H,F ) to indicate that G is 2-colourable to (H,F ). Two graphs G1 = (V1, E1) and G2 = (V2, E2)

are isomorphic if there is a bijection φ from V1 to V2 such that vw ∈ E1 if and only if φ(v)φ(w) ∈ E2. We write G1
∼= G2

when G1 is isomorphic to G2. For simplification, we use [n] = {1, 2, . . . , n}.

2. Proof of Theorem 1.4

We start with the following lemma which is helpful for proving Theorem 1.4.

Lemma 2.1. For m ≥ 7 and n ≥ 12, let X = {x1, . . . , xm} and Y = {y1, . . . , yn} be the partite sets of K = Km,n. Let G be a
subgraph of Km,n. If ∆(GX) ≥ 12, then either K2,2 ⊆ G or K6,6 ⊆ G.

Proof. Without loss of generality, let ∆(GX) = 12 and NG(x) = Y ′, where |Y ′| = 12 and K2,2 * G. Therefore,

|NG(x′) ∩ Y ′| ≤ 1

for each x′ ∈ X \ {x}. Since |X| ≥ 7 and |Y ′| = 12, one has K6,6 ⊆ G[X \ {x}, Y ′].

To establish Theorem 1.4, we need the following result.

Theorem 2.1. For each m ∈ {2, 3, 4, 5, 6}, the number BRm(K2,2,K6,6) does not exist.

Proof. Suppose that m ∈ {2, 3, 4, 5, 6}. For an arbitrary integer t ≥ 6, set K = Km,t, and let G be a subgraph of K such that
G = K1,t. Therefore, we have G = Km−1,t. Hence, one concludes that neither K2,2 ⊆ G nor K6,6 ⊆ G. Therefore, for each
m ∈ {2, 3, 4, 5, 6}, the number BRm(K2,2,K6,6) does not exist.

In the next result, we determine the value of BRm(K2,2,K6,6) for m = 7.

Theorem 2.2. BR7(K2,2,K6,6) = 57.

Proof. Suppose that X = {x1, . . . , x7} and Y = {y1, y2, . . . , y56} are the partite sets of K = K7,56. Suppose that G ⊆ K such
that NG(xi) = Yi satisfying the following properties:

(A1): Y1 = {y1, y2, . . . , y11},

(A2): Y2 = {y1, y12, y13, . . . , y21},

(A3): Y3 = {y2, y12, y22, y23, . . . , y30},

(A4): Y4 = {y3, y13, y22, y31, . . . , y38},

(A5): Y5 = {y4, y14, y23, y31, y39, y40, . . . , y45},

(A6): Y6 = {y5, y15, y24, y32, y39, y46, y47, . . . , y51},

(A7): Y7 = {y6, y16, y25, y33, y40, y46, y52, . . . , y56}.
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For every pair i, j ∈ [7], by using (Ai) and (Aj), one has |NG(xi) ∩ NG(xj)| = 1 and | ∪j=7
j=1,j 6=i NG(xj)| = 51. Therefore,

K2,2 * G and K6,6 * G[X \ {xi}, Y ] for each i ∈ [7]. Hence, BR7(K2,2,K6,6) ≥ 57.
Now, suppose that X = {x1, . . . , x7} and Y = {y1, . . . , y57} are the partite sets of K = K7,57. Suppose that G is a

subgraph of K such that K2,2 * G. Consider ∆ = ∆(GX). One can suppose that ∆ ∈ {9, 10, 11}. Otherwise, if ∆ ≥ 12,
then the theorem holds by Lemma 2.1. Also, for the case when ∆ ≤ 8, it is clear that K6,6 ⊆ G. Now, we have the following
claims.

Claim 2.1. If ∆ = 9, then K6,6 ⊆ G.

Proof of Claim 2.1. Without loss of generality, let NG(x1) = Y1 = {y1, . . . , y9}. As K2,2 * G, we have |NG(xi) ∩NG(xj)| ≤ 1

for every pair i, j ∈ [7]. Also, it can be checked that |NG(x) ∩ Y1| = 1 for at least four members of X \ {x1}, otherwise
K6,6 ⊆ G[X,Y1]. Without loss of generality, let |NG(x) ∩ Y1| = 1 for each xi ∈ {x2, x3, x4, x5}. Therefore, as ∆ = 9 and
|NG(x) ∩ Y1| = 1 for each xi ∈ {x2, x3, x4, x5}, one gets∣∣∣∣∣∣

j=5⋃
j=1

NG(xj)

∣∣∣∣∣∣ ≤ 41.

Hence, as NG(x6) ≤ ∆ = 9, one has | ∪j=6
j=1 NG(xj)| ≤ 50. Therefore, as |Y | = 57, one has K6,6 ⊆ G[X \ {x7}, Y ].

Claim 2.2. If ∆ = 10, then K6,6 ⊆ G.

Proof of Claim 2.2. Without loss of generality, let NG(x1) = Y1 = {y1, . . . , y10}. As K2,2 * G, we have |NG(xi)∩NG(xj)| ≤ 1

for each i, j ∈ [7]. Also, it can be checked that |NG(x)∩Y1| = 1 for at least five members ofX\{x1}, otherwiseK6,6 ⊆ G[X,Y1].
Without loss of generality, let |NG(x)∩Y1| = 1 for each x ∈ X ′ = {x2, x3, x4, x5, x6}. Therefore, as ∆ = 10 and |NG(x)∩Y1| = 1

for each x ∈ X ′, then one can check that | ∪j=6
j=1 NG(xj)| ≤ 55. If |NG(x) ∩ (Y \ Y1)| ≤ 8 for at least four members of X ′, then

one can check that |∪j=6
j=1NG(xj)| ≤ 51. Therefore, as |Y | = 57, we haveK6,6 ⊆ G[X \{x7}, Y ], that is the claim is true. Now,

suppose that |NG(x) ∩ (Y \ Y1)| = 9 for at least two members of X ′. Without loss of generality, let |NG(x) ∩ (Y \ Y1)| = 9

for each x ∈ {x2, x3}. For i = 2, 3, we may suppose that NG(xi) ∩ (Y \ Y1) = Yi. As |Yi| = 9, if |Y2 ∩ Y3| = 0, then it is
easy to check that |NG(x) ∩ Yi| = 1 for each x ∈ {x4, x5, x6}. Otherwise, one can say that K6,6 ⊆ G[X \ {xi}, Yi] for some
i ∈ {2, 3}. So, we have | ∪j=6

j=1 NG(xj)| ≤ 10 + 9 + 9 + 7 + 7 + 7 = 49, hence the proof is the same. So, let |Y2 ∩ Y3| = 1.
Therefore, we have | ∪j=3

j=1 NG(xj)| = 27. If |NG(x) ∩ Yi| = 1 for each x ∈ {x4, x5, x6}, then the proof is the same. Now, for
each j = 4, 5, 6, let |NG(xj) ∩ Yi| = 1 for at least one i ∈ {2, 3}. Therefore, we have |NG(x) ∩ (Y1 ∪ Y2 ∪ Y3)| ≥ 2, that is
|NG(x)∩ (Y \ Y1 ∪ Y2 ∪ Y3)| ≤ 8 for each x ∈ {x4, x5, x6}. So, we have | ∪j=6

j=1 NG(xj)| ≤ 10 + 9 + 8 + 8 + 8 + 8 = 51. Therefore,
we have K6,6 ⊆ G[X \ {x7}, Y ]. Now, let there is a member of {x4, x5, x6} say x, such that |NG(x) ∩ Yi| = 0 for each i = 2, 3.
Without loss of generality, let x = x4. As |Y3| = 9, |Y2∩Y3| = 1, and |NG(x4)∩Yi| = 0, it is easy to check that |NG(x)∩Yi| = 1

for each x ∈ {x5, x6} and each i ∈ {2, 3}. Otherwise, one can say that K6,6 ⊆ G[X \ {xi}, Yi] for some i = 2, 3. So, we have∣∣∣∣∣∣
j=6⋃

j=1,j 6=4

NG(xj)

∣∣∣∣∣∣ ≤ 10 + 9 + 8 + 7 + 7 = 41.

Therefore, as ∆ = 10, |NG(x4) ∩ Y1| = 1, we have | ∪j=6
j=1 NG(xj)| ≤ 50, that is K6,6 ⊆ G[X \ {x7}, Y ].

By Claims 2.1 and 2.2, we can assume that ∆ = 11. Without loss of generality, let |NG(x1)| = 11 and Y1 = NG(x1) =

{y1, . . . , y11}. Next, we have the following claim.

Claim 2.3. If either |NG(xi) ∩ Y1| = 0 or NG(xi) ∩ Y1 = NG(xj) ∩ Y1 for some i, j ∈ {2, . . . , 7}, then K6,6 ⊆ G.

Proof of Claim 2.3. As K2,2 * G, so |NG(xi) ∩ Y1| ≤ 1 for each i. Now, let |NG(x2) ∩ Y1| = 0. Therefore, it is clear that
K6,6 ⊆ G[X \ {x1}, Y1]. Also, without loss of generality, let NG(x2) ∩NG(x3) ∩ Y1 = {y}, then as |X| = 7 and |Y1| = 11, we
have K6,6 ⊆ G[X \ {x1}, Y1 \ {y}].

By Claim 2.3, it is clear that K6,5 ⊆ G[X \ {x1}, Y1]. If |NG(x)| = 11 for each x ∈ X, then by Claim 2.3 we have
| ∪j=7

j=1 NG(xj)| = 56, that is there exists a member of Y say y57, such that |NG(y57)| = 0. Therefore, we have K6,6 ⊆
G[X \ {x1}, Y1 ∪ {y57}] and the proof is complete. For the case that |NG(x)| = ∆ = 11 for at least three members of X,
the proof is the same. For example, assume that |NG(x)| = 11 for three members of X, and without loss of generality,
suppose that |NG(xi)| = 11 for i = 1, 2, 3. Now, by Claim 2.3 we have | ∪j=3

j=1 NG(xj)| = 30. Also, by Claim 2.3 we have
| ∪j=6

j=1 NG(xj)| ≤ 51, so, the proof is the same. Hence, we may assume that |NG(x)| = 11 for at most two members of
X. Assume that |NG(x)| = 11 for two members of X (for other case the proof is the same). Without loss of generality,
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suppose that |NG(xi)| = 11 for i = 1, 2. Now, by Claim 2.3 we have | ∪j=2
j=1 NG(xj)| = 21. One can say that there exist

at least four members of X \ {x1, x2} say {x3, x4, x5, x6} such that for each i = 3, 4, 5, 6 we have |NG(xi)| = 10, otherwise
| ∪j=6

j=1 NG(xj)| ≤ 51, and the proof is the same. Hence, for some i ∈ {3, 4, 5, 6} say i = 3, it is clear that there exist at least
two members of {x4, x5, x6} say x4, x5 such that |NG(x3)∩NG(xj)| = 1, for j = 4, 5, otherwise we have K6,6 ⊆ G[X \{x3}, Y3]

and the proof is complete. So, by Claim 2.3 one can say that | ∪j=6
j=1 NG(xj)| ≤ 51, hence the proof is the same. So, the

theorem holds.

In the next result, we determine the value of BR8(K2,2,K6,6).

Theorem 2.3. BR8(K2,2,K6,6) = 45.

Proof. Let X = {x1, . . . , x8} and Y = {y1, . . . , y44} be the partite sets of K = K8,44. Suppose that G be a subgraph of K such
that for each i ∈ [8], NG(xi) = Yi with the following properties:

(B1): Y1 = {y1, . . . , y9},

(B2): Y2 = {y1, y10, y11, . . . , y17},

(B3): Y3 = {y2, y10, y18, y19, . . . , y24},

(B4): Y4 = {y3, y11, y18, y25, y26, y27, y28, y29, y30},

(B5): Y5 = {y4, y12, y19, y25, y31, y32, y33, y34, y35},

(B6): Y6 = {y5, y13, y20, y26, y31, y36, y37, y38, y39},

(B7): Y7 = {y6, y14, y21, y27, y32, y36, y40, y41, y42},

(B8): Y8 = {y7, y15, y22, y28, y33, y37, y40, y43, y44}.

By considering (Bi) and (Bj), it can be said that:

(C1): |NG(xi) ∩NG(xj)| = 1, for each i, j ∈ [8],

(C2): | ∪i=6
i=1 NG(xji)| = 39, for each j1, . . . , j6 ∈ [8].

Therefore, by (C1), we have K2,2 * G. Also, by (C2), one can check that K6,6 * G, which means that K8,44 → (K2,2,K6,6).
Therefore, the lower bound holds.

Now, we prove the upper bound. Suppose thatX = {x1, . . . , x8} and Y = {y1, . . . , y45} are the partition sets ofK = K8,45.
Let G be a subgraph of K such that K2,2 * G. We show that K6,6 ⊆ G. Consider ∆ = ∆(GX). As K2,2 * G, by Lemma 2.1,
one can assume that ∆ ≤ 11. We have the following claim.

Claim 2.4. If ∆ = 11, then K6,6 ⊆ G.

Proof of Claim 2.4. Without loss of generality, let |NG(x1) = Y1| = 11. Since K2,2 * G, |X| = 8, and |Y1| = 11, then for
each pair i, j ∈ {2, . . . , 8} one can suppose that |NG(xi) ∩ Y1| = 1, and that xi and xj have a different neighborhood in Y1.
Otherwise, in any case, it is clear that K6,6 ⊆ G[X,Y1]. Therefore, for each x 6= x1, we have K6,5 ⊆ G[X \ {x1, x}, Y1].
If there is a member of Y \ Y1 say y, such that |NG(y) ∩ (X \ {x1})| ≥ 6, then K6,6 ⊆ G[X \ {x1}, Y1 ∪ {y}]. Hence, let
|NG(y)∩(X \{x1})| ≥ 2 for each y ∈ Y \Y1. Therefore, |E(G[X \{x1}, Y \Y1])| ≥ 34×2 = 68. Hence, by pigeon-hole principle,
there is at least one member ofX\{x1} say x2, such that |NG(x2)∩(Y \Y1)| ≥ 10. SetNG(x2)∩(Y \Y1) = Y2. Now, asK2,2 * G,
then |NG(xi)∩Y2| ≤ 1 for each i ∈ {3, . . . , 8}. Therefore, since |Y2| ≥ 10, one can check thatK6,1 ⊆ G[X \{x1, x2}, Y2]. Hence,
as K6,5 ⊆ G[X \ {x1, x2}, Y1], we have K6,6 ⊆ G[X \ {x1, x2}, Y1 ∪ Y2]. So, the claim holds.

Therefore, by Claim 2.4, one can assume that ∆ ≤ 10. Now, we have the following claim.

Claim 2.5. If there exist V ⊆ X, such that |V | = 5 and | ∪x∈V NG(x)| ≤ 35, then we have K6,6 ⊆ G.

Proof of Claim 2.5. Without loss of generality, assume that V = {x1, x2, x3, x4, x5} and let Y ′ = ∪x∈VNG(x) where |Y ′| ≤ 35.
If |Y ′| ≤ 29, then as ∆ ≤ 10, it is easy to say that |Y ′ ∪NG(x)| ≤ 39 for each x ∈ X \ V , that is K6,6 ⊆ G[V ∪ {x}, Y ], hence
the claim holds. So, suppose that |Y ′| ∈ {30, . . . , 34, 35}. Assume that |Y ′| = 35. Hence, for each x ∈ {x6, x7, x8}, one can
assume that |NG(x) ∩ (Y \ Y ′)| ≥ 5, otherwise we have |Y ′ ∪NG(x)| ≤ 39 for some x ∈ X \ V , that is K6,6 ⊆ G. Therefore,
as |Y \ ∪i=5

i=1NG(xi)| = 10 and |{x6, x7, x8}| = 3, it is easy to say that K2,2 ⊆ G[{x6, x7, x8}, Y \ ∪i=5
i=1NG(xi)], a contradiction.

Now, let |Y ′| = 34. Hence, for each x ∈ {x6, x7, x8}, one can assume that |NG(x)∩ (Y \ Y ′)| ≥ 6, otherwise |Y ′ ∪NG(x)| ≤ 39
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for some x ∈ X \ V , that is we have K6,6 ⊆ G. Therefore, as |Y \ ∪i=5
i=1NG(xi)| = 11 and |{x6, x7, x8}| = 3, it is easy to say

that K2,2 ⊆ G[{x6, x7, x8}, Y \ ∪i=5
i=1NG(xi)], a contradiction again. For the case that |Y ′| ∈ {30, 31, 32, 33}, the proof is the

same. Hence, the claim holds.

If ∆ ≤ 6, then it is clear thatK6,6 ⊆ G. Next, we suppose that ∆ = 7, and without loss of generality, let |NG(x1) = Y1| = 7.
One can assume that |NG(x) ∩ Y1| = 1 for at least three members of X \ {x1}. Otherwise, as |Y1| = |X \ {x1}| = 7 and
|NG(x)∩Y1| ≤ 1 for each member of X \ {x1}. Then it is easy to say that K6,6 ⊆ G[X,Y1]. Hence, without loss of generality,
assume that |NG(x) ∩ Y1| = 1 for each members of {x2, x3, x4}. Hence as ∆ = 7, one can check that | ∪i=4

i=1 NG(xi)| = 25.
Therefore, we have | ∪i=5

i=1 NG(xi)| ≤ 32, and by Claim 2.5, we have K6,6 ⊆ G. So, we may suppose that ∆ ∈ {8, 9, 10}. Now,
we consider the following cases.

Case 1. ∆ = 8. Without loss of generality, suppose that ∆ = |NG(x1) = Y1|. As K2,2 * G, one can suppose that there exist
at least four members of X \ {x1} say X ′ = {x2, . . . , x5}, such that |NG(xi)∩ Y1| = 1 and NG(xi)∩ Y1 6= NG(xj)∩ Y1 for each
i, j ∈ {2, . . . , 5}. Otherwise, one can check that K7,5 ⊆ G[X \ {x1}, Y1]. Therefore, for each y ∈ Y \ Y1, one can suppose that
|NG(y) ∩ (X \ {x1})| ≥ 2. Otherwise K6,6 ⊆ G. So, as |Y \ Y1| = 37, we have |E(G[X \ {x1}, Y \ Y1])| ≥ 74. Therefore, by
pigeon-hole principle there is at least one member of X \ {x1} say x, such that |NG(x)| ≥ 10, a contradiction. Now, without
loss of generality, suppose that Y1 = {y1, . . . , y8} and xiyi−1 ∈ E(G) for each i = 2, 3, 4, 5. Set Y ′ = ∪i=5

i=1NG(xi). Hence,
it is easy to say that |Y ′| ≤ 36. If |Y ′| ≤ 35, then the proof is complete by Claim 2.5. So, let |Y ′| = 36. That is ∆ = 8 =

|NG(xi)| for each i ∈ [5] and |NG(xi) ∩ NG(xj)| = 0 for each i, j ∈ {2, 3, 4, 5}. Now consider i = 2, 3, as K2,2 * G, we have
|NG(xj)∩(NG(xi)\{yi−1})| ≤ 1 for each j ∈ {6, 7, 8}. Hence one can say thatK6,6 ⊆ G[X\{x2, x3}, NG(x2)∪NG(x3)\{y1, y2}].

Case 2. ∆ = 9. Without loss of generality, suppose that NG(x1) = Y1 = {y1, y2, . . . , y9}. Now, set A as follow:

A = {x ∈ X, |NG(x)| = ∆ = 9}.

AsK2,2 * G, we have |NG(xi)∩Y1| ≤ 1. Hence, one can say thatK6,3 ⊆ G[X\{x1, x}, Y1] for each x ∈ {x2, . . . , x8}. Therefore,
by considering the members of A, one can check that the following claim is true.

Claim 2.6. If |NG(x) ∩NG(x′)| = 0 for some x, x′ ∈ A, then K6,6 ⊆ G.

Next, by using Claim 2.6, we prove the following claim.

Claim 2.7. If |NG(x) ∩NG(x′) ∩NG(x′′)| = 1 for some x, x′, x′′ ∈ A, then K6,6 ⊆ G.

Proof of Claim 2.7. Without loss of generality, assume that x1, x2, x3 ∈ A, {y1} = Y1 ∩ Y2 ∩ Y3, where Yi = NG(xi) for
i = 1, 2, 3. Since K2,2 * G, for each i ∈ [3] and each x ∈ X \ {x1, x2, x3} we have |NG(x) ∩ Yi| ≤ 1. Therefore, as |Yi| = 9, and
|NG(x)∩Yi| ≤ 1 for each x ∈ X\{x1, x2, x3}, it is easy to say thatK5,3 ⊆ G[X\{x1, x2, x3}, Yi\{y1}] for each i ∈ [3]. Therefore,
we have K5,6 ⊆ G[X \ {x1, x2, x3}, Y1 ∪ Y2 \ {y1}]. So, as y1 ∈ Y1 ∩ Y2 ∩ Y3 and K2,2 * G, then NG(x3) ∩ (Y1 ∪ Y2 \ {y1}) = ∅.
Therefore, K6,6 ⊆ G[X \ {x1, x2}, Y1 ∪ Y2 \ {y1}]. Hence, the claim holds.

Consider |A|. First suppose that |A| ≥ 5, and without loss of generality, assume that {x1, x2, x3, x4, x5} ⊆ A. Therefore,
by Claims 2.6 and 2.7, it can be said that |∪i=5

i=1NG(xi)| = 35. Hence, by Claim 2.5 the proof is complete. So, we may assume
that |A| ≤ 4. Now, we verify the following two claims.

Claim 2.8. If |A| = 4, then K6,6 ⊆ G.

Proof of Claim 2.8. Without loss of generality, assume that A = {x1, x2, x3, x4}. Therefore, by Claims 2.6 and 2.7, one can
check that | ∪i=4

i=1 NG(xi)| = 30. Set Y ′ = ∪i=4
i=1NG(xi). If there is a member of X \A say x, so that 3 ≤ |NG(x) ∩ Y ′|, then∣∣∣∣∣

i=4⋃
i=1

NG(xi) ∪NG(x)

∣∣∣∣∣ ≤ 35

and the proof is complete by Claim 2.5.
Hence, we may suppose that |NG(x)∩Y ′| ≤ 2 for each x ∈ X \A. So as |Y ′| = 30, one can check thatK4,22 ⊆ G[X \A, Y ′].

Without loss of generality, letK4,22
∼= G[X \A, Y ′′], where Y ′′ ⊆ Y ′ and |Y ′′| = 22. Therefore, it is easy to check that there is

at least two members of A say xi1xi2 , such that |(NG(xi1)∪NG(xi1))∩Y ′′| ≤ 16. Without loss of generality, let i1 = 1, i2 = 2.
So, we have K6,6 ⊆ G[X \ {x3, x4}, Y ′′]. Hence, the claim holds.
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Claim 2.9. If |A| = 3, then K6,6 ⊆ G.

Proof of Claim 2.9. Without loss of generality, suppose thatA = {x1, x2, x3}. Therefore, by Claims 2.6 and 2.7, it can be said
that | ∪i=3

i=1NG(xi)| = 24. Set Y ′ = ∪i=3
i=1NG(xi). Suppose that there exists a vertex of X \A say x, such that |NG(x)∩Y ′| ≥ 2,

then we have | ∪i=4
i=1 NG(xi) ∪NG(x)| ≤ 30. Without loss of generality, assume that x = x4. If | ∪i=4

i=1 NG(xi)| ≤ 27, then the
proof is complete by Claim 2.5. So, suppose that 28 ≤ | ∪i=4

i=1 NG(xi)| ≤ 30. Let | ∪i=4
i=1 NG(xi)| = 30. Set X ′ = {x5, x6, x7, x8}.

In this case, one can suppose that |NG(x) ∩ (Y \ ∪i=4
i=1NG(xi))| ≥ 6 for each x ∈ X ′. Otherwise, the proof is complete by

Claim 2.5. Therefore, as |X ′| = 4 and |Y \ ∪i=4
i=1NG(xi))| = 15, then one can check that K2,2 ⊆ G, a contradiction. For the

case that | ∪i=4
i=1 NG(xi)| = 28, 29, the proof is the same.

So, let |NG(x) ∩ Y ′| ≤ 1 for each x ∈ X \ A. Therefore, it is clear that K5,19 ⊆ G[X \ A, Y ′]. Without loss of generality,
let K5,19

∼= G[X \A, Y ′′], where Y ′′ ⊆ Y ′ and |Y ′′| = 19. Therefore, one can say that there is at least one member of A say y,
so that |NG(y) ∩ Y ′′| ≤ 9. Without loss of generality, let y = y1. So, K6,6 ⊆ G[X \ {x2, x3}, Y ′′]. Hence, the claim holds.

Hence, by Claims 2.8 and 2.9, one can suppose that |A| ≤ 2. First, assume that |A| = 2 and without loss of generality,
suppose that A = {x1, x2}. By Claim 2.7, we have | ∪i=2

i=1 NG(xi)| = 17. For i = 1, 2, set Yi = NG(xi). By Claim 2.7, without
loss of generality, let y1 ∈ Y1 ∩ Y2. Set X ′ = X \ A. Suppose that there is at least two vertices of X ′ say x3, x4, such that
|NG(xj) ∩ (Yi \ {y1})| = 0 for at least one i ∈ [2] and j = 3, 4. Without loss of generality, let |NG(xj) ∩ (Y1 \ {y1})| = 0,
therefore as |NG(xj) ∩ (Y2 \ {y1})| ≤ 1 and |Yi| = 9, one can say that K6,4 ⊆ G[X \ A, Y1 \ {y1}]. Also, one can check
that K6,2 ⊆ G[X \ A, Y2 \ {y1}], hence K6,6 ⊆ G[X \ A, Y1 ∪ Y2 \ {y1}]. Therefore for any i ∈ {1, 2}, we may suppose that
|NG(x) ∩ (Yi \ {y1})| = 1 for at least five members of X ′. Hence as |X ′| = 6, it is clear that there is at least three members
of X ′ say {x3, x4, x5}, so that for any x ∈ {x3, x4, x5}, we have |NG(x) ∩ (Y1 ∪ Y2 \ {y1})| = 2. Therefore, as |NG(x)| ≤ 8 for
each i = 3, 4, 5, one can check that | ∪i=5

i=1 NG(xi)| ≤ 17 + 18 = 35. Hence, the proof is complete by Claim 2.5.
Now, let |A| = 1 and without loss of generality, let A = {x1}. In this case, one can say that there exist at least five

vertices of X \ {x1} say X ′′ = {x2, x3, x4, x5, x6}, such that |NG(x) ∩ Y1| = 1 for each x ∈ X ′′. Otherwise, as |Y1| = 9 and
|NG(x) ∩ Y1| ≤ 1 for each x ∈ X \ {x1}, then one can say that K6,6

∼= G[X \ {x1}, Y1]. Therefore, there is at least one vertex
of X ′′ say x2, so that |NG(x)| = 8. Otherwise, we have | ∪i=6

i=2 NG(xi)| ≤ 35 and the proof is complete by Claim 2.5. Without
loss of generality, assume that Y2 = NG(x2)∩ (Y \Y1) and |Y2| = 7. Therefore, one can say that there is at least two vertices
of X ′′ \ {x2} say {x3, x4}, so that for each x ∈ {x3, x4}, we have |NG(x) ∩ Y2| = 1, otherwise as |Y2| = 7, then one can say
that K6,6

∼= G[X \ {x2}, Y2]. Now, one can check that | ∪i=5
i=1 NG(xi)| ≤ 9 + 7 + 6 + 6 + 7 = 35, and the proof is complete by

Claim 2.5.

Case 3. ∆ = 10. Without loss of generality, let NG(x1) = Y1 = {y1, . . . , y10}. Therefore by K2,2 * G it is clear to say that
K6,4 ⊆ G[X \{x1, x}, Y1] for each x ∈ X \{x1}. Let there is a member of X \{x1} say x2, so that |NG(x2)∩ (Y \Y1) = Y2| = 8.
Therefore, as K2,2 * G, we have |NG(xi) ∩ Y2| ≤ 1. Hence, since |Y2| = 8 and |X \ {x1, x2}| = 6, one can say that
K6,2 ⊆ G[X \ {x1, x2}, Y2]. So, K6,6 ⊆ G[X \ {x1, x2}, Y1 ∪ Y2]. Now, one can suppose that |NG(x) ∩ (Y \ Y1)| ≤ 7 for any
member of X \ {x1}. Hence we have the following claim:

Claim 2.10. Suppose that |Y ′ = NG(x) ∩ (Y \ Y1)| = 7. If either |NG(x′) ∩ Y ′| = 0 for one x′ ∈ X \ {x1, x}, or |NG(x′) ∩
NG(x′′) ∩ Y ′| = 1 for some x′, x′′ ∈ X \ {x1, x}, then K6,6 ⊆ G.

Proof of Claim 2.10. Without loss of generality, let |Y ′ = NG(x2) ∩ (Y \ Y1)| = 7. Also, without loss of generality, let
|NG(x3) ∩ Y ′| = 0. Therefore, Since K2,2 * G, so |NG(xi) ∩ (Y1 ∪ Y ′)| ≤ 2 for each i ∈ {3, 4, 5, 6, 7, 8}. As |Y1 ∪ Y ′| = 17,
|NG(x3) ∩ Y ′| = 0, and |NG(xi) ∩ (Y1 ∪ Y ′)| ≤ 2, one can say that | ∪i=8

i=3 (NG(xi) ∩ (Y1 ∪ Y ′))| ≤ 11, which means that
K6,6 ⊆ G[X \ {x1, x2}, Y1 ∪ Y ′]. For the case that |NG(x′) ∩ NG(x′′) ∩ Y ′| = 1 for some x′, x′′ ∈ X \ {x1, x}, the proof is the
same. Hence, the claim holds.

Set M as follow:
M = {x ∈ X \ {x1}, |NG(x) ∩ (Y \ Y1)| = 7}.

By considering M , we have:

Claim 2.11. If |M | 6= 0, then we have K6,6 ⊆ G.

Proof of Claim 2.11. Without loss of generality, let x2 ∈M , and NG(x2)∩ (Y \Y1) = Y2 = {y11, y12 . . . , y17}. If |M | ≥ 5, then
by Claim 2.10, it can be said that |∪xj∈M ′NG(xj)| ≤ 35, whereM ′ ⊆M and |M ′| = 5. Hence, the proof is complete by Claim
2.5. Now, assume that |M | = i, and without loss of generality, suppose that M = {x2, x3, . . . , xi+1}, where i ∈ {1, 2, 3, 4}. If
|M | ≤ 2, then it can be said that | ∪xj∈M ′′ NG(xj)| ≤ 35, where M ′′ ⊆ X \M and |M ′′| = 5. Hence, the proof is complete by
Claim 2.5. Now assume that |M | = i, where i ∈ {3, 4}.
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By Claim 2.10, for the case that i = 4, we have | ∪j=5
j=1 NG(xj)| = 10 + 7 + 6 + 5 + 4 = 32. Hence, the proof is complete

by Claim 2.5. Also for the case that i = 3, by Claim 2.10, we have | ∪j=4
j=1 NG(xj)| = 10 + 7 + 6 + 5 = 28. Therefore, we have

| ∪j=5
j=1 NG(xj)| ≤ 34. Hence, the proof is complete by Claim 2.5.

Now, by Claim 2.11, let |M | = 0, that is |NG(x) ∩ (Y \ Y1)| ≤ 6 for each x ∈ X \ {x1}. In this case, the proof is complete
by Claim 2.5.

Hence, by Cases 1, 2, and 3, the upper bound holds. Consequently, it holds that BR8(K2,2,K6,6) = 45, which completes
the proof of Theorem 2.3.

Proof of Theorem 1.4. By combining Theorems 2.1, 2.2, and 2.3, one gets Theorem 1.4.
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