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Abstract

For the given bipartite graphs G, ..., G, the bipartite Ramsey number BR(G1, ..., G5) is the least positive integer b such
that any complete bipartite graph K, having edges coloured with 1,2, ..., n, contains a copy of some G; (1 < i < n), where
all the edges of G; have colour i. For the given bipartite graphs G, ..., G, and a positive integer m, the m-bipartite Ramsey
number BR,,(G1,...,Gn) is defined as the least positive integer b (b > m) such that any complete bipartite graph K., »
having edges coloured with 1,2,... n, contains a copy of some G; (1 < ¢ < n), where all the edges of GG; have colour i. The
values of BR,,(G1, G2) (for each m), BR,,(K3,3, K3,3) and BR,, (K22, K55) (for particular values of m) have already been
determined in several articles, where G1 = K2 and G2 € {K3,3,K44}. In this article, the value of BR,,(K2,2, K¢,6) is
computed for each m € {2,3,...,8}.
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1. Introduction

Extremal graph theory problems generally ask for the maximum or minimum order or size of a graph having certain
characteristics. Such problems are often quite natural in the construction of networks or circuits. Ramsey theory explores
the question of how big a structure must be to contain a certain substructure or substructures. For the graphs G and H,
the Ramsey number R(G, H) is the smallest order of a complete graph such that any 2-colouring of the edges results in
either a copy of G in the first colour or a copy of H in the second colour. It is a well-known fact that R(G, H) < R(K,,, K,),
where G and H are two arbitrary graphs of orders m and n, respectively. Bipartite Ramsey problems deal with the same
questions but the graph under investigation in this case is the complete bipartite graph instead of the complete graph. For
the given bipartite graphs Gi,...,G,, the bipartite Ramsey number BR(G4,...,G,) is the least positive integer b such
that any complete bipartite graph K ; having edges coloured with 1,2,...,n contains a copy of some G; (1 < ¢ < n), where
all the edges of G; have colour i. One can refer to [3,4,6-10, 15,16] and their references for further detail on this topic.

For the given bipartite graphs Gy, ..., G, and a positive integer m, the m-bipartite Ramsey number BR,,(G1,...,G,)
is defined as the least positive integer b (b > m) such that any complete bipartite graph K, ; having edges coloured with
1,2,...,n, contains a copy of some G; (1 < ¢ < n), where all the edges of G, have colour i. The value of BR,,,(G1,G2) have
already been determined in several papers for G; € {K3 2, K33} and G € {K3 3, K44, K55}. One can refer to [1,2,5,11-14]
and their references for further studies on m-bipartite Ramsey numbers.

Theorem 1.1 (see [1,14]). If m > 2, then

does not exist, where m = 2,3,
15 where m =4,
BR,,(K32,K33) =4q 12 where m = 5,6,
9 where m =17,8,
m where m >9
Theorem 1.2 (see [2]). If m € {2,3,...,8}, then
does not exist, where m = 2,3,4,
BR,, (K33, K33) =q 41 where m =5,6,
29 where m =17,8.
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Theorem 1.3 (see [13]). If m € {2,3,...,8}, then

does not exist, where m = 2,3,4,5,
BRm(K272,K5,5) = 40 where m = 6,
30 where m =17,8.

In this paper, the exact value of BR,, (K32, K¢ ¢) is computed for some m > 2, as given in the following theorem.

Theorem 1.4. If m € {2,3,...,8}, then

does not exist, where m = 2,3,4,5,6,
BR,,(K32,Ksg) = ¢ 57 where m =1,
45 where m = 8.

Suppose that G[X,Y] is a bipartite graph with the partite sets X and Y. Let E(G[X’,Y”]) be the edge set of G[ X', Y],
where X' C X and Y’ C Y. We use A(Gx) and A(Gy) to denote the maximum degree of vertices in the parts X and Y of G,
respectively. The degree of a vertex v € V(G) is denoted by deg(v). For each v € V(G), Ng(v) = {u € V(G), vu € E(G)}.
For the given graphs G, H, and F', we say G is 2-colourable to (H, F') if there is a subgraph of G, say G’, such that H ¢ G’
and FF ¢ G'. We use G — (H, F) to indicate that G is 2-colourable to (H, F). Two graphs G; = (V4, E1) and G2 = (Va, E»)
are isomorphic if there is a bijection ¢ from V; to V; such that vw € F; if and only if ¢(v)¢(w) € Es. We write G; = Gs
when G, is isomorphic to G5. For simplification, we use [n] = {1,2,...,n}.

2. Proof of Theorem 1.4

We start with the following lemma which is helpful for proving Theorem 1.4.

Lemma 2.1. For m > 7and n > 12, let X = {z1,...,zn}and Y = {y1,...,y,} be the partite sets of K = K,, ,. Let G be a
subgraph of K, n. If A(Gx) > 12, then either K> > C G or K¢ C G.

Proof. Without loss of generality, let A(Gx) =12 and N (z) =Y’, where |Y'| =12 and K, > ¢ G. Therefore,
[Ne(2)nY'| <1
for each 2’ € X \ {z}. Since |X| > 7 and |Y'| = 12, one has K¢ C G[X \ {z},Y"]. O
To establish Theorem 1.4, we need the following result.
Theorem 2.1. For each m € {2,3,4,5,6}, the number BR,,(K2 2, K¢,) does not exist.

Proof. Suppose that m € {2,3,4,5,6}. For an arbitrary integer ¢ > 6, set K = K,, ;, and let G be a subgraph of K such that
G = Ky ;. Therefore, we have G = K,,_1,. Hence, one concludes that neither Ky » C G nor K45 C G. Therefore, for each
m € {2,3,4,5,6}, the number BR,,, (K2, K¢ ) does not exist. O

In the next result, we determine the value of BR,,, (K32, K¢,6) for m = 7.
Theorem 2.2. BR7(K272, KG,G) = 57.

Proof. Suppose that X = {z1,...,27} and Y = {y1,92,...,ys6} are the partite sets of K = K7 55. Suppose that G C K such
that Ng(z;) =Y, satisfying the following properties:

(A1): Y1 ={y1,92,..-, 911},

(A2): Yo = {y1,¥12, Y13, - - -, Y21},

(A3): Y3 = {y2,912, Y22, Y23+ - - -, Y30 }»

(A4): Yy = {y3, Y13, Y22, Y31, - - -, Y38 }>

(A5): Y5 = {4, Y14, Y23, Y31, Y39, Y40, - - - , Y45 }»
(A6): Y5 = {ys, Y15, Y24, Y32, Y39, Y46, Y47, - - - , Y51},

(AD): Y7 = {ys6, Y16, Y25, Y33, Y40, Y46, Y52, - - - » Y56 } -
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For every pair 4,j € [7], by using (Ai) and (Aj), one has |Ng(z;) N Ng(z;)| = 1 and | U?i;j# Ng(z;)| = 51. Therefore,
Ks> ¢ Gand K¢ € G[X \ {x;},Y] for each i € [7]. Hence, BR7 (K32, Kg) > 57.

Now, suppose that X = {z1,...,z7} and Y = {yi1,...,ys7} are the partite sets of K = K757. Suppose that G is a
subgraph of K such that K,, ¢ G. Consider A = A(Gx). One can suppose that A € {9,10,11}. Otherwise, if A > 12,
then the theorem holds by Lemma 2.1. Also, for the case when A < 8, it is clear that K¢ C G. Now, we have the following
claims.

Claim 2.1. If A =9, then K¢ C G.

Proof of Claim 2.1. Without loss of generality, let Ng(z1) = Y1 = {y1,...,y9}. As Kz 5 € G, we have [N¢(z;) N Ng(z;)| <1
for every pair i,j € [7]. Also, it can be checked that |[Ng(z) N Y| = 1 for at least four members of X \ {z;}, otherwise
K¢ C G[X,Y:1]. Without loss of generality, let |[Ng(z) NY;| = 1 for each x; € {x3, 3,24, 25}. Therefore, as A = 9 and
|INg(z) NY1| =1 for each x; € {x2, x5, 24,25}, One gets

=5

U Nea(z))| < 41.

j=1
Hence, as Ng(z6) < A =9, one has | U?i? Ng(z;)| < 50. Therefore, as |Y| = 57, one has K¢ 6 C G[X \ {z7},Y]. O
Claim 2.2. If A = 10, then K¢ C G.

Proof of Claim 2.2. Without loss of generality, let Ng(z1) = Y1 = {y1,...,%10}. As K25 € G, we have |[Ng(z;) N Ng(zj)| <1
for each i, j € [7]. Also, it can be checked that | N (z)NY;| = 1 for at least five members of X \ {z; }, otherwise K56 C G[X, Y1].
Without loss of generality, let |Ng(2)NY;| = 1 foreach z € X' = {2, x3, 24, x5, 26 }. Therefore,as A = 10 and |[Ng(z)NY;| =1
for each = € X', then one can check that | U?j Ng(zj)] <55. If [INg(z) N (Y \ Y1)| < 8 for at least four members of X', then
one can check that | U?i? Ng(z;)| < 51. Therefore, as |Y| = 57, we have K ¢ C G[X \ {27}, Y], that is the claim is true. Now,
suppose that |[Ng(2z) N (Y \ Y1)| = 9 for at least two members of X’. Without loss of generality, let |[Ng(z) N (Y \ Y1)| =9
for each = € {z2,23}. For i = 2,3, we may suppose that Ng(z;) N (Y \ Y1) = V. As |Y;| = 9, if |[Y2 NY5| = 0, then it is
easy to check that |[Ng(z) NY;| = 1 for each = € {z4,25,76}. Otherwise, one can say that K55 C G[X \ {z;},Y;] for some
i € {2,3}. So, we have | U;:j’ Ng(zj)] <104+9494 7+ 7+ 7 = 49, hence the proof is the same. So, let |Y> NY5| = 1.
Therefore, we have | U?j’ Ng(zj)| = 27. If [Ng(z) NY;| = 1 for each = € {z4, 25,26}, then the proof is the same. Now, for
each j = 4,5,6, let |[Ng(z;) NY;| = 1 for at least one ¢ € {2,3}. Therefore, we have |[Ng(z) N (Y1 UY> UYs)| > 2, that is
INag(z) N (Y \ Y1 UY2UY3)| < 8foreach x € {x4,25,26}. So, we have | U?j’ Ng(z;)] <10+9+ 8+ 8+ 8+ 8 = 51. Therefore,
we have K56 C G[X \ {z7},Y]. Now, let there is a member of {z4, x5, z6} say z, such that |Ng(z) NY;| = 0 for each i = 2, 3.
Without loss of generality, let x = z4. As |Y5] =9, |YoNY3]| = 1, and | Ng(z4)NY;| = 0, it is easy to check that |[Ng(z)NY;| =1
for each = € {z5,76} and each i € {2,3}. Otherwise, one can say that K¢ ¢ C G[X \ {x,},Y;] for some i = 2, 3. So, we have

j=6
U No(z;)| <104+9+8+7+7 =41
J=1,j#4

Therefore, as A = 10, |[Ng(z4) NY1| = 1, we have | Ugjf Ng(z;)| <50, thatis K¢ 6 C G[X \ {z7},Y]. O

By Claims 2.1 and 2.2, we can assume that A = 11. Without loss of generality, let |[Ng(x1)| = 11 and Y7 = Ng(z1) =
{y1,...,y11}. Next, we have the following claim.

Claim 2.3. Ifeither |[Ng(x;) NY1| =0or Ng(z;) NY; = Ng(z;) NY; for some i,j € {2,...,7}, then K¢ C G.

Proof of Claim 2.3. As K25 ¢ G, so |[Ng(x;) NY1| < 1 for each i. Now, let |[Ng(x2) NY1| = 0. Therefore, it is clear that
K C GIX \ {z1},Y1]. Also, without loss of generality, let Ng(z2) N Ng(z3) NY; = {y}, then as | X| = 7 and |Y;| = 11, we
have K6,6 - é[X \ {1‘1}, 1/1 \ {y}] O

By Claim 2.3, it is clear that K¢5 C G[X \ {z1},Y1]. If [Ng(z)| = 11 for each z € X, then by Claim 2.3 we have
| U?j Ng(z;)| = 56, that is there exists a member of Y say ys7, such that |Ng(ys7)] = 0. Therefore, we have K¢ C
G[X \ {z1},Y1 U {ys7}] and the proof is complete. For the case that |[Ng(z)| = A = 11 for at least three members of X,
the proof is the same. For example, assume that |[Ng(z)| = 11 for three members of X, and without loss of generality,
suppose that |[Ng(z;)| = 11 for i = 1,2,3. Now, by Claim 2.3 we have | U?j’ Ng(z;)| = 30. Also, by Claim 2.3 we have
| U?j Ng(z;)| < 51, so, the proof is the same. Hence, we may assume that |Ng(z)| = 11 for at most two members of
X. Assume that |Ng(z)| = 11 for two members of X (for other case the proof is the same). Without loss of generality,
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suppose that |[Ng(z;)] = 11 for i = 1,2. Now, by Claim 2.3 we have | U?j Ng(zj)] = 21. One can say that there exist
at least four members of X \ {x1, 22} say {z3,24, x5, x6} such that for each i = 3,4,5,6 we have |[Ng(z;)| = 10, otherwise
| U?i? Ng(z;)| <51, and the proof is the same. Hence, for some i € {3,4,5,6} say ¢ = 3, it is clear that there exist at least
two members of {z4, x5, x4} say x4, x5 such that |[Ng(z3) N Ng(x;)| = 1, for j = 4,5, otherwise we have K¢ ¢ C G[X \ {z3}, Y3]
and the proof is complete. So, by Claim 2.3 one can say that | U?i? Ng(z;)| < 51, hence the proof is the same. So, the
theorem holds. O

In the next result, we determine the value of BRg(K> 2, K¢,6).
Theorem 2.3. BRs(K2 2, Kg) = 45.

Proof. Let X = {z1,...,23} and Y = {y1, ..., yasa} be the partite sets of K = K 44. Suppose that G be a subgraph of K such
that for each i € [8], Ng(z;) = Y; with the following properties:

B1): Y1 = {y1,....p},
B2): Yy = {y1,910, Y11, - - s Y17}>»
(B3): Y3 = {y2, Y10, Y18, Y19, - - - Y24},
(B4): Yy = {y3, Y11, Y18, Y25, Y26, Y27, Y28, Y29, Y30 }»
(B5): Y5 = {y4, Y12, Y19, Y25, Y31, Y32, Y33, Y34, Y35 | s
(B6): Y5 = {ys, Y13, Y20, Y26, Y31, Y36, Y37, Y38, Y39 |5
B7: Y7 = {y6, Y14, Y21, Y27, Y32, Y36, Y40, Y41, Y42 }»
(B8): Ys = {yr, Y15, Y22, Y28, Y33, Y37, Y40, Y43, Yaa }-
By considering (Bi) and (Bj), it can be said that:
(C1): |Ng(z;) N Ng(z;)| =1, for each 4, 5 € [§],
(C2): |UZ8 Ng(zy,)| = 39, for each ji, ..., js € [8].
Therefore, by (C1), we have K, > ¢ G. Also, by (C2), one can check that K¢ ¢ G, which means that Kg 44 — (K22, Ks6)-
Therefore, the lower bound holds.
Now, we prove the upper bound. Suppose that X = {x1,...,zs}andY = {91, ..., ys5} are the partition sets of K = Kg 45.

Let G be a subgraph of K such that K> » ¢ G. We show that K¢ C G. Consider A = A(Gx). As K25 ¢ G, by Lemma 2.1,
one can assume that A < 11. We have the following claim.

Claim 24. If A = 11, then K¢ C G.

Proof of Claim 2.4. Without loss of generality, let |[Ng(z1) = Y1| = 11. Since K>» ¢ G, |X| = 8, and |Y;| = 11, then for
each pair i, j € {2,...,8} one can suppose that |[N¢(z;) NY1| = 1, and that z; and z; have a different neighborhood in Y;.
Otherwise, in any case, it is clear that Ks¢ C G[X,Y1]. Therefore, for each z # z1, we have K¢5 C G[X \ {x1,2},Y1].
If there is a member of Y \ Y; say y, such that [Ng(y) N (X \ {z1})| > 6, then K¢ C G[X \ {z1},Y1 U {y}]. Hence, let
|INa(y)N(X \{z1})| > 2foreach y € Y'\ Y;. Therefore, |E(G[X \{z1},Y \Y1])| > 34 x2 = 68. Hence, by pigeon-hole principle,
there is at least one member of X'\ {1} say 2, such that [ Ng(22)N(Y'\Y7)| > 10. Set N (22)N(Y'\Y1) = Ya. Now, as K5 € G,
then |[Ng(z;)NYs| < 1foreachi € {3,...,8}. Therefore, since |Y5| > 10, one can check that K51 C G[X \ {z1,z2}, Y2]. Hence,
as K¢ 5 C G[X \ {z1,22},Y1], we have Ks 6 C G[X \ {z1,22}, Y1 UY3]. So, the claim holds. O

Therefore, by Claim 2.4, one can assume that A < 10. Now, we have the following claim.

Claim 2.5. If there exist V C X, such that |V| =5 and | Uzcv Ng(z)| < 35, then we have K¢ C G.

Proof of Claim 2.5. Without loss of generality, assume that V' = {x1, 25, 23, 24,25} and let Y/ = U,cy N (x) where Y] < 35.
If |Y’] <29, then as A < 10, it is easy to say that |Y' U Ng(z)| < 39 for each x € X \ V, that is K6 C G[V U {z},Y], hence
the claim holds. So, suppose that |Y’| € {30,...,34,35}. Assume that |Y’'| = 35. Hence, for each « € {x¢, 27,25}, one can
assume that [Ng(x) N (Y \ Y’)| > 5, otherwise we have |Y' U Ng(x)| < 39 for some z € X \ V, that is K¢ C G. Therefore,
as |Y \ UZ{Ng(z;)| = 10 and |[{z¢, z7, 25 }| = 3, it is easy to say that Ks» C G[{zs,z7,73},Y \ U=} Ng(x;)], a contradiction.
Now, let |Y’| = 34. Hence, for each z € {x¢,x7, 25}, one can assume that |[Ng(z) N (Y \Y’)| > 6, otherwise |Y' U Ng(z)| < 39
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for some z € X \ V, that is we have K5 C G. Therefore, as |Y \ U=} Ng(x;)| = 11 and |{xs, z7, 25}| = 3, it is easy to say
that Ks 5 C G[{zs, x7,25},Y \ U:Z) Ng(x;)], a contradiction again. For the case that |Y’| € {30, 31, 32,33}, the proof is the
same. Hence, the claim holds. O

If A < 6, thenitis clear that K5 ¢ C G. Next, we suppose that A = 7, and without loss of generality, let | Ng(z1) = Y1| = 7.
One can assume that |[Ng(z) NYy| = 1 for at least three members of X \ {x;}. Otherwise, as |Y;| = |X \ {z1}| = 7 and
|Ng(z) NY;| <1 for each member of X \ {z1}. Then it is easy to say that K¢ s C G[X,Y;]. Hence, without loss of generality,
assume that |[Ng(z) N Y;| = 1 for each members of {z2,73,74}. Hence as A = 7, one can check that | U=} Ng(z;)| = 25.
Therefore, we have | U= Ng(z;)| < 32, and by Claim 2.5, we have K¢ C G. So, we may suppose that A € {8,9,10}. Now,
we consider the following cases.

Case 1. A = 8. Without loss of generality, suppose that A = |[Ng(z1) = Y1|. As K5 ¢ G, one can suppose that there exist
at least four members of X \ {z1} say X' = {3, ..., 25}, such that |[Ng(z;) NY1| =1 and Ng(x;) Y1 # Ng(x;) NY; for each
i,j €{2,...,5}. Otherwise, one can check that K; 5 C G[X \ {1}, Y1]. Therefore, for each y € Y \ Y1, one can suppose that
NG (y) N (X \ {z1})| > 2. Otherwise Kss C G. So, as |Y \ V1| = 37, we have |E(G[X \ {z1},Y \ Y1])| > 74. Therefore, by
pigeon-hole principle there is at least one member of X \ {z;} say z, such that |Ng(z)| > 10, a contradiction. Now, without
loss of generality, suppose that Y1 = {y1,...,y3} and z;3,_1 € E(G) for each i = 2,3,4,5. Set Y’ = U=} Ng(z;). Hence,
it is easy to say that |Y’| < 36. If |Y’| < 35, then the proof is complete by Claim 2.5. So, let |Y’| = 36. Thatis A =8 =
|Ng(x;)| for each i € [5] and |[Ng(z;) N Ng(x;)| = 0 for each i, j € {2,3,4,5}. Now consider i = 2,3, as K22 ¢ G, we have
|NG(2)N(Ng(2:)\{yi—1})| < 1for each j € {6,7,8}. Hence one can say that K¢ 6 C G[X \ {72, 23}, Ng(22)UNg(23)\{y1, y2}]-

Case 2. A = 9. Without loss of generality, suppose that Ng(z1) = Y1 = {y1,92,...,y0}. Now, set A as follow:
A={z e X, |Ng(z)|=A=09}.

As K5 ¢ G, we have | Ng(x;)NY1| < 1. Hence, one can say that K¢ 3 C G[X \{z1, 2}, Y] foreachz € {zs,...,25}. Therefore,
by considering the members of A, one can check that the following claim is true.

Claim 2.6. If |Ng(z) N Ng(2')| = 0 for some x,2' € A, then Kgg C G.
Next, by using Claim 2.6, we prove the following claim.
Claim 2.7. If |[Ng(z) N Ng(2') N Ng(2")| = 1 for some x,2', 2" € A, then K¢ C G.

Proof of Claim 2.7. Without loss of generality, assume that z1,25,23 € A, {y1} = Y1 N Yy N Y3, where Y; = Ng(z;) for
i=1,2,3. Since K ¢ G, for each i € [3] and each z € X \ {x1, z2, 23} we have |[Ng(z) NY;| < 1. Therefore, as |Y;| = 9, and
|Ng(z)NY;| < 1foreachz € X \{zy,7a, 23}, it is easy to say that K5 3 C G[X\{x1, 2,73}, Y;\{y1}] for eachi € [3]. Therefore,
we have K56 C G[X \ {z1,72, 23}, Y1 UY2 \ {t1}]. So,as y1 € Y1 NY2NY; and Ko 2 € G, then Ng(z3) N (YU Y2\ {y1}) = 0.
Therefore, K¢ C G[X \ {71, 22}, Y1 UY2 \ {y1}]. Hence, the claim holds. O

Consider |A|. First suppose that |A| > 5, and without loss of generality, assume that {1, x5, 23, x4, 25} C A. Therefore,
by Claims 2.6 and 2.7, it can be said that | U=} Ng(z;)| = 35. Hence, by Claim 2.5 the proof is complete. So, we may assume
that |A| < 4. Now, we verify the following two claims.

Claim 2.8. If|A| = 4, then K676 - a
Proof of Claim 2.8. Without loss of generality, assume that A = {1, 22,23, 24}. Therefore, by Claims 2.6 and 2.7, one can
check that | Ui=] Ng(z;)| = 30. Set Y/ = U=} Ng(x;). If there is a member of X \ A say z, so that 3 < |[Ng(z) NY’|, then

=4

U Ne (i) U No(x)

i=1

<35

and the proof is complete by Claim 2.5.

Hence, we may suppose that |[Ng(z)NY'| < 2 for each z € X\ A. So as |[Y’| = 30, one can check that K, 20 C G[X \ A4,Y"].
Without loss of generality, let K420 = G[X\ 4,Y”], where Y” C Y’ and |Y"'| = 22. Therefore, it is easy to check that there is
at least two members of A say x;, x;,, such that |(Ng(z;, ) U Ng(z;,)) NY"| < 16. Without loss of generality, let i; = 1,5 = 2.
So, we have K¢ C G[X \ {z3,74},Y"]. Hence, the claim holds. O
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Claim 2.9. If |A| = 3, then K¢ C G.

Proof of Claim 2.9. Without loss of generality, suppose that A = {x1, o, 23}. Therefore, by Claims 2.6 and 2.7, it can be said
that | U= Ng(z;)| = 24. Set Y/ = U3 Ng(x;). Suppose that there exists a vertex of X \ A say x, such that |[Ng(z)NY’| > 2,
then we have | U=} Ng(z;) U Ng ()| < 30. Without loss of generality, assume that z = x4. If | U=} Ng(2;)| < 27, then the
proof is complete by Claim 2.5. So, suppose that 28 < | U= Ng(z;)| < 30. Let | U= Ng(x;)| = 30. Set X' = {w5, z6, 77, 78}
In this case, one can suppose that |[Ng(z) N (Y \ UZiNg(x;))| > 6 for each 2 € X’. Otherwise, the proof is complete by
Claim 2.5. Therefore, as |X'| = 4 and |Y \ UZ{Ng(z;))| = 15, then one can check that K> > C G, a contradiction. For the
case that | U=} Ng(x;)| = 28,29, the proof is the same.

So, let [Ng(z) NY’| < 1 for each z € X \ A. Therefore, it is clear that K519 C G[X \ A,Y”]. Without loss of generality,
let K519 2 G[X \ A,Y"], where Y’ C Y’ and |Y"”| = 19. Therefore, one can say that there is at least one member of 4 say y,
so that |[Ng(y) N Y”| < 9. Without loss of generality, let y = y;. So, K¢ C G[X \ {w2,z3},Y"]. Hence, the claim holds. O

Hence, by Claims 2.8 and 2.9, one can suppose that |A| < 2. First, assume that |A| = 2 and without loss of generality,
suppose that A = {x1,z2}. By Claim 2.7, we have | U:=3 Ng(z;)| = 17. For i = 1,2, set Y; = Ng(x;). By Claim 2.7, without
loss of generality, let y; € Y1 NY,. Set X’ = X \ A. Suppose that there is at least two vertices of X’ say 3, 24, such that
INa(z;) N (Y; \ {y1})] = 0 for at least one i € [2] and j = 3,4. Without loss of generality, let [Ng(z;) N (Y1 \ {y:1})| = 0,
therefore as |[Ng(z;) N (Y2 \ {y1})| < 1 and |Y;| = 9, one can say that Kg4 C G[X \ A4,Y; \ {y1}]. Also, one can check
that Kgo € G[X \ A, Y2\ {y1}], hence Kss C G[X \ A,Y1 UY>2 \ {y1}]. Therefore for any i € {1,2}, we may suppose that
|INe(z) N (Y; \ {y1})] = 1 for at least five members of X’. Hence as | X'| = 6, it is clear that there is at least three members
of X' say {x3, x4, x5}, so that for any x € {x3, x4, x5}, we have |[Ng(z) N (Y1 UY2 \ {y1})| = 2. Therefore, as |[Ng(z)| < 8 for
each i = 3,4, 5, one can check that | UI=% Ng(z;)| < 17 + 18 = 35. Hence, the proof is complete by Claim 2.5.

Now, let |[A| = 1 and without loss of generality, let A = {z;}. In this case, one can say that there exist at least five
vertices of X \ {z1} say X" = {2, x3, x4, 5, %6}, such that |[Ng(z) NY1| = 1 for each x € X”. Otherwise, as |Y7| = 9 and
|INg(z) NYi| <1for each z € X \ {z;}, then one can say that K¢ ¢ = G[X \ {71}, Y1]. Therefore, there is at least one vertex
of X" say x2, so that |Ng(z)| = 8. Otherwise, we have | U=5 N (z;)| < 35 and the proof is complete by Claim 2.5. Without
loss of generality, assume that Yo = Ng(22) N (Y \ Y1) and |Ya| = 7. Therefore, one can say that there is at least two vertices
of X"\ {z2} say {z3, 24}, so that for each x € {x3, 24}, we have |[Ng(z) N Y2| = 1, otherwise as |Y2| = 7, then one can say
that K¢ 6 = G[X \ {22}, Y2]. Now, one can check that | U=} Ng(z;)| < 9+ 7+ 6+ 6 + 7 = 35, and the proof is complete by
Claim 2.5.

Case 3. A = 10. Without loss of generality, let N¢(z1) = Y1 = {y1,...,%10}. Therefore by K> > ¢ G it is clear to say that
K4 C G[X\ {x1,2},Y;] for each z € X\ {x1}. Let there is a member of X \ {z1} say z2, so that |[Ng(z2)N (Y \ Y1) = V2| = 8.
Therefore, as K>» ¢ G, we have |[Ng(z;) N Y2| < 1. Hence, since |Y2| = 8 and |X \ {z1,22}| = 6, one can say that
Koo C GIX \ {z1,22},Ya]. So, K6 C G[X \ {z1,22},Y1 U Ys]. Now, one can suppose that [Ng(z) N (Y \ Y1)| < 7 for any
member of X \ {z1}. Hence we have the following claim:

Claim 2.10. Suppose that |Y' = Ng(x) N (Y \ Y1)| = 7. If either |[Ng(2') NY’| = 0 for one ' € X \ {x1,2}, or |[Ng(a') N
Ng(2")NY'| =1 for some z’, 2" € X \ {z1,x}, then K¢ C G.

Proof of Claim 2.10. Without loss of generality, let |Y' = Ng(a2) N (Y \ Y1)| = 7. Also, without loss of generality, let
|NG(z3) NY’| = 0. Therefore, Since K> ¢ G, so |[Ng(z;) N (Y1 UY’)| < 2 for each i € {3,4,5,6,7,8}. As [Y; UY'| = 17,
|INg(z3) NY'| = 0, and [Ng(z;) N (Y1 UY’)| < 2, one can say that | Ui=5 (Ng(x;) N (Y1 UY'))| < 11, which means that
K6 C G[X \ {z1,22}, Y1 UY']. For the case that [Ng(2') N Ng(z”) NY'| = 1 for some 2/,2” € X \ {z1,z}, the proof is the
same. Hence, the claim holds. O

Set M as follow:
M={zxe X\ {z1}, |[Ne(z)n(Y\Y)| =T}

By considering M, we have:

Claim 2.11. If |M| + 0, then we have Kg ¢ C G.

Proof of Claim 2.11. Without loss of generality, let 25 € M, and Ng(2z2) N (Y \ Y1) =Ye = {y11,v12 ..., y17}. If M| > 5, then
by Claim 2.10, it can be said that |U, ;e Na(x;)| < 35, where M’ C M and |M’| = 5. Hence, the proof is complete by Claim
2.5. Now, assume that |M| = 4, and without loss of generality, suppose that M = {5, 23,...,2;11}, where i € {1,2,3,4}. If
|M| < 2, then it can be said that | U,,ca Ng(z;)| < 35, where M” C X \ M and |M"| = 5. Hence, the proof is complete by
Claim 2.5. Now assume that |M| = i, where i € {3,4}.
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By Claim 2.10, for the case that i = 4, we have | U?j’ Ng(zj)] =10+ 746+ 5+ 4 = 32. Hence, the proof is complete
by Claim 2.5. Also for the case that i = 3, by Claim 2.10, we have | U?j Ng(z;)| =10+ 7+ 6 4+ 5 = 28. Therefore, we have
\ Ugj Ng(z;)| < 34. Hence, the proof is complete by Claim 2.5.

U

Now, by Claim 2.11, let |M| = 0, that is |[Ng(z) N (Y \ Y1)| < 6 for each « € X \ {x;}. In this case, the proof is complete
by Claim 2.5.
Hence, by Cases 1, 2, and 3, the upper bound holds. Consequently, it holds that BRs(K> 2, K¢ ¢) = 45, which completes

the proof of Theorem 2.3. O
Proof of Theorem 1.4. By combining Theorems 2.1, 2.2, and 2.3, one gets Theorem 1.4. O
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