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Abstract
In this paper, several erroneous results appeared in the papers [T.-Y. Zhang, A.-P. Ji, F. Qi, Abstr. Appl. Anal. 2012 (2012)
#560586] and [T.-Y. Zhang, M. Tunç, A.-P. Ji, B.-Y. Xi, Abstr. Appl. Anal. 2014 (2014) #294739] are corrected.†
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1. Preliminaries

In [2, Definition 1.9], the concept of s-geometrically convex functions was introduced as follows.

Definition 1.1 (see [2, Definition 1.9]). For some s ∈ (0, 1], a function f : I ⊆ R+ = (0,∞) → R+ is said to be an
s-geometrically convex function if the inequality

f
(
xλy1−λ

)
≤ [f(x)]λ

s

[f(y)](1−λ)
s

holds for all x, y ∈ I and λ ∈ [0, 1].

The following two integral identities were established in the papers [2,3].

Lemma 1.1 (see [2, Lemma 2.1] and [3, Lemma 2.1]). Let f : I ⊂ R = (−∞,∞) → R be differentiable on I◦ and a, b ∈ I
with a < b. If f ′ ∈ L([a, b]), then

f

(
a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx =
b− a
4

∫ 1

0

[
tf ′
(
(1− t)a+ t

a+ b

2

)
+ (t− 1)f ′

(
(1− t)a+ b

2
+ tb

)]
d t

and
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x) dx =
b− a
4

∫ 1

0

[
(t− 1)f ′

(
(1− t)a+ t

a+ b

2

)
+ tf ′

(
(1− t)a+ b

2
+ tb

)]
d t.

In this paper, we need also the following lemmas.

Lemma 1.2. Let s ∈ (0, 1) be a constant. If f : I ⊆ R+ → R+ is an s-geometrically convex function, then f(x) ≥ 1 for all
x ∈ I.

Proof. For x ∈ I and λ ∈ (0, 1), using the geometric convexity of f on I, we obtain

f(x) = f
(
xλx1−λ

)
≤ [f(x)]λ

s

[f(x)](1−λ)
s

= [f(x)]λ
s+(1−λ)s .

Therefore, the inequality f(x) ≥ 1 holds for all x ∈ I.

Lemma 1.3 (see [1, p. 4]). Ig 0 < µ ≤ 1 ≤ η and 0 < s, t ≤ 1, then

µt
s

≤ µst and ηt
s

≤ ηst+1−s.
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2. Corrections

In this section, we state and prove corrected versions of some erroneous results appeared in [2,3].

Theorem 2.1 (Corrected version of [2, Theorem 3.1] and [3, pp. 1–3]). Let f : I ⊂ R+ → R be a differentiable function on
I◦ such that f ′ ∈ L([a, b]) for 0 < a < b < ∞. If |f ′(x)|q is s-geometrically convex and monotonically decreasing on [a, b] for
q ≥ 1 and s ∈ (0, 1], then∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

(
1

2

)1−1/q[
|f ′(a)||f ′(b)|1−s[g1(α)]1/q + |f ′(a)f ′(b)|1−s/2[g2(α)]1/q

]
(1)

and ∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

(
1

2

)1−1/q[
|f ′(a)||f ′(b)|1−s[g2(α)]1/q + |f ′(a)f ′(b)|1−s/2[g1(α)]1/q

]
, (2)

where

α =

∣∣∣∣ f ′(b)f ′(a)

∣∣∣∣sq/2, g1(α) =


1

2
, α = 1;

α lnα− α+ 1

ln2 α
, α 6= 1,

and

g2(α) =


1

2
, α = 1;

α− lnα− 1

ln2 α
, α 6= 1.

Proof. Since |f ′|q is s-geometrically convex and monotonically decreasing on [a, b], using Lemma 1.1 and Hölder’s inequality,
we have ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

∫ 1

0

[
t

∣∣∣∣f ′((1− t)a+ t
a+ b

2

)∣∣∣∣+(1− t)
∣∣∣∣f ′((1− t)a+ b

2
+ tb

)∣∣∣∣]d t
≤ b− a

4

{(∫ 1

0

td t

)1−1/q[∫ 1

0

t|f ′(a)|q((2−t)/2)
s

|f ′(b)|q(t/2)
s

d t

]1/q

+

[∫ 1

0

(1− t) d t
]1−1/q[∫ 1

0

(1− t)|f ′(a)|q((1−t)/2)
s

|f ′(b)|q((1+t)/2)
s

d t

]1/q}

≤ b− a
4

(
1

2

)1−1/q{[∫ 1

0

t|f ′(a)|q((2−t)/2)
s

|f ′(b)|q(t/2)
s

d t

]1/q

+

[∫ 1

0

(1− t)|f ′(a)|q((1−t)/2)
s

|f ′(b)|q((1+t)/2)
s

d t

]1/q}
.

(3)

By Lemmas 1.2 and 1.3, we obtain∫ 1

0

t|f ′(a)|q((2−t)/2)
s

|f ′(b)|q(t/2)
s

d t ≤
∫ 1

0

t|f ′(a)|q[s(2−t)/2+1−s]|f ′(b)|q[st/2+1−s] d t = |f ′(a)|q|f ′(b)|(1−s)qg1(α) (4)

and ∫ 1

0

(1− t)|f ′(a)|q((1−t)/2)
s

|f ′(b)|q((1+t)/2)
s

d t ≤
∫ 1

0

(1− t)|f ′(a)|q[s(1−t)/2+1−s]|f ′(b)|q[s(1+t)/2+1−s] d t

= |f ′(a)f ′(b)|(1−s/2)qg2(α).

(5)

Combining the inequalities (3), (4), and (5) leads to the inequality (1).
Since |f ′|q is s-geometrically convex and monotonically decreasing on [a, b], by Lemma 1.1 and Hölder’s inequality, we

acquire∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

∫ 1

0

[
(1− t)

∣∣∣∣f ′((1− t)a+ t
a+ b

2

)∣∣∣∣+ t

∣∣∣∣f ′((1− t)a+ b

2
+ tb

)∣∣∣∣]d t
≤ b− a

4

(
1

2

)1−1/q{[∫ 1

0

(1− t)|f ′(a)|q((2−t)/2)
s

|f ′(b)|q(t/2)
s

d t

]1/q
+

[∫ 1

0

t|f ′(a)|q((1−t)/2)
s

|f ′(b)|q((1+t)/2)
s

d t

]1/q}
. (6)
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Using Lemmas 1.2 and 1.3, we arrive at∫ 1

0

(1− t)|f ′(a)|q((2−t)/2)
s

|f ′(b)|q(t/2)
s

d t ≤ |f ′(a)|q|f ′(b)|(1−s)qg2(α) (7)

and ∫ 1

0

t|f ′(a)|q((1−t)/2)
s

|f ′(b)|q((1+t)/2)
s

d t ≤ |f ′(a)f ′(b)|(1−s/2)qg1(α). (8)

From the inequalities (6), (7), and (8), the inequality (2) follows readily. Theorem 2.1 is thus proved.

Corollary 2.1 (Corrected version of [2, Corollary 3.2] and [3, p. 3]). Under conditions of Theorem 2.1, we have the following
conclusions:

1. When q = 1, the inequalities∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

[
|f ′(a)||f ′(b)|1−sg1(α) + |f ′(a)f ′(b)|1−s/2g2(α)

]
and ∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

[
|f ′(a)||f ′(b)|1−sg2(α) + |f ′(a)f ′(b)|1−s/2g1(α)

]
hold.

2. When s = 1, the inequalities∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

(
1

2

)1−1/q[
|f ′(a)|[g1(α)]1/q + |f ′(a)f ′(b)|1/2[g2(α)]1/q

]
and ∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

(
1

2

)1−1/q[
|f ′(a)|[g2(α)]1/q + |f ′(a)f ′(b)|1/2[g1(α)]1/q

]
hold.

Theorem 2.2 (Corrected version of [2, Theorem 3.3] and [3, pp. 3–4]). Let f : I ⊂ R+ → R be a differentiable function on
I◦ such that f ′ ∈ L([a, b]) for 0 < a < b < ∞. If |f ′(x)|q is s-geometrically convex and monotonically decreasing on [a, b] for
q > 1 and s ∈ (0, 1], then∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

(
q − 1

2q − 1

)1−1/q[
|f ′(a)||f ′(b)|1−s + |f ′(a)f ′(b)|1−s/2

][
g3(α)

]1/q (9)

and ∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

(
q − 1

2q − 1

)1−1/q[
|f ′(a)||f ′(b)|1−s + |f ′(a)f ′(b)|1−s/2

][
g3(α)

]1/q
, (10)

where α is the same as in Theorem 2.1 and

g3(α) =


1, α = 1;

α− 1

lnα
, α 6= 1.

Proof. Since |f ′|q is s-geometrically convex and monotonically decreasing on [a, b], by Lemma 1.1 and Hölder’s inequality,
we get ∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

(
q − 1

2q − 1

)1−1/q{[∫ 1

0

|f ′(a)|q((2−t)/2)
s

|f ′(b)|q(t/2)
s

d t

]1/q

+

[∫ 1

0

|f ′(a)|q((1−t)/2)
s

|f ′(b)|q((1+t)/2)
s

d t

]1/q} (11)

and ∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

(
q − 1

2q − 1

)1−1/q{[∫ 1

0

|f ′(a)|q((2−t)/2)
s

|f ′(b)|q(t/2)
s

d t

]1/q

+

[∫ 1

0

|f ′(a)|q((1−t)/2)
s

|f ′(b)|q((1+t)/2)
s

d t

]1/q}
.

(12)
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Furthermore, we have ∫ 1

0

|f ′(a)|q((2−t)/2)
s

|f ′(b)|q(t/2)
s

d t ≤ |f ′(a)|q|f ′(b)|(1−s)qg3(α) (13)

and ∫ 1

0

|f ′(a)|q((1−t)/2)
s

|f ′(b)|q((1+t)/2)
s

d t ≤ |f ′(a)f ′(b)|(1−s/2)qg3(α). (14)

By substituting (13) and (14) into (11) and (12), respectively, we obtain the inequalities (9) and (10), respectively.

Corollary 2.2 (Corrected version of [2, Corollary 3.4] and [3, p. 4]). Under conditions of Theorem 2.2, when s = 1, we have∣∣∣∣f(a+ b

2

)
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

(
q − 1

2q − 1

)1−1/q[
|f ′(a)|+ |f ′(a)f ′(b)|1/2

][
g3(α)

]1/q
and ∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x) dx

∣∣∣∣ ≤ b− a
4

(
q − 1

2q − 1

)1−1/q[
|f ′(a)|+ |f ′(a)f ′(b)|1/2

][
g3(α)

]1/q
.
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