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Abstract

Let CG be a longest cycle in the directed graph G = (V,A). Let q be the total number of cycles in G. It is proved that if
1 ≤ q ≤ |V (CG)| then there exists an arc a ∈ A(G) whose reversal decreases the total number of cycles in G.
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1. Introduction

In this paper, by the graph G = (V,A) we mean a directed graph (i.e., a digraph) on the vertex set V (G) and arcs set A(G),
which is either a simple digraph or a multidigraph without loops. Ádám’s conjecture introduced in 1963 [1] on arc-reversal
in G is one of the most important and fundamental conjectures in graph theory. It states that if G contains a directed cycle
then G also contains an arc whose reversal results in a digraph H with a fewer number of directed cycles than in G.

Unfortunately, Ádám’s conjecture does not hold in general since it was independently disproved for multidigraphs by
Thomassen [8] and Grinberg [3], in 1987 and 1988, respectively. On the other hand, Ádám’s conjecture remains open
for simple digraphs. Hence, the arc-reversal problem became a hot topic for investigating special families of digraphs,
especially after 1988. In particular, most of the papers focused on special families of simple digraphs.

In 1984, Reid proved the conjecture for 2-arc-connected tournaments, which are not 3-arc-connected [7]. Note that
tournaments represent a special family of simple digraphs, and the conjecture remains open for them as well. In 1987,
Jirásek proved the conjecture for the special case of multidigraphs [4]. In 1992, he proved the conjecture for the special case
of simple digraphs, the ones that become acyclic after the reversal of at most three arcs [5]. In 2004, Jirásek constructed
counterexamples to Ádám’s conjecture derived from the circulant oriented graphs that are not Hamiltonian [6]. Finally,
in 2011 the present author proved that any arc reversal in a balanced digraph decreases the number of closed walks [2],
which is related to Ádám’s conjecture as well.

In the next section, we prove that a digraph with at least one cycle and an explicitly defined upper bound on the total
number of cycles satisfies Ádám’s conjecture.

2. Main result

We now consider a generic case of G with a predetermined upper bound on the total number of directed cycles, and we
present the following main result of this paper.

Theorem 2.1. Let CG be a longest cycle and q be the total number of cycles in digraph G. If 1 ≤ q ≤ |CG| then there exists
an arc a ∈ A(G) whose reversal decreases the number of cycles in G.

Proof. It follows by contradiction. Suppose 1 ≤ q ≤ |CG| and there is no arc a ∈ A(G) whose reversal ā results in digraph
H with t number of cycles, where t < q.

Let V (CG) denote a set of vertices and A(CG) denote a set of arcs in CG. Since q ≥ 1 then non-empty A(CG) exists. If
a = (v, w) ∈ A(CG) then there must also exist a1 = (v, v1) in A(G), where a1 /∈ A(CG). Otherwise, ā would not belong to any
cycle in H – a contradiction. Consequently, there must exist a cycle C̄ = vv1v2 · · · vkwv in H for some k ≥ 0 (in particular,
there must exist C̄ = a1ā for k = 0).
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If k ≥ 1 and v1, v2, . . . , vk /∈ V (CG) in C̄ then there exists longer cycle C ′G, where |C ′G| = |CG|+k, which is a contradiction.
So, there must exist path P = vv1v2 · · · vr for some vr, where vr ∈ V (CG) and 1 ≤ r ≤ k. Without loss of generality, let P be a
shortest such path ( i.e., a path with minimum possible r, where vr ∈ V (CG)). This implies a cyclesC ′′ = vv1v2 · · · vrvr+1 · · · v
in G, where vr, vr+1, . . . , v ∈ V (CG).

Let |CG| = m and u0, u1, . . . , um−1 ∈ V (CG). By induction, based on C ′′ for every ui there is a cycle
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in G, where (ui, v
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1) = ai /∈ A(CG) and (ui

ri , u
i
ri+1), . . . , (ui

ri+ti , ui) ∈ A(CG). Furthermore, ai ∈ A(Cj) if and only if i = j.
Hence, C0, C1, . . . , Cm−1 are pairwise distinct in G. Since G also includes CG with all arcs in A(CG), this implies that G

has at least q ≥ m + 1 cycles – a contradiction, which proves the theorem.

As a direct consequence of Theorem 2.1, for the Hamiltonian digraphs we can state the next corollary.

Corollary 2.1. Let q be the total number of cycles in Hamiltonian digraph G. If q ≤ |V (G)| then there exists an arc a ∈ A(G)

whose reversal decreases the number of cycles in G.

Proof. It is a special case of Theorem 2.1, where |CG| = |V (G)| and 1 ≤ q ≤ |C(G)| because G is Hamiltonian.

In closing, we note that it is a challenge to come up with the higher upper bound (than the one given in this paper) on
the total number of cycles in the digraph for which Ádám’s conjecture is satisfied.
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