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Abstract

This study offers the averaging principle for fuzzy stochastic differential equations (FSDEs). The solutions to FSDEs can
be approximated in the sense of mean square solutions of averaged fuzzy stochastic system under certain assumptions.
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1. Introduction

The averaging method is a powerful tool for investigating the qualitative property of dynamical system in physics as well
as in variety of other fields. This method shows a connection between the solutions of averaged systems and the solutions
of a standard form [15, 16]. Nevertheless, up to now, the averaging principle for fuzzy stochastic differential equations
(FSDEs) has not yet been studied in literature. In the present paper, we make the first attempt to study this method for
FSDEs.

For crisp stochastic differential equations (SDEs), seminal results on the averaging principle can be found in [5,6,12].
Tan et al. [13] established the averaging method for stochastic differential delay equations (SDDEs) under non-Lipschitz
conditions. In [11,14], the authors investigated the averaging principle for SDDEs with jumps and with fractional Brownian
motion. Recently, Guo et al. [3] established the averaging method for a class of SDEs with nonlinear terms satisfying the
monotone condition, and Luo et al. [7,8] investigated the averaging principle for a class of stochastic fractional differential
equations (SFDEs) with time-delays. Ahmed et al. [1] established the averaging principle for Hilfer fractional stochastic
delay differential equations with Poisson jumps. On the other hand, FSDEs are utilised in real-world systems where
the phenomena is connected to randomness and fuzziness as two types of uncertainty. In [2, 4], the authors presented a
definition of the fuzzy stochastic Itô integral using a method that allows embedding of a crisp Itô stochastic integral into
fuzzy space for building a fuzzy random variable. The present paper aims at extending the averaging principle to FSDEs.

The rest of this paper is organised as follows. Section 2 provides the fundamental tools that are required in upcoming
sections. In Section 3, the averaging method for FSDEs under some conditions is investigated. An example is given in
Section 4 to illustrate the main result of this paper. Finally, the conclusion is given in Section 5.

2. Preliminaries

In this section, we introduce some notations, definitions, and preliminary facts which are used in the rest of this paper.
Let K(Rn) be the family of nonempty convex and compact subsets of Rn. In K(Rn), the distance dH is defined by

dH(M,N) := max

(
sup
m∈M

inf
n∈N
‖m− n‖, sup

n∈N
inf
m∈M

‖m− n‖
)
, M,N ∈ K(Rn).

It is know that K(Rn) is a complete and separable metric space with respect to dH . Let En be the fuzzy set space of Rn, i.e.
the set of functions v : Rn −→ [0, 1] such that [v]α ∈ K(Rn), ∀α ∈ [0, 1], where

[v]α := {a ∈ Rn : v(a) ≥ α}, for α ∈ [0, 1],

and
[v]0 := cl{a ∈ Rn : v(a) > 0}.
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Let
d∞(x, y) := sup

α∈[0,1]
dH
(
[x]α, [y]α

)
be the metric satisfying the following properties

d∞(x+ z, y + z) = d∞(x, y), d∞(x+ y, z + w) ≤ d∞(x, z) + d∞(y, w), and d∞(λx, λy) = |λ|d∞(x, y), λ ∈ R.

Let 〈.〉 : Rn −→ En be an embedding of Rn into En, i.e. for r ∈ Rn, one has

〈
r
〉
(a) =

{
1 , if a = r,

0 , if a 6= r.

Remark 2.1. Let v : [0, T ] × Ω −→ Rn be an Rn-valued stochastic process, then 〈v〉 : [0, T ] × Ω −→ En is a fuzzy stochastic
process.

Let {B(t), t ∈ I := [0, T ]} be an one-dimensional Brownian motion defined on a complete probability space (Ω,A,P)

with a filtration {At}t∈[0,T ] satisfying usual hypotheses.

Definition 2.1 (see [10]). By fuzzy stochastic Itô integral we mean the fuzzy random variable 〈
∫ t
0
v(s)dB(s)〉. For every t ∈ I,

consider the fuzzy stochastic Itô integral 〈
∫ t
0
v(s)dB(s)〉, which may be interpreted as follows〈∫ t

0

v(s)dB(s)

〉
:=

〈∫ T

0

χ[0,t](s)v(s)dB(s)

〉
.

Proposition 2.1 (see [10]). If u, v ∈ L2
(
I × Ω,N;Rn

)
, then ∀ t ∈ I we have

d2∞

(〈∫ t

0

u(s)dB(s)

〉
,

〈∫ t

0

v(s)dB(s)

〉)
=

∫ t

0

d2∞
(
〈u(s)〉, 〈v(s)〉

)
ds.

Proposition 2.2 (see [9]). For u, v ∈ Lp(I ×Ω,N;En) and p ≥ 1, we have

E sup
a∈[0,t]

dp∞

(∫ a

0

u(s)ds,

∫ a

0

v(s)ds

)
≤ tp−1

∫ t

0

Edp∞(u(s), v(s))ds.

3. Main result

Consider the following FSDEs {
dx(s) = f(t, x(t))dt+

〈
g(t, x(t))dB(t)

〉
,

x(0) = x0 ∈ En,
(1)

where f : I ×En −→ En, g : I ×En −→ Rn and x0 : Ω −→ En is a fuzzy random variable. Equation (1) is equivalent to the
following fuzzy stochastic integral equation

x(t) = x0 +

∫ t

0

f(s, x(s))ds+

〈∫ t

0

g(s, x(s))dB(s)

〉
, t ∈ I. (2)

We apply conditions on the coefficient functions to ensure that the solution to (1) exists and is unique.

(A1). There exists a constant C1 > 0 such that ∀ t ∈ I and ∀x ∈ En we have

d2∞
(
f(t, x), 0̂

)
≤ C2

1

(
1 + d2∞(x, 0̂)

)
and

wwg(t, x)
ww2

:= d2∞
(
〈g(t, x)〉, 0̂

)
≤ C2

1

(
1 + d2∞(x, 0̂)

)
.

(A2). There exists a constant C2 > 0 such that ∀ t ∈ I and ∀x, y ∈ En we have

d2∞
(
f(t, x), f(t, y)

)
≤ C2d

2
∞(x, y) and

wwg(t, x)− g(t, y)
ww2

= d2∞
(
〈g(t, x)〉, 〈g(t, y)〉

)
≤ C2d

2
∞(x, y).

By the work of Malinowski and Michta [10], we know that under the assumptions (A1) and (A2), FSDEs (1) has a unique
solution x(t) with the initial data x0.

Let us consider the standard form of Equation (2)

xε(t) = x0 + ε

∫ t

0

f(s, xε(s))ds+
√
ε

〈∫ t

0

g(s, xε(s))dB(s)

〉
, (3)

where the initial value x0, functions f and g have the same conditions as in Equation (2), and ε ∈ (0, ε0) is a small positive
parameter with ε0 a fixed number. Based on the existence and uniqueness results, Equation (3) also has a unique solution
xε(t) for every fixed ε ∈ (0, ε0) and t ∈ I. We set certain assumptions on the coefficients to see if the solution xε(t) can be
approximated by a simple process.
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Let f̃ : En −→ En and g̃ : En −→ Rn be measurable functions satisfying (A1) and (A2), as well as the following additional
inequalities:

(A3). For x ∈ En and T ′ ∈ I we have

1

T ′

∫ T ′

0

d2∞

(
f(s, x), f̃(x)

)
ds ≤ β1(T ′)

(
1 + d2∞(x, 0̂)

)
and 1

T ′

∫ T ′

0

wwg(s, x)− g̃(x)
ww2
ds ≤ β2(T ′)

(
1 + d2∞(x, 0̂)

)
,

where lim
T ′−→∞

βi(T
′) = 0, i = 1, 2.

With the above appropriate preparations, we now show that the solution xε converges to the solution yε of the following
averaged FSDEs

yε(t) = x0 + ε

∫ t

0

f̃(yε(s))ds+
√
ε

〈∫ t

0

g̃(yε(s))dB(s)

〉
, (4)

as ε −→ 0. Clearly, under similar assumptions as of Equation (3), Equation (4) also has a unique solution yε. The main
result of this paper is now presented in the form of the following theorem, in which we consider the connections between
xε and yε.

Theorem 3.1. Assume that the assumptions (A1) − (A3) are satisfied. For a given arbitrarily small number ∆ > 0 and a
constant k > 0, α ∈ (0, 1), there exists ε1 ∈ (0, ε0] such that ∀ ε ∈ (0, ε1], we have

sup
t∈[0,kε−α]

E d2∞
(
xε(t), yε(t)

)
≤ ∆.

Proof. For any t ∈ [0, u] ⊂ I, we have

sup
t∈[0,u]

Ed2∞
(
xε(t), yε(t)

)
= sup
t∈[0,u]

Ed2∞
(
x0 + ε

∫ t

0

f(s, xε(s))ds+
√
ε

〈∫ t

0

g(s, xε(s))dB(s)

〉
,

x0 + ε

∫ t

0

f̃(yε(s))ds+
√
ε

〈∫ t

0

g̃(yε(s))dB(s)

〉)

≤ 2ε2 sup
t∈[0,u]

Ed2∞
(∫ t

0

f(s, xε(s))ds,

∫ t

0

f̃(yε(s))ds

)
+

2ε sup
t∈[0,u]

Ed2∞
(〈∫ t

0

g(s, xε(s))dB(s)

〉
,

〈∫ t

0

g̃(yε(s))dB(s)

〉)
.

Denote by

J1 = 2ε2 sup
t∈[0,u]

Ed2∞
(∫ t

0

f(s, xε(s))ds,

∫ t

0

f̃(yε(s))ds

)
and

J2 = 2ε sup
t∈[0,u]

Ed2∞
(〈∫ t

0

g(s, xε(s))dB(s)

〉
,

〈∫ t

0

g̃(yε(s))dB(s)

〉)
.

Then, by using the properties of the metric d∞, we get

J1 ≤ 4ε2 sup
t∈[0,u]

Ed2∞
(∫ t

0

f(s, xε(s))ds,

∫ t

0

f(s, yε(s))ds,

)
+ 4ε2 sup

t∈[0,u]
Ed2∞

(∫ t

0

f(s, yε(s))ds,

∫ t

0

f̃(yε(s))ds

)
,

:= J11 + J12.

By using Proposition 2.2 and the assumption (A2), we have

J11 ≤ 4ε2 sup
t∈[0,u]

(
t

∫ t

0

Ed2∞
(
f(s, xε(s)), f(s, yε(s))

)
ds

)

≤ 4ε2C2u

∫ u

0

Ed2∞
(
xε(s), yε(s)

)
ds.
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For J12, we use Proposition 2.2 and the assumption (A3), and hence we get

J12 ≤ 4ε2 sup
t∈[0,u]

(
t

∫ t

0

Ed2∞
(
f(s, yε(s)), f̃(yε(s))

)
ds

)

≤ 4ε2 sup
t∈[0,u]

(
t2

1

t

∫ t

0

Ed2∞
(
f(s, yε(s)), f̃(yε(s))

)
ds

)
≤ 4ε2u2β1(u)

[
1 + sup

t∈[0,u]
Ed2∞

(
yε(t), 0̂

)]
:= 4ε2u2λ1.

Therefore,
J1 ≤ 4ε2C2u

∫ u

0

Ed2∞
(
xε(s), yε(s)

)
ds+ 4ε2u2λ1. (5)

For the second term J2, by using Proposition 2.1, we have

J2 ≤ 2ε sup
t∈[0,u]

∫ t

0

E
wwg(s, xε(s))− g̃(yε(s))

ww2
ds

≤ 4ε sup
t∈[0,u]

∫ t

0

E
wwg(s, xε(s))− g(s, yε(s))

ww2
ds+ 4ε sup

t∈[0,u]

∫ t

0

E
wwg(s, yε(s))− g̃(yε(s))

ww2
ds

:= J21 + J22.

Using the assumption (A2), we get
J21 ≤ 4εC2

∫ u

0

Ed2∞
(
xε(s), yε(s)

)
ds.

Also, by using the assumption (A3), we have

J22 ≤ 4ε sup
t∈[0,u]

(
t
1

t

∫ t

0

E
wwg(s, yε(s))− g̃(yε(s))

ww2
ds

)
≤ 4εuβ2(u)

[
1 + sup

t∈[0,u]
Ed2∞

(
yε(t), 0̂

)]
:= 4εuλ2.

Therefore,
J2 ≤ 4εC2

∫ u

0

Ed2∞
(
xε(s), yε(s)

)
ds+ 4εuλ2. (6)

By combining (5) and (6), we get

sup
t∈[0,u]

Ed2∞
(
xε(t), yε(t)

)
≤ 4εu

(
λ2 + εuλ1

)
+ 4εC2

(
1 + εu

) ∫ u

0

Ed2∞
(
xε(s), yε(s)

)
ds

≤ 4εu
(
λ2 + εuλ1

)
+ 4εC2

(
1 + εu

) ∫ u

0

sup
v∈[0,s]

Ed2∞
(
xε(v), yε(v)

)
ds.

Hence, by using the Gronwall inequality, we get

sup
t∈[0,u]

Ed2∞
(
xε(t), yε(t)

)
≤ 4εu

(
λ2 + εuλ1

)
e4εC2(1+εu).

Choose α ∈ (0, 1) and L > 0 such that for every t ∈ [0, Lε−α] ⊆ I, we have

sup
t∈[0,Lε−α]

Ed2∞
(
xε(t), yε(t)

)
≤ kLε1−α,

where k = 4
(
λ2 + Lε1−αλ1

)
exp{4εC2

(
1 + Lε1−α

)
} is a constant. Therefore, for any given number ∆, ∃ ε1 ∈ (0, ε0] such that

for each ε ∈ (0, ε1] and t ∈ [0, Lε−α], we have

sup
t∈[0,Lε−α]

Ed2∞
(
xε(t), yε(t)

)
≤ ∆.
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4. An example

In this section, we give an example to illustrate our main result of this paper. Consider the following FSDEs{
dX(t) = 4 cos2(t)X(t)dt+

〈
X(t)dB(t)

〉
,

X(0) = 0.
(7)

The standard form of the above FSDEs is given as

dXε = 4ε cos2(t)Xεdt+
√
ε
〈
XεdB(t)

〉
.

Note that f(t,Xε) = 4 cos2(t)Xε and g(t,Xε) = Xε. Hence,

f̃(Xε) =
1

π

∫ π

0

4 cos2(t)Xεdt = 2Xε and g̃(Xε) =
1

π

∫ π

0

g(t,Xε)dt = Xε.

Therefore, the averaging form of (7) is
dY ε = 2εY εdt+

√
ε
〈
Y εdB(t)

〉
. (8)

The coefficients f(t,Xε) and g(t,Xε) satisfy the assumptions (A1)−(A2), and hence FSDEs (7) has a unique fuzzy solution.
Also, it is observed that the coefficients f̃(Xε) and g̃(Xε) satisfy the assumption (A3). Therefore, by Theorem 3.1, as ε −→ 0,
the solutions Xε and Y ε to Equations (7) and (8) are equivalent in the sense of mean square.

5. Conclusion

In this work, we have established the averaging principle for FSDEs. We have proved that the solution to the averaged
FSDEs converges to that of the standard FSDEs in the sense of mean square. For future researches, we plan to study the
averaging principle for fuzzy fractional stochastic differential equations with/without Hilfer fractional derivative.
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