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Abstract
The reciprocal complementary Wiener number of a graph is one of the applied distance-based topological indices. For a
connected graph G, this topological index is defined as the sum of the weights (D+1− dG(x, y))

−1 over all unordered pairs
of vertices x and y of G, where D is the diameter of G and dG(x, y) denotes the distance (that is equal to the length of
a shortest path) between x and y. In this paper, the reciprocal complementary Wiener number of some cactus graphs is
studied.
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1. Introduction and preliminaries

In the mathematical chemistry literature, a molecular descriptor that is calculated from the molecular graph of a chem-
ical compound is known as a topological index. Most of the well-studied topological indices are based on the distances
between vertices or/and the degrees of vertices of the molecular graph. The Wiener index is the oldest distance-based
topological index and is one of the most-studied topological indices, both from the theoretical point of view as well as from
the applications point of view [11]. The first and second Zagreb indices are among the oldest degree-based topological
indices [2,3].

Let G be a graph with the vertex set V (G) = {x1, x2, . . . , xn} and diameter D. The reciprocal complementary distance
matrix RCD = [rcij ] of G is an n× n matrix such that

rcij =
1

D + 1− dG(xi, xj)
if i 6= j,

and 0 otherwise (see [6]). Ivanciuc et al. [4,5] defined the reciprocal complementary Wiener number of the gragh G as:

RCW (G) =
∑

1≤i<j≤n

rcij =
∑

{xi,xj}⊆V (G)

1

D + 1− dG(xi, xj)
. (1)

If d(G, k) is the number of vertex pairs at distance k in the graph G, then we have

RCW (G) =

D∑
k=1

d(G, k)

D + 1− k
. (2)

This concept has been successfully applied in the structure-property modeling of the molar heat capacity, standard Gibbs
energy of formation and vaporization enthalpy of 134 alkanes C6-C10 (see [4]). Recently, we studied the reciprocal comple-
mentary Wiener number of various graph operations like join, Cartesian product, composition, strong product, disjunction,
symmetric difference, corona product, splice and link of graphs [8]. In [7], we established some new bounds for the recip-
rocal complementary Wiener number of graphs in terms of the diameter, first and second Zagreb indices, Wiener number,
number of vertices, edges and hexagons of graphs. The trees with the smallest, second smallest and third smallest RCW ,
and the unicyclic and bicyclic graphs with the smallest and second smallest RCW were determined in [1]. Zhou et al. [12]
gave some properties for the reciprocal complementary Wiener number, especially various upper and lower bounds and a
Nordhaus-Gaddum-type result for this invariant. For 4 ≤ D ≤ n − 3, the unique tree with the minimum reciprocal com-
plementary Wiener number, and the non-caterpillars with the first three smallest values of the reciprocal complementary
Wiener number were characterized in [13]. Moreover, Ramane et al. [9] presented some bounds on RCW for line graphs.
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A cactus graph is a connected graph in which any two of its cycles have at most one common vertex. Consequently,
each block of this graph is either an edge or a cycle. If all the blocks of a cactus G are cycles of the same size l, the cactus
is l-uniform. A triangular cactus is a 3-uniform cactus, i.e., a cactus in which every block is a triangle. If no triangle of
a triangular cactus G has more than two cut vertices, and each cut vertex is shared by exactly two triangle, we say that
G is a chain triangular cactus. We denote by Tn the chain triangular cactus graph with n triangles (see Figure 1). By
replacing the cycles C3 in the chain triangular cactus Tn with the cycles C4 we obtain cactus graph known as the square
cactus chain. The Para-chain square cactus graph, denoted byQn, is a square cactus chain in which the cut vertices of each
of its internal squares are not adjacent (see Figure 2). Also, if the cut vertices of each internal squares of a square cactus
chain are adjacent then we call it as the Ortho-chain square cactus graph and denote it by On (see Figure 3). Similarly,
the chain hexagonal cactus are obtained by replacing the cycles C3 with the cycles C6 in the chain triangular cactus Tn.
The Para-chain hexagonal cactus graph, denoted by Ln, is a chain hexagonal cactus in which the cut vertices of each of its
internal hexagons are at distance three (see Figure 4). Also, if the cut vertices of each of the internal hexagons of a chain
hexagonal cactus are at distance two then we call it as the Meta-chain hexagonal cactus graph and denote it byMn (see
Figure 5).

In this paper, we continue our research on the reciprocal complementary Wiener number by determining its values for
the above-mentioned cactus chain graphs.

T1 T2 T3 T4 Tn

Figure 1: The chain triangular cactus graph Tn.

S1 S2 S3 S4 Sn

Figure 2: The Para-chain square cactus graph Qn.
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Figure 3: The Ortho-chain square cactus graph On.

H1 H2 H3 H4 Hn

Figure 4: The Para-chain hexagonal cactus graph Ln.
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Figure 5: The Meta-chain hexagonal cactus graphMn.
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2. Main results

In this section, we study the reciprocal complementary Wiener number of the chain triangular cactus graph, two types of
the square cactus chains and two kind of the hexagonal cactus chains.

Theorem 2.1. If Tn (n ≥ 2) is the chain triangular cactus graph, then

RCW (Tn) = 4n− 1.

Proof. By [10], we have

d(Tn, k) =


3n k = 1,

4 k = n,

4n− 4k + 4 2 ≤ k ≤ n− 1.

Therefore,

RCW (Tn) =
D=n∑
k=1

d(Tn, k)
n+ 1− k

= 7 +

n−1∑
k=2

4n− 4k + 4

n+ 1− k
= 4n− 1.

Theorem 2.2. Let Qn (n ≥ 2) and On (n ≥ 5) be the Para-chain and Ortho-chain square cactus graphs, respectively.

(i). For Qn , it holds that

RCW (Qn) =
18n2 − 13n

4n− 2
− 3

2

n−2∑
k=1

1

2k + 1
.

(ii). For On , it holds that

RCW (On) = 9n− 9− 30n2 + 64n+ 24

n3 + 3n2 + 2n
− 12

n−1∑
k=4

1

k
.

Proof. By [10], we have

d(Qn, k) =



6n− 4 k = 2,

4 k = 2n− 1,

1 k = 2n,

4n− 2k + 2 1 ≤ k ≤ 2n− 3 and 2 - k,

5n− 5
2k + 1 4 ≤ k ≤ 2n− 2 and 2 | k,

and

d(On, k) =



4n k = 1,

6n− 4 k = 2,

8n− 12 k = 3,

15 k = n,

6 k = n+ 1,

1 k = n+ 2,

9n− 9k + 15 4 ≤ k ≤ n− 1.

By applying the above relations and relation (2), one gets

RCW (Qn) =

D=2n∑
k=1

d(Qn, k)

2n+ 1− k

= 3 +
6n− 4

2n− 1
+

2n−3∑
k=1
2-k

4n− 2k + 2

2n− k + 1
+

2n−2∑
k=4
2|k

5n− 5
2k + 1

2n− k + 1

= 2n+ 1 +
6n− 4

2n− 1
+

n−1∑
k=2

5n− 5k + 1

2n− 2k + 1
=

18n2 − 13n

4n− 2
− 3

2

n−2∑
k=1

1

2k + 1
,

as desired. The reciprocal complementary Wiener number of On can be computed by a similar way.
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Theorem 2.3. If Qn (n ≥ 2) is the Para-chain graph, then

34n3 − 75n2 + 37n

(4n− 2) (2n− 3)
≤ RCW (Qn) ≤

18n4 − 55n3 + 77n2 − 120n+ 48

2n (n− 2) (2n− 1)
,

where each of the equalities holds if and only if n = 3.

Proof. If ak and bk are real numbers such that ak 6= 0, and m ≤ bk
ak
≤M , k = 1, 2, . . . l, then

l∑
k=1

b2k +mM

l∑
k=1

a2k ≤ (M +m)

l∑
k=1

akbk

with equality if and only if for all k, 1 ≤ k ≤ l, either bk = mak or bk = Mak. This inequality is known as the Diaz-Metcalf
inequality. Considering a−1k = bk =

√
2k + 1, 1 ≤ k ≤ n− 2, in this inequality, we have

n−2∑
k=1

1

2k + 1
≤ n2 − 2n

3(2n− 3)
.

Using this inequality in part (i) of Theorem 2.2, the upper bound for RCW (Qn) is obtained. We know from the Cauchy
Schwartz inequality that if ak and bk are real numbers, k = 1, 2, . . . l, then(

l∑
k=1

akbk

)2

≤

(
l∑

k=1

a2k

)(
l∑

k=1

b2k

)

where the equality holds if and only if ak = mbk for a non-zero constant m ∈ R. Now, considering a−1k = bk =
√
2k + 1,

1 ≤ k ≤ n− 2, in the Cauchy Schwartz inequality, we conclude that

n−2∑
k=1

1

2k + 1
≥ (n− 4)2

n2 − 2n
.

Therefore, the lower bound for RCW (Qn) is obtained by using this inequality in part (i) of Theorem 2.2. Finally, both
equations occur when k is a constant value. This means that k must be 1 and n must be 3.

Theorem 2.4. If On (n ≥ 5) is the Ortho-chain square cactus graph, then

9n5 − 3n4 − 81n3 + 113n2 + 514n+ 312

n (n+ 1) (n+ 2) (n− 1)
≤ RCW (On) ≤

9n5 + 21n4 + 39n3 + 41n2 − 78n− 72

n (n+ 1) (n+ 2) (n+ 3)
,

where each of the equalities holds if and only if n = 5.

Proof. Using similar arguments as in the proof of Theorem 2.3, if we consider a−1k = bk =
√
k, 4 ≤ k ≤ n − 1, in the

Diaz-Metcalf and Cauchy Schwartz inequalities then we have

2(n− 4)2

n2 − n− 12
≤

n−1∑
k=4

1

k
≤ n2 − n− 12

8(n− 1)
.

Therefore, bounds for RCW (On) is obtained by using this inequalities in part (ii) of Theorem 2.2. Also, both equations
occur when k = 4. This means that n must be 5.

Theorem 2.5. Let Ln (n ≥ 3) and Mn (n ≥ 4) be the Para-chain and Meta-chain hexagonal cactus graphs, respectively.
Then

RCW (Ln) =
25

3
n− 2− 4n− 2

9n2 − 9n+ 2
− 2

3

n−2∑
k=1

15k + 8

9k2 + 9k + 2
and

RCW (Mn) =
25

2
n+ 11− 66n3 + 55n2 − 6n− 4

4n4 + 4n3 − n2 − n
−

n−1∑
k=1

35k − 8

4k2 − 2k
.
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Proof. By [10], we have

d(Ln, k) =



6n k = 1,

10n− 4 k = 2,

11n− 8 k = 3,

8 k = 3n− 2,

4 k = 3n− 1,

1 k = 3n,

8n− 8k−8
3 4 ≤ k ≤ 3n− 5 and k ≡ 1 (mod 3),

8n− 4− 8k−16
3 5 ≤ k ≤ 3n− 4 and k ≡ 2 (mod 3),

9n− 3k + 1 6 ≤ k ≤ 3n− 3 and 3 | k,

and

d(Mn, k) =



6n k = 1,

10n− 4 k = 2,

11n− 8 k = 3,

12n− 16 k = 4,

16 k = 2n− 1,

10 k = 2n,

4 k = 2n+ 1,

1 k = 2n+ 2,

12n− 6k + 10 5 ≤ k ≤ 2n− 3 and 2 - k,

13n− 13
2 k + 10 6 ≤ k ≤ 2n− 2 and 2 | k,

By applying the above relations and relation (2), one obtains

RCW (Ln) =

D=3n∑
k=1

d(Ln, k)

3n+ 1− k

=
23

3
+

10n− 4

3n− 1
+

11n− 8

3n− 2
+

3n−5∑
k=4

k≡1 (mod 3)

8n− 8k−8
3

3n− k + 1

+

3n−4∑
k=5

k≡2 (mod 3)

8n− 4− 8k−16
3

3n− k + 1
+

3n−3∑
k=6
3|k

9n− 3k + 1

3n− k + 1

=
8

3
n+

28

3
− 4n− 2

9n2 − 9n+ 2
+

n−2∑
k=1

(8n− 8k − 4

3n− 3k − 1
+

9n− 9k + 1

3n− 3k + 1

)

=
25

3
n− 2− 4n− 2

9n2 − 9n+ 2
− 2

3

n−2∑
k=1

15k + 8

9k2 + 9k + 2
,

as desired. The reciprocal complementary Wiener number ofMn can be computed by a similar way.
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