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Abstract
In this paper, some new integral inequalities for integrable geometrically convex mappings via the general forms of propor-
tional fractional integral operators are proved. Basic definitions, various classical inequalities and generalized proportional
fractional integral operators are used to prove the main findings.
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1. Introduction and preliminaries

Fractional analysis has brought a new dimension to many fields in mathematics and has become one of the most popular
topics in recent years with its applications in several disciplines such as engineering, physics, modeling and control theory.
Researchers have started to work intensively on fractional integral and derivative operators, and many new concepts and
new applications have been included in the literature. The new features added by each new operator tries to prove their
effectiveness in the real world problems solutions and the adventure continues in the search for the most effective operators.
Many studies were conducted with the help of these operators to explain physical phenomena and demonstrate wide usage
area in inequality theory (see the papers [3,7,12,19,20,24,27,30,34–36]). Now, we take a look at fractional integrals from
a historical perspective by recalling these operators.

Definition 1.1. Let f ∈ L1[a, b]. The Riemann-Liouville integrals Jαa+f and Jαb−f of order α > 0 with a ≥ 0 are defined by

Jαa+f(ε) =
1

Γ(α)

∫ ε

a

(ε− κ)α−1f(κ)dκ, ε > a

and
Jαb−f(ε) =

1

Γ(α)

∫ b

ε

(κ− ε)α−1f(κ)dκ, ε < b

respectively. Here Γ(ε) is the Gamma function and its definition is

Γ(ε) =

∫ ∞
0

e−εεκ−1dκ.

It is to be noted that J0
a+f(ε) = J0

b−f(ε) = f(ε) in the case of α = 1, the fractional integral reduces to the classical integral.

Riemann-Liouville integral operators are presented as a generalization of classical integrals. Then a more general
version of this useful operator is given as follows.

Definition 1.2. [22] Let (a, b) with −∞ < a < b < ∞ be a finite or infinite interval of the real line R and α a complex
number with Re(α) > 0. Also let h be a strictly increasing function on (a, b), having a continuous derivative h′ on (a, b). The
generalized left and right sided Riemann-Liouville fractional integrals of a function f with respect to another function h on
[a, b] defined as

h
a+I

αf(ε) =
1

Γ(α)

∫ ε

a

(h(ε)− h(κ))α−1f(κ)h′(κ)dκ, ε > a

∗Corresponding author (aocakakdemir@gmail.com).

www.shahindp.com/locate/cm
www.creativecommons.org/licenses/by/4.0/
mailto:aocakakdemir@gmail.com
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and
h
b−I

αf(ε) =
1

Γ(α)

∫ b

ε

(h(κ)− h(ε))α−1f(κ)h′(κ)dκ, ε < b.

In [15], Jarad et al. investigated the generalized proportional fractional integrals with a different kernel structure that
satify several important properties as follows:

Definition 1.3. The left and right generalized proportional fractional integral operators are respectively defined by

a+J α,ζf(ε) =
1

ζαΓ(α)

∫ ε

a

e[
ζ−1
ζ (ε−κ)](ε− κ)α−1f(κ)dκ, ε > a

and

b−J α,ζf(ε) =
1

ζαΓ(α)

∫ b

ε

e[
ζ−1
ζ (κ−ε)](κ− ε)α−1f(κ)dκ, ε < b

where ζ ∈ (0, 1] and α ∈ C and R(α) > 0.

We will continue with the Hadamard integral operators and the Katugampola integral operators, which are a general
variant of the Riemann-Liouville integral operators as follows:

Definition 1.4. [21] Let a, b be two non-negative real numbers satisfying the inequality a < b, and α, ρ be two positive real
numbers and f : [a, b]→ R be an integrable function. The left and right Katugampola fractional integrals defined as

a+Iαf(ε) =
1

Γ(α)

∫ ε

a

(
ερ − κρ

ρ

)α−1
f(κ)dκ

κ1−ρ , ε > a

and

b−Iαf(ε) =
1

Γ(α)

∫ b

ε

(
κρ − ερ

ρ

)α−1
f(κ)dκ

κ1−ρ , ε < b.

The associated integral operator based on the Hadamard derivative operator is given as follows.

Definition 1.5. [22, 29] Let a, b be two reals with 0 < a < b and f(κ) : [a, b] → R be an integrable function. The left and
right Hadamard fractional integrals of order α > 0 are defined as

a+F
αf(ε) =

1

Γ(α)

∫ ε

a

f(κ)

κ
(
ln εκ

)1−α dκ, ε > a

and

b−F
αf(ε) =

1

Γ(α)

∫ b

ε

f(κ)

κ
(
lnκε

)1−α dκ, ε < b.

Within the scope of fractional analysis studies, the search for the operator with the most effective and general kernels
led the researchers to define the operator named generalized proportional Hadamard fractional integrals. This operator,
which has a different structure, is given as follows.

Definition 1.6. [26] The left and right generalized proportional Hadamard fractional integrals of order α > 0 and pro-
portionality index ζ ∈ (0, 1] is defined by

a+Fα,ζf(ε) =
1

ζαΓ(α)

∫ ε

a

e[
ζ−1
ζ (ln εκ )](
ln εκ

)1−α f(κ)

κ
dκ, ε > a

and

b−Fα,ζf(ε) =
1

ζαΓ(α)

∫ ε

a

e[
ζ−1
ζ (lnκε )](
lnκε

)1−α f(κ)

κ
dκ, ε < b.

On all of these, the generalized proportional fractional (GPF) integral operator in the sense of another function h has
been defined as follows.

Definition 1.7. [18, 28] Let f ∈ Xq
h(0,∞), there is an increasing, positive monotone function h defined on [0,∞) having

continuous derivative h′ on with h(0) = 0. Then the left-sided and right-sided GPF-integral operator of a function f in the
sense of another function h of order α > 0 are stated as:

h
a+J

α,ζf(ε) =
1

ζαΓ(α)

∫ ε

a

e[
ζ−1
ζ (h(ε)−h(κ))](h(ε)− h(κ))α−1f(κ)h′(κ)dκ, ε > a

and
h
b−J

α,ζf(ε) =
1

ζαΓ(α)

∫ b

ε

e[
ζ−1
ζ (h(κ)−h(ε))](h(κ)− h(ε))α−1f(κ)h′(κ)dκ, ε < b

where ζ ∈ (0, 1] and α ∈ C and R(α) > 0.
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If we set the parameters with different choices in Definition 1.7, one can obtain Riemann-Liouville integrals, generalized
Riemann-Liouville fractional integrals, generalized proportional fractional integrals, Katugampola fractional integrals,
Hadamard fractional integrals and generalized proportional Hadamard fractional integrals.
In [25], Pečarić et al. mentioned about some different classes of convex functions as followings:

A function f : I → [0,∞) is said to be log−convex or multiplicatively convex (AG−convex) if log f is convex, or, equiva-
lently, for all x, y ∈ I and t ∈ [0, 1] one has the inequality:

f(tx+ (1− t)y) ≤ f(x)tf(y)1−t.

A function f : I → [0,∞) is said to be GA−convex if for all x, y ∈ I and t ∈ [0, 1], one has the inequality:

f(xty1−t) ≤ tf(x) + (1− t)f(y).

Example 1.1. The function f(x) = 1
x , x ∈ (0, 1) is log−convex on (0, 1).

The researchers have performed numerous research articles on various integral inequalities by using different kinds
of fractional integral operators with applications, see [1,2,4–6,8–11,13,14,16–18,23,28,31–33].

The main aim of this paper is to establish some new integral inequalities for product of two geometrically convex
functions via the general forms of proportional fractional integral operators.

2. Main results

Theorem 2.1. Assume that f, g : (0,∞) → R be differentiable function and ψ be a positive monotone increasing function
that defined on [0,∞). Let ψ′ (τ) be continuous and ψ (0) = 0, p, q > 1, 1

p + 1
q = 1, |ψ′ (τ)| ≤ M. Then, if f and g are

AG−convex functions, we have the following inequality;

(
ΨT η,ξ0+,τfg

)
(τ) ≤ fg (b)− fg (a)

b− a
M

p−1
p

ξηΓ (η)

(
e
ξ−1
ξ pψ(τ) − 1
ξ−1
ξ p

) 1
p(∫ τ

0

∣∣∣(ψ (τ)− ψ (x))
η−1

(x− b)
∣∣∣qdx) 1

q

+
fg (b)

ξηΓ (η)

ψη (τ)(
1−ξ
ξ ψ (τ)

)η (Γ (η)− Γ

(
η,

1− ξ
ξ

ψ (τ)

))

for ξ ∈ (0, 1), η ∈ C, Re (η) > 0, τ > 0.

Proof. By using the definition of AG-convex functions, we can write

fg(ta+ (1− t)b) ≤ [fg (a)]
t
[fg (b)]

1−t
.

By changing of the variable such that x = ta+ (1− t)b, we have

fg(x) ≤ [fg (a)]
b−x
b−a [fg (b)]

x−a
b−a .

By applying the General Cauchy inequality to above inequality, we get

fg (x) ≤
(
b− x
b− a

)
fg (a) +

(
x− a
b− a

)
fg (b) .

Namely
fg (x) ≤ fg (b)− fg (a)

b− a
(x− b) + fg (b) .

If we denote A = fg(b)−fg(a)
b−a and B = fg (b), we get

fg (x) ≤ A (x− b) +B.

By multiplying both sides of the resulting inequality with

1

ξηΓ (η)

∫ τ

0

e
ξ−1
ξ (ψ(τ)−ψ(x))

(ψ (τ)− ψ (x))
1−ηψ

′ (x) dx,

we get (
ΨT η,ξ0+,τfg

)
(τ) ≤ A

ξηΓ (η)

∫ τ

0

e
ξ−1
ξ (ψ(τ)−ψ(x))

(ψ (τ)− ψ (x))
1−η (x− b)ψ′ (x) dx+

B

ξηΓ (η)

∫ τ

0

e
ξ−1
ξ (ψ(τ)−ψ(x))

(ψ (τ)− ψ (x))
1−ηψ

′ (x) dx.
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By applying the well known Hölder inequality, we get

(
ΨT η,ξ0+,τfg

)
(τ) ≤ A

ξηΓ (η)

(∫ τ

0

∣∣∣∣e ξ−1
ξ (ψ(τ)−ψ(x)) ψ

′
(x)

∣∣∣∣pdx)
1
p
(∫ τ

0

∣∣∣(ψ (τ)− ψ (x))
η−1

(x− b)
∣∣∣qdx) 1

q

+
B

ξηΓ (η)

∫ τ

0

e
ξ−1
ξ (ψ(τ)−ψ(x))

(ψ (τ)− ψ (x))
1−ηψ

′ (x) dx.

By making use of some necessary operation and by taking into account
∣∣ ψ′ (x)

∣∣ ≤M , we obtain

(
ΨT η,ξ0+,τfg

)
(τ) ≤ fg (b)− fg (a)

b− a
M

p−1
p

ξηΓ (η)

(
e
ξ−1
ξ pψ(τ) − 1
ξ−1
ξ p

) 1
p(∫ τ

0

∣∣∣(ψ (τ)− ψ (x))
η−1

(x− b)
∣∣∣qdx) 1

q

+
fg (b)

ξηΓ (η)

ψη (τ)(
1−ξ
ξ ψ (τ)

)η (Γ (η)− Γ

(
η,

1− ξ
ξ

ψ (τ)

))
.

The proof is completed.

Theorem 2.2. Assume that f, g : (0,∞)→ R be differentiable function and ψ be a positive monoton increasing function that
defined on [0,∞). Let ψ′ (τ) be continuous and ψ (0) = 0, p, q > 1, 1

p + 1
q = 1, |ψ′ (τ)| ≤M. Then, if f and g are AG−convex

functions, we have the following inequality;

(
ΨT η,ξ0+,τfg

)
(τ) ≤ fg (b)− fg (a)

b− a
M

p−1
p

ξηΓ (η)

 ψp(η−1)+1 (τ)(
1−ξ
ξ pψ (τ)

)p(η−1)+1

(
Γ (p (η − 1) + 1)− Γ

(
p (η − 1) + 1,

1− ξ
ξ

pψ (τ)

))
1
p

×

(
|τ − b|q+1 − |−b|q+1

q + 1

) 1
q

+
fg (b)

ξηΓ (η)

ψη (τ)(
1−ξ
ξ ψ (τ)

)η (Γ (η)− Γ

(
η,

1− ξ
ξ

ψ (τ)

))

for ξ ∈ (0, 1), η ∈ C, Re (η) > 0, Re (p(η − 1)) > 0, τ > 0.

Proof. By using the definition of AG−convexity, we can write

fg(ta+ (1− t)b) ≤ [fg (a)]
t
[fg (b)]

1−t
.

By changing of the variable, we get
fg(x) ≤ [fg (a)]

b−x
b−a [fg (b)]

x−a
b−a .

By applying General Cauchy inequality and by making some operations, we have

fg (x) ≤ fg (b)− fg (a)

b− a
(x− b) + fg (b) .

If we denote A = fg(b)−fg(a)
b−a , B = fg (b), then

fg (x) ≤ A (x− b) +B.

By multiplying both sides of the above inequality

1

ξηΓ (η)

∫ τ

0

e
ξ−1
ξ (ψ(τ)−ψ(x))

(ψ (τ)− ψ (x))
1−ηψ

′ (x) dx,

we obtain(
ΨT η,ξ0+,τfg

)
(τ) ≤ A

ξηΓ (η)

∫ τ

0

e
ξ−1
ξ (ψ(τ)−ψ(x))

(ψ (τ)− ψ (x))
1−η (x− b)ψ′ (x) dx+

B

ξηΓ (η)

∫ τ

0

e
ξ−1
ξ (ψ(τ)−ψ(x))

(ψ (τ)− ψ (x))
1−ηψ

′ (x) dx.

By applying Hölder inequality to the resulting inequality, we get

(
ΨT η,ξ0+,τfg

)
(τ) ≤ A

ξηΓ (η)

∫ τ

0

∣∣∣∣∣∣ e
ξ−1
ξ (ψ(τ)−ψ(x))

(ψ (τ)− ψ (x))
1−η ψ

′

(x)

∣∣∣∣∣∣
p

dx


1
p(∫ τ

0

|(x− b)|qdx
) 1
q

9
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+
B

ξηΓ (η)

∫ τ

0

e
ξ−1
ξ (ψ(τ)−ψ(x))

(ψ (τ)− ψ (x))
1−ηψ

′ (x) dx.

By using the boundedness of
∣∣ ψ′ (x)

∣∣ ≤M and some further calculation, we have

(
ΨT η,ξ0+,τfg

)
(τ) ≤ fg (b)− fg (a)

b− a
M

p−1
p

ξηΓ (η)

 ψp(η−1)+1 (τ)(
1−ξ
ξ pψ (τ)

)p(η−1)+1

(
Γ (p (η − 1) + 1)− Γ

(
p (η − 1) + 1,

1− ξ
ξ

pψ (τ)

))
1
p

×

(
|τ − b|q+1 − |−b|q+1

q + 1

) 1
q

+
fg (b)

ξηΓ (η)

ψη (τ)(
1−ξ
ξ ψ (τ)

)η (Γ (η)− Γ

(
η,

1− ξ
ξ

ψ (τ)

))
.

This is the desired result.

Theorem 2.3. Assume that f, g : (0,∞) → R be differentiable function and ψ be a positive monoton increasing function
that defined on [0,∞). Let ψ′ (τ) be continuous and ψ (0) = 0, p, q > 1 ve 1

p + 1
q = 1, |ψ′ (τ)| ≤ M. Then, if f and g are

GA−convex functions, we have the following inequality;(
ΨT η,ξ0+,τfg

)
(τ) ≤ A

ξηΓ (η)

(
M

p−1
P

p

ψp(η−1)+1 (τ)(
1−ξ
ξ pψ (τ)

)p(η−1)+1

(
Γ (p (η − 1) + 1)− Γ

(
p (η − 1) + 1,

1− ξ
ξ

pψ (τ)

))
+

1

q

∫ τ

0

∣∣∣log a
b

x

b

∣∣∣qdx)

+
B

ξηΓ (η)

ψη (τ)(
1−ξ
ξ ψ (τ)

)η (Γ (η)− Γ

(
η,

1− ξ
ξ

ψ (τ)

))

for ξ ∈ (0, 1), η ∈ C, Re (η) > 0, Re (p(η − 1)) > 0, τ > 0.

Proof. By using the definition of GA−convexity, we can write

fg
(
atb1−t

)
≤ tfg (a) + (1− t) fg (b) .

By making use of some arrangements, we have

fg (x) ≤ log a
b

x

b
fg (a) +

(
1− log a

b

x

b

)
fg (b) .

Namely,
fg (x) ≤ log a

b

x

b
(fg (a)− fg (b)) + fg (b) .

By denoting A = fg (a)− fg (b) , B = fg (b), we get

fg (x) ≤ A log a
b

x

b
+B.

By multiplying the both sides of the above inequality by

1

ξηΓ (η)

∫ τ

0

e
ξ−1
ξ (ψ(τ)−ψ(x))

(ψ (τ)− ψ (x))
1−ηψ

′ (x) dx,

it yields,(
ΨT η,ξ0+,τfg

)
(τ) ≤ A

ξηΓ (η)

∫ τ

0

e
ξ−1
ξ (ψ(τ)−ψ(x))

(ψ (τ)− ψ (x))
1−η log a

b

x

b
ψ′ (x) dx+

B

ξηΓ (η)

∫ τ

0

e
ξ−1
ξ (ψ(τ)−ψ(x))

(ψ (τ)− ψ (x))
1−ηψ

′ (x) dx.

By applying the Young inequality, we obtain

(
ΨT η,ξ0+,τfg

)
(τ) ≤ A

ξηΓ (η)

1

p

∫ τ

0

∣∣∣∣∣∣ e
ξ−1
ξ (ψ(τ)−ψ(x))

(ψ (τ)− ψ (x))
1−η ψ

′

(x)

∣∣∣∣∣∣
p

dx+
1

q

∫ τ

0

∣∣∣log a
b

x

b

∣∣∣qdx


+
B

ξηΓ (η)

∫ τ

0

e
ξ−1
ξ (ψ(τ)−ψ(x))

(ψ (τ)− ψ (x))
1−ηψ

′ (x) dx.

10
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By making use of necessary operation and changing of the vairables, we get

(
ΨT η,ξ0+,τfg

)
(τ) ≤ A

ξηΓ (η)

(
M

p−1
P

p

ψp(η−1)+1 (τ)(
1−ξ
ξ pψ (τ)

)p(η−1)+1

(
Γ (p (η − 1) + 1)− Γ

(
p (η − 1) + 1,

1− ξ
ξ

pψ (τ)

))
+

1

q

∫ τ

0

∣∣∣log a
b

x

b

∣∣∣qdx)

+
B

ξηΓ (η)

ψη (τ)(
1−ξ
ξ ψ (τ)

)η (Γ (η)− Γ

(
η,

1− ξ
ξ

ψ (τ)

))
,

which completes the proof.
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