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Abstract

The Harary-Albertson index of a connected graph G is introduced in this paper. This index is defined as

HA(G) =
∑

{u,v}⊆V (G)

|d(u)− d(v)|
d(u, v)

=
1

2

∑
u,v∈V (G)

|d(u)− d(v)|
d(u, v)

,

where d(u) and d(u, v) are the degree of the vertex u and the distance between the vertices u and v in G, respectively.
This new index is useful in predicting physico-chemical properties with high accuracy compared to some classic topological
indices. Mathematical relations between the Harary-Albertson index and other classic topological indices are established.
The extremal values of the Harary-Albertson index for trees of given order are also determined.
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1. Introduction

Let G be a simple undirected connected graph with the vertex set V (G) and edge set E(G). For v ∈ V (G), d(v) = dG(v)

denotes the degree of vertex v in G. The minimum and the maximum degree of G are denoted by δ(G) and ∆(G), or simply
δ and ∆, respectively. A pendant vertex of G is a vertex of degree one. The distance between two vertices u, v ∈ V (G),
denoted by d(u, v) = dG(u, v), is defined as the length of a shortest path between u and v. The eccentricity of v, ε(v), is
the distance between v and any vertex which is furthest from v in G. The diameter of G is the maximum eccentricity in
G, denoted by D(G). Similarly, the radius of G is the minimum eccentricity in G, denoted by r(G). The join G1 ∨ G2 of
the graphs G1 and G2 is obtained from G1 ∪ G2 by adding to it all edges between vertices from V (G1) and V (G2). The
lexicographic product of the graphs G1 and G2 is denoted by G1[G2], and it is the graph with vertex set V (G1)×V (G2), and
two vertices (u1, v1) and (u2, v2) are adjacent if (u1 is adjacent to u2 in G1) or (u1 = u2 and v1 and v2 are adjacent in G2).
Denote by Pn, Sn and G the path, the star and the complement of G, respectively.

In recent decades, the topological indices (graphical invariants or topological molecular descriptors) have been exten-
sively studied in various areas of mathematics [8, 11], physics [12], informatics [16], biology [3], especially in chemical
disciplines [4, 5, 14, 17], such as chemical documentation, isomer discrimination, study of molecular complexity, chirality,
similarity/dissimilarity, QSAR/QSPR, drug design, database selection, lead optimization, etc. In particular, the following
classic topological indices appear more frequently in the literature in the above related fields.

• Sombor index [7]: SO =
∑

uv∈E(G)

√
d2(u) + d2(v).

• second Zagreb index [9]: M2 =
∑

uv∈E(G) d(u)d(v).

• Randić index [15]: R =
∑

uv∈E(G)
1√

d(u)d(v)
.

• Albertson index [2]: irr =
∑

uv∈E(G) |d(u)− d(v)|.

• total irregularity index [1]: irrt =
∑
{u,v}⊆V (G) |d(u)− d(v)|.

• atom-bond-connectivity index [6]: ABC =
∑

uv∈E(G)

√
d(u)+d(v)−2

d(u)d(v) .
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• Wiener index [18]: W =
∑
{u,v}⊆V (G) d(u, v).

• Harary index [10,13]: H =
∑
{u,v}⊆V (G)

1
d(u,v) .

Based on the Albertson index, Abdo, Brandt and Dimitrov [1] proposed the total irregularity index, which can be
applied as irregularity measure when the adjacency information of the vertices is unknown, because the total irregularity
index of a graph depends only on its degree sequence, see for example Figure 1. However, it is well known that there are
many graphs with the same degree sequence, which makes the structure discriminating ability of the total irregularity
index lower. Usually, distance-based topological indices have better structure discriminating ability than degree-based
topological indices. Moreover, any interaction must decrease with the increase of the distance between the interacting
particles in general situation. In order to improve the structure discriminating ability and maintain certain irregularity
measuring ability, we propose the Harary-Albertson index of a connected graph G as follows:

HA(G) =
∑

{u,v}⊆V (G)

|d(u)− d(v)|
d(u, v)

=
1

2

∑
u,v∈V (G)

|d(u)− d(v)|
d(u, v)

.

In this paper, we confirm the suitability of the Harary-Albertson index in quantitative structure-property relationship
(QSPR) analysis by the correlation of acentric factor (AcenFac), entropy (S), SNar and HNar with the Harary-Albertson
index for octane isomers. Secondly, we obtain mathematical relations between the Harary-Albertson index and other
classic topological indices. Finally, we study the extremal values of the Harary-Albertson index for trees of given order.

T1 T2

Figure 1: The trees T1 and T2 satisfying irrt(T1) = irrt(T2) = 22 and HA(T1) = 44/3, HA(T2) = 43/3.

2. The Harary-Albertson index in QSPR analysis

In this section, the chemical applicability of the Harary-Albertson index is investigated. We obtain the data related to
octanes, listed in Table 1, using matlab software and the experimental data set octane isomers. We get that the correlation
coefficient of the Harary-Albertson index with AcenFac, S, SNar and HNar are −0.9667, −0.9073, −0.9786 and −0.9820,
respectively, for octane isomers. Thus the Harary-Albertson index can help to predict these physico-chemical properties
of octane isomers. These results confirm the suitability of the Harary-Albertson index in QSPR analysis. Meanwhile, the
following equations give the regression models for the Harary-Albertson index.

AcenFac = 0.4440− 0.0064×HA,

S = 118.3572− 0.7602×HA,

SNar = 4.5610− 0.0605×HA,

HNar = 1.6838− 0.0162×HA.

In order to prove that the Harary-Albertson index shows better predictive capability, we study the correlation of some
classic topological indices like the second Zagreb index, Sombor index, Randić index, Albertson index, total irregularity
index, atom-bond-connectivity index, Wiener index, Harary index with AcenFac, S, SNar and HNar, shown in Table 2.
It is not difficult to find that sometimes the Harary-Albertson index shows better predictive capability than the existing
indices.
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Table 1: Experimental values of acentric factor (AcenFac), entropy (S), SNar, HNar and the corresponding values of
different topological indices for octane isomers.

Molecule AcenFac S SNar HNar HA SO M2 R irr irrt ABC W H

Octane 0.3979 111.67 4.159 1.6 4.9 37.2285 24 3.9142 2 12 4.9497 84 13.7429

2-methyl-heptane 0.3779 109.84 3.871 1.5 11.1333 41.3029 26 3.7701 6 22 5.1685 79 14.1

3-methyl-heptane 0.3710 111.26 3.871 1.5 11.7333 41.0047 27 3.8081 6 22 5.0591 76 14.2667

4-methyl-heptane 0.3715 109.32 3.871 1.5 11.9 41.0047 27 3.8081 6 22 5.0591 75 14.3167

3-ethyl-hexane 0.3625 109.43 3.871 1.5 12 40.7066 28 3.8461 6 22 4.9497 72 14.4833

2,2-dimethyl-hexane 0.3394 103.42 3.466 1.391 18.5 49.4668 30 3.5607 12 30 5.4265 71 14.7667

2,3-dimethyl-hexane 0.3482 108.02 3.584 1.412 16 44.799 30 3.6807 8 28 5.2375 70 14.7333

2,4-dimethyl-hexane 0.3442 106.98 3.584 1.412 16.6667 45.0791 29 3.6639 10 28 5.2779 71 14.65

2,5-dimethyl-hexane 0.3568 105.72 3.584 1.412 16.3333 45.3773 28 3.6259 10 28 5.3873 74 14.4667

3,3-dimethyl-hexane 0.3226 104.74 3.466 1.391 19.5 48.9821 32 3.6213 12 30 5.2676 67 15.0333

3,4-dimethyl-hexane 0.3403 106.59 3.584 1.412 16.5 44.5009 31 3.7187 8 28 5.1281 68 14.8667

2-methyl-3-ethyl-pentane 0.3324 106.06 3.584 1.412 16.3333 44.5009 31 3.7187 8 28 5.1281 67 14.9167

3-methyl-3-ethyl-pentane 0.3069 101.48 3.466 1.391 20 48.4954 34 3.682 12 20 5.1087 64 15.25

2,2,3-trimethyl-pentane 0.3008 101.31 3.178 1.315 23 52.7464 35 3.4814 14 34 5.4743 63 15.4167

2,2,4-trimethyl-pentane 0.3054 104.09 3.178 1.315 23 53.5431 32 3.4165 16 34 5.6453 66 15.1667

2,3,3-trimethyl-pentane 0.2932 102.06 3.178 1.315 23.3333 52.5579 36 3.504 14 34 5.4248 62 15.5

2,3,4-trimethyl-pentane 0.3174 102.39 3.296 1.333 18.6667 48.5933 33 3.5535 10 30 5.4158 65 15.1667

2,2,3,3-tetramethylbutane 0.2553 93.06 2.773 1.231 27 60.791 40 3.25 18 36 5.8085 58 16

Table 2: The square of correlation coefficient of different topological indices with AcenFac, S, SNar and HNar.

Physico-chemical property HA SO M2 R irr irrt ABC W H

AcenFac 0.9345 0.9205 0.973 0.8176 0.8701 0.6424 0.629 0.9324 0.984

S 0.8232 0.8959 0.8868 0.8205 0.8048 0.5279 0.6727 0.7705 0.8636

SNar 0.9577 0.9688 0.894 0.9487 0.9183 0.7948 0.8216 0.8484 0.9201

HNar 0.9643 0.9251 0.8941 0.9487 0.8968 0.838 0.7912 0.8662 0.9107

3. Harary-Albertson and other degree-based indices

Theorem 3.1. Let G be an irregular connected graph with n vertices. Then

HA(G) ≤ (∆− δ)H(G)

and
1

D(G)
irrt(G) ≤ HA(G) ≤ 1

r(G)
irrt(G).

Proof. By the definition of HA(G), we have the proof.

Theorem 3.2. Let G be a triangle- and quadrangle-free irregular connected graph with n ≥ 4 vertices and m edges. Then

HA(G) ≤ irr(G) +
1

24
[3n(n− 1) +M1 + 2M2 − 10m](∆− δ),

where M1 =
∑

v∈V (G) d
2(v).

Proof. Let d(G, k) be the number of vertex pairs of the graph G that are at distance k. If G be a triangle- and quadrangle-
free irregular connected graph with n ≥ 4 vertices and m edges, from [20], we have

d(G, 1) = m, d(G, 2) =
1

2
M1 −m, d(G, 3) = M2 −M1 +m,

D(G)∑
k=1

d(G, k) =
n(n− 1)

2
.

By the definition of HA(G), we have

HA(G) =
∑

{u,v}⊆V (G)

|d(u)− d(v)|
d(u, v)

≤ irr(G) +
1

2

(
1

2
M1 −m

)
(∆− δ) +

1

3
(M2 −M1 +m)(∆− δ)

+
1

4

[
n(n− 1)

2
+

1

2
M1 −M2 −m

]
(∆− δ)
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= irr(G) +
1

24
[3n(n− 1) +M1 + 2M2 − 10m](∆− δ).

A graph is said to be self-complementary if it is isomorphic with its complement. Clearly, if G is a self-complementary
graph, then HA(G) = HA(G).

Theorem 3.3. Let G be an irregular connected graph with n vertices and maximum degree ∆(G) ≤ n− 2. Then

HA(G) ≤ irrt(G)− 1

2
irr(G).

In particular, if D(G) ≥ 3, then
HA(G) ≥ 1

3
irrt(G).

Furthermore, if D(G) ≥ 4, then
HA(G) ≥ 1

2
irrt(G).

Proof. Let d(u) + d(u′) = n− 1 and d(v) + d(v′) = n− 1 for u, v ∈ V (G). Since G is a connected graph with maximum degree
∆(G) ≤ n − 2, we know that G is a connected graph with r(G) ≥ 2. By the definition of the Harary-Albertson index, we
have

HA(G) =
∑

{u′,v′}⊆V (G)

|d(u′)− d(v′)|
d(u′, v′)

=
∑

{u,v}⊆V (G),d(u,v)≥2

|n− 1− d(u)− (n− 1− d(v))|
d(u′, v′)

+
∑

{u,v}⊆V (G),d(u,v)=1

|n− 1− d(u)− (n− 1− d(v))|
d(u′, v′)

=
∑

{u,v}⊆V (G),d(u,v)≥2

|d(u)− d(v)|+
∑

{u,v}⊆V (G),d(u,v)=1

|d(u)− d(v)|
d(u′, v′)

= irrt(G)−
∑

{u,v}⊆V (G),d(u,v)=1

|d(u)− d(v)|+
∑

{u,v}⊆V (G),d(u,v)=1

|d(u)− d(v)|
d(u′, v′)

≤ irrt(G)− irr(G) +
∑

{u,v}⊆V (G),d(u,v)=1

|d(u)− d(v)|
r(G)

≤ irrt(G)− irr(G) +
∑

{u,v}⊆V (G),d(u,v)=1

|d(u)− d(v)|
2

= irrt(G)− 1

2
irr(G).

If D(G) ≥ 3, then D(G) ≤ 3. Thus, we have

HA(G) =
∑

{u′,v′}⊆V (G)

|d(u′)− d(v′)|
d(u′, v′)

≥
∑

{u′,v′}⊆V (G)

|d(u′)− d(v′)|
D(G)

≥
∑

{u,v}⊆V (G)

|n− 1− d(u)− (n− 1− d(v))|
3

=
1

3

∑
{u,v}⊆V (G)

|d(u)− d(v)|

=
1

3
irrt(G).

If D(G) ≥ 4, then D(G) = 2. By a similar reasoning as the above, we have the proof.
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Theorem 3.4. Let G1 and G2 be connected graphs with |V (G1)| = n1 and |V (G2)| = n2 such that n1 ≥ n2 ≥ 2. Then

HA(G1 ∨G2) ≤ 1

2
[irrt(G1) + irrt(G2)] +

1

2
[irr(G1) + irr(G2)]

+n1n2 max{|n2 − n1 + ∆(G1)− δ(G2)|, |n2 − n1 −∆(G2) + δ(G1)|}.

Proof. By the definition of G1 ∨ G2, we have |G1 ∨ G2| = n1 + n2, dG1∨G2
(u) = d(u) + n2 and dG1∨G2

(v) = d(v) + n1 for
u ∈ V (G1) and v ∈ V (G2). Moreover, dV (G1∨G2)(u, v) = 1 for uv ∈ E(G1) or uv ∈ E(G2) or u ∈ V (G1) and v ∈ V (G2),
dV (G1∨G2)(u, v) = 2 otherwise. Thus,

HA(G1 ∨G2) =
∑

{u,v}⊆V (G1∨G2)

|dG1∨G2(u)− dG1∨G2(v)|
dG1∨G2

(u, v)

=
∑

uv∈E(G1)

|d(u)− d(v)|+
∑

uv∈E(G2)

|d(u)− d(v)|

+
∑

u∈V (G1)

∑
v∈V (G2)

|(n2 − d(v))− (n1 − d(u))|

+
∑

{u,v}⊆V (G1)
d(u,v)≥2

|d(u)− d(v)|
2

+
∑

{u,v}⊆V (G2)
d(u,v)≥2

|d(u)− d(v)|
2

= irr(G1) + irr(G2) +
∑

u∈V (G1)

∑
v∈V (G2)

|(n2 − d(v))− (n1 − d(u))|

+
1

2
[irrt(G1)− irr(G1)] +

1

2
[irrt(G2)− irr(G2)]

=
1

2
[irrt(G1) + irrt(G2)] +

1

2
[irr(G1) + irr(G2)]

+
∑

u∈V (G1)

∑
v∈V (G2)

|(n2 − d(v))− (n1 − d(u))|

≤ 1

2
[irrt(G1) + irrt(G2)] +

1

2
[irr(G1) + irr(G2)]

+n1n2 max{|n2 − n1 + ∆(G1)− δ(G2)|, |n2 − n1 + δ(G1)−∆(G2)|}.

Theorem 3.5. Let G1 and G2 be connected graphs with |V (G1)| = n1, |V (G2)| = n2 and |E(G2)| = m2. Then

HA(G1[G2]) ≤ n32HA(G1) +
n2
4

[
n2(n2 − 1)

2
−m2

]
irrt(G1) +

n1(n1 − 1)

8
irrt(G2) +

3n21 + n1
8

irr(G2).

Proof. By the definition ofG1[G2], we know that dG1[G2]((ui, vj)) = n2d(ui)+d(vj) for ui ∈ V (G1) (1 ≤ i ≤ n1) and vj ∈ V (G2)

(1 ≤ j ≤ n2). Moreover, we have dG1[G2]((ui, vk), (uj , vl)) = d(ui, uj) for vk = vl, dG1[G2]((ui, vk), (uj , vl)) = 1 for ui = uj and
vkvl ∈ E(G2), dG1[G2]((ui, vk), (uj , vl)) = 2 otherwise. Thus

HA(G1[G2]) =
1

2

∑
(ui,vk)∈V (G1[G2])
(uj ,vl)∈V (G1[G2])

|d((ui, vk))− d((uj , vl))|
d((ui, vk), (uj , vl))

=
1

2

∑
ui,uj∈V (G1)
vk,vl∈V (G2)

|n2(d(ui)− d(uj)) + d(vk)− d(vl)|
d((ui, vk), (uj , vl))

=
1

2

∑
ui,uj∈V (G1)
vk,vl∈V (G2)

vk=vl

n2|d(ui)− d(uj)|
d(ui, uj)

+
1

2

∑
ui,uj∈V (G1)
vk,vl∈V (G2)

ui=uj ,vkvl∈E(G2)

|d(vk)− d(vl)|

+
1

2

∑
ui,uj∈V (G1)
vk,vl∈V (G2)

ui 6=uj ,vk 6=vl,vkvl /∈E(G2)

|n2(d(ui)− d(uj)) + d(vk)− d(vl)|
2
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≤ n32HA(G1) +
1

2
n21irr(G2) +

1

4

∑
ui,uj∈V (G1)
vk,vl∈V (G2)

ui 6=uj ,vk 6=vl,vkvl /∈E(G2)

n2|d(ui)− d(uj)|

+
1

4

∑
ui,uj∈V (G1)
vk,vl∈V (G2)

ui 6=uj ,vk 6=vl,vkvl /∈E(G2)

|d(vk)− d(vl)|

= n32HA(G1) +
1

2
n21irr(G2) +

1

4
n2

[(
n2
2

)
−m2

]
irrt(G1)

+
1

4

(
n1
2

)
[irrt(G2)− irr(G2)]

= n32HA(G1) +
n2
4

[
n2(n2 − 1)

2
−m2

]
irrt(G1) +

n1(n1 − 1)

8
irrt(G2)

+
3n21 + n1

8
irr(G2).

4. The Harary-Albertson index of trees

Theorem 4.1. Let Tn be a tree with n vertices. Then

2

(
1 +

1

2
+ · · ·+ 1

n− 2

)
≤ HA(Tn) ≤ (n− 1)(n− 2),

where the left (right) equality holds if and only if Tn = Pn (Tn = Sn).

Proof. Abdo et al. [1] proved that the star has the maximum total irregularity among all trees with n vertices. Note that
HA(Sn) = irrt(Sn) = (n− 1)(n− 2). Thus we have

HA(Tn) ≤ irrt(Tn) ≤ irrt(Sn) = (n− 1)(n− 2)

with equality if and only if Tn = Sn.
If the maximum degree ∆(Tn) ≥ 3, then the number of pendant vertices p ≥ 3. Let v1, v2, . . . , vn be the vertices of Tn,

and let v1, v2, . . . , vp be the pendant vertices. Since any two vertices are connected by exactly one path in a tree, we have

HA(Tn) > p+

p∑
i=1

n∑
j=p+1

d(vj)− 1

d(vi, vj)

> 2

(
1 +

1

2
+ · · ·+ 1

n− 2

)
= HA(Pn).

Thus, HA(Tn) ≥ HA(Pn) with equality if and only if Tn = Pn.

5. Conclusion

In this paper, we propose the Harary-Albertson index, which can be successfully applied to quantitative structure-property
relationship (QSPR) analysis. Some mathematical relations between the Harary-Albertson index and other classic topo-
logical indices are established. Additionally, the Harary-Albertson index of trees is studied. For measuring the non-self-
centrality of a graph G, the non-self-centrality number of G was introduced in [19] as N(G) =

∑
{u,v}⊆V (G) |ε(u) − ε(v)|.

Based on this, one can propose the Harary non-self-centrality number of a connected graph G as follows:

HN(G) =
∑

{u,v}⊆V (G)

|ε(u)− ε(v)|
d(u, v)

=
1

2

∑
u,v∈V (G)

|ε(u)− ε(v)|
d(u, v)

.
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The following four problems related to the present study will be considered in the future:

1. Determine the extremal (minimum and maximum) values of the Harary-Albertson index among all connected graphs
with n vertices and m edges.

2. Determine the extremal values of the Harary-Albertson index among all molecular graphs with n vertices.

3. Study the properties of the Harary non-self-centrality number of connected graphs.

4. Establish relations between the Harary-Albertson index and the Harary non-self-centrality number of connected
graphs.
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