Research Article

Estimates for the ratio of the first two eigenvalues of the Dirichlet-Laplace operator with a drift

Şerban Bărbuleanu ${ }^{1}$, Mihai Mihăilescu ${ }^{1, *}$, Denisa Stancu-Dumitru ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Craiova, 200585 Craiova, Romania
${ }^{2}$ Department of Mathematics and Computer Sciences, University Politehnica of Bucharest, 060042 Bucharest, Romania

(Received: 19 August 2021. Received in revised form: 28 August 2021. Accepted: 28 August 2021. Published online: 30 August 2021.)
(c) 2021 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Let $\Omega \subset \mathbb{R}^{N}$ be an open and bounded set. Consider the eigenvalue problem of the Laplace operator with a drift term $-\Delta u-x \cdot \nabla u=\lambda u$ in Ω subject to the homogeneous Dirichlet boundary condition ($u=0$ on $\partial \Omega$). Denote by $\lambda_{1}(\Omega)$ and $\lambda_{2}(\Omega)$ the first two eigenvalues of the problem. We show that $\lambda_{2}(\Omega) \lambda_{1}(\Omega)^{-1} \leq 1+4 N^{-1}$. In particular, we complement a similar result obtained by Thompson [Stud. Appl. Math. 48 (1969) 281-283] for the classical eigenvalue problem of the Laplace operator.

Keywords: Laplace operator; drift; eigenvalue; eigenfunction.
2020 Mathematics Subject Classification: 58C40, 49R05, 49J40, 49S05.

1. Motivation and main result

For each positive integer N denote by \mathbb{R}^{N} the N-dimensional Euclidean space and by $|\cdot|_{N}$ the Euclidean norm in \mathbb{R}^{N}. Let $\Omega \subset \mathbb{R}^{N}$ be an open and bounded set.

1.1. The eigenvalue problem of the Dirichlet-Laplace operator

The eigenvalue problem for the Dirichlet-Laplace operator on Ω reads as follows

$$
\begin{cases}-\Delta u=\lambda u & \text { in } \quad \Omega \tag{1}\\ u=0 & \text { on } \quad \partial \Omega\end{cases}
$$

It is well-known that the spectrum of problem (1) consists of an increasing and unbounded sequence of positive real numbers (see, e.g. [10, Theorem 8.2.1]). Denote by $\mu_{1}(\Omega)$ and $\mu_{2}(\Omega)$ the first two eigenvalues of problem (1). Let us also denote by Ω^{\star} a ball from \mathbb{R}^{N} which has the same volume as Ω (i.e., $\left|\Omega^{\star}\right|=|\Omega|$). In 1955-1956, Payne, Pólya and Weinberger [7] showed that

$$
\frac{\mu_{2}(\Omega)}{\mu_{1}(\Omega)} \leq 3
$$

when $N=2$ and conjectured that the right-hand side could be replaced by

$$
\frac{\mu_{2}\left(\Omega^{\star}\right)}{\mu_{1}\left(\Omega^{\star}\right)} \approx 2.539 .
$$

This result was extended to all dimensions in 1969 by Thompson [8], who showed that

$$
\frac{\mu_{2}(\Omega)}{\mu_{1}(\Omega)} \leq 1+\frac{4}{N}
$$

and, again, it was conjectured that the right-hand side could be replaced by

$$
\frac{\mu_{2}\left(\Omega^{\star}\right)}{\mu_{1}\left(\Omega^{\star}\right)}
$$

In the case $N=2$ important advances on this problem were obtained by Brands [3], de Vries [5], Chiti [4], and the conjecture was finally settled positively by Asbaugh and Benguria [1] in 1992. The above historical pieces of information are mainly taken from the book by Kesavan [6, Section 4.4, pp. 98-99].

[^0]
1.2. The eigenvalue problem of the Dirichlet-Laplace operator with a drift

Consider the eigenvalue problem of the Dirichlet-Laplace operator with a drift term

$$
\begin{cases}-\Delta u-x \cdot \nabla u=\lambda u & \text { in } \Omega \tag{2}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where λ is a real parameter. We say that λ is an eigenvalue of problem (2) if there exists $u_{\lambda} \in X_{0} \backslash\{0\}$ such that

$$
\begin{equation*}
\int_{\Omega} \nabla u_{\lambda} \cdot \nabla \varphi d m_{N}=\lambda \int_{\Omega} u_{\lambda} \varphi d m_{N} \tag{3}
\end{equation*}
$$

where $d m_{N}:=e^{|x|_{N}^{2} / 2} d x$ and $X_{0}:=H_{0}^{1}\left(\Omega ; d m_{N}\right)$. Function u_{λ} from the above definition is called an eigenfunction corresponding to the eigenvalue λ.

Using [2, relation (2.10) on page 715] (see also [9, Théorème 8.7] with $H=X_{0}$ applied for the particular case induced by problem (2)), we deduce that the first eigenvalue of problem (2) has the following variational characterization

$$
\lambda_{1}(\Omega):=\inf _{u \in X_{0} \backslash\{0\}} \frac{\int_{\Omega}|\nabla u|_{N}^{2} d m_{N}}{\int_{\Omega} u^{2} d m_{N}},
$$

and there exists a corresponding eigenfunction corresponding to $\lambda_{1}(\Omega), e_{1} \in X_{0} \backslash\{0\}$ such that

$$
\begin{equation*}
\int_{\Omega}\left|\nabla e_{1}\right|_{N}^{2} d m_{N}=\lambda_{1}(\Omega) \quad \text { and } \quad \int_{\Omega} e_{1}^{2} d m_{N}=1 \tag{4}
\end{equation*}
$$

Moreover, the second eigenvalue of problem (2) has the following variational characterization

$$
\lambda_{2}(\Omega):=\inf _{u \in X_{0} \backslash\{0\} ; \int_{\Omega} u e_{1} d m_{N}=0} \frac{\int_{\Omega}|\nabla u|_{N}^{2} d m_{N}}{\int_{\Omega} u^{2} d m_{N}} .
$$

The goal of this paper is to prove the following theorem:
Theorem 1.1. The following estimate holds true

$$
\frac{\lambda_{2}(\Omega)}{\lambda_{1}(\Omega)} \leq 1+\frac{4}{N}
$$

Consequently, we show that the result by Thompson [8] established in the case of the Laplace operator continues to hold true in the case of the Laplace operator with the drift $x \cdot \nabla \cdot$. Note that even if the two cases seem to be very similar we can point out differences between them. For example, it is easy to check that the ratio $\frac{\mu_{2}(\Omega)}{\mu_{1}(\Omega)}$ is invariant on rescaled domains. More precisely, if for some $t>0$ we denote $\Omega_{t}:=t \Omega=\{t x: x \in \Omega\}$ then

$$
\frac{\mu_{2}(\Omega)}{\mu_{1}(\Omega)}=\frac{\mu_{2}\left(\Omega_{t}\right)}{\mu_{1}\left(\Omega_{t}\right)}, \quad \forall t>0
$$

This equality holds since a simple change of variable shows that $\mu_{i}\left(\Omega_{t}\right)=t^{-2} \mu_{i}(\Omega)$ for $i \in\{1,2\}$. Such a relation fails to hold true in the case of $\lambda_{i}\left(\Omega_{t}\right)$ and consequently in general

$$
\frac{\lambda_{2}(\Omega)}{\lambda_{1}(\Omega)} \neq \frac{\lambda_{2}\left(\Omega_{t}\right)}{\lambda_{1}\left(\Omega_{t}\right)} .
$$

In other words, we want to point out the fact that in the case of the Laplace operator with the drift $x \cdot \nabla \cdot$ the dependence of the ratio $\frac{\lambda_{2}(\Omega)}{\lambda_{1}(\Omega)}$ on the domain Ω is more involved than in the case of the ratio $\frac{\mu_{2}(\Omega)}{\mu_{1}(\Omega)}$. Despite this fact, we can establish the same bound from above $\left(1+4 N^{-1}\right)$ which depends only on the dimension of the Euclidean space and not on the domain Ω on which the eigenvalue problem is analysed.

2. Proof of Theorem $\mathbf{1 . 1}$

For each $i \in\{1, \ldots, N\}$, define

$$
A_{i}:=\int_{\Omega}\left(\frac{\partial e_{1}}{\partial x_{i}}\right)^{2} d m_{N}
$$

Assume that $A_{1}=\min _{i \in\{1, \ldots, N\}} A_{i}$. Then we have

$$
\begin{equation*}
A_{1} \leq \frac{1}{N} \sum_{i=1}^{N} A_{i} \tag{5}
\end{equation*}
$$

Next, note that taking $t_{i}:=\int_{\Omega} x_{i} e_{1}^{2} d m_{N}$ we have

$$
\begin{equation*}
\int_{\Omega}\left(x_{i}-t_{i}\right) e_{1}^{2} d m_{N}=0, \quad \forall i \in\{1, \ldots, N\} \tag{6}
\end{equation*}
$$

since function e_{1} satisfies (4).
By the definition of $\lambda_{2}(\Omega)$ and the fact that $u \in H_{0}^{1}\left(\Omega ; d m_{N}\right)$ if and only if $u e^{|x|_{N}^{2} / 4} \in H_{0}^{1}(\Omega ; d x)$ and $|x|_{N} u e^{|x|_{N}^{2} / 4} \in L^{2}(\Omega)$ (see [2, Proposition 2.3]) we deduce

$$
\begin{equation*}
\lambda_{2}(\Omega) \leq \frac{\int_{\Omega} \mid \nabla\left[\left(x_{i}-t_{i}\right) e_{1}\right]_{N}^{2} d m_{N}}{\int_{\Omega}\left(x_{i}-t_{i}\right)^{2} e_{1}^{2} d m_{N}}, \quad \forall i \in\{1, \ldots, N\} \tag{7}
\end{equation*}
$$

Simple computations imply that for each $i \in\{1, \ldots, N\}$ we have

$$
\nabla\left[\left(x_{i}-t_{i}\right) e_{1}\right]=\left(\left(x_{i}-t_{i}\right) \frac{\partial e_{1}}{\partial x_{1}}, \ldots,\left(x_{i}-t_{i}\right) \frac{\partial e_{1}}{\partial x_{i}}+e_{1}, \ldots,\left(x_{i}-t_{i}\right) \frac{\partial e_{1}}{\partial x_{N}}\right)
$$

and, thus, we find

$$
\left|\nabla\left[\left(x_{i}-t_{i}\right) e_{1}\right]\right|_{N}^{2}=\left(x_{i}-t_{i}\right)^{2}\left|\nabla e_{1}\right|_{N}^{2}+2\left(x_{i}-t_{i}\right) e_{1} \frac{\partial e_{1}}{\partial x_{i}}+e_{1}^{2} .
$$

Multiplying the last equality by $e^{|x|_{N}^{2} / 2}$ and then integrating on Ω we get

$$
\begin{equation*}
\int_{\Omega}\left|\nabla\left[\left(x_{i}-t_{i}\right) e_{1}\right]\right|_{N}^{2} d m_{N}=\int_{\Omega}\left(x_{i}-t_{i}\right)^{2}\left|\nabla e_{1}\right|_{N}^{2} d m_{N}+2 \int_{\Omega}\left(x_{i}-t_{i}\right) e_{1} \frac{\partial e_{1}}{\partial x_{i}} d m_{N}+\int_{\Omega} e_{1}^{2} d m_{N} \tag{8}
\end{equation*}
$$

On the other hand, since $\lambda_{1}(\Omega)$ is the first eigenvalue of problem (2) with the corresponding eigenfunction e_{1} satisfying (4), by (3) with $\lambda=\lambda_{1}(\Omega), u_{\lambda}=e_{1}$ and $\varphi=\left(x_{i}-t_{i}\right)^{2} e_{1}$ we know that

$$
\begin{equation*}
\int_{\Omega} \nabla e_{1} \cdot \nabla\left[\left(x_{i}-t_{i}\right)^{2} e_{1}\right] d m_{N}=\lambda_{1}(\Omega) \int_{\Omega}\left(x_{i}-t_{i}\right)^{2} e_{1}^{2} d m_{N}, \quad \forall i \in\{1, \ldots, N\} \tag{9}
\end{equation*}
$$

Simple computations imply that for each $i \in\{1, \ldots, N\}$ we have

$$
\nabla\left[\left(x_{i}-t_{i}\right)^{2} e_{1}\right]=\left(\left(x_{i}-t_{i}\right)^{2} \frac{\partial e_{1}}{\partial x_{1}}, \ldots,\left(x_{i}-t_{i}\right)^{2} \frac{\partial e_{1}}{\partial x_{i}}+2\left(x_{i}-t_{i}\right) e_{1}, \ldots,\left(x_{i}-t_{i}\right)^{2} \frac{\partial e_{1}}{\partial x_{N}}\right)
$$

and, thus, we find

$$
\nabla e_{1} \cdot \nabla\left[\left(x_{i}-t_{i}\right)^{2} e_{1}\right]=\left(x_{i}-t_{i}\right)^{2}\left|\nabla e_{1}\right|_{N}^{2}+2\left(x_{i}-t_{i}\right) e_{1} \frac{\partial e_{1}}{\partial x_{i}}
$$

Multiplying the last equality by $e^{|x|_{N}^{2} / 2}$ and then integrating on Ω and using (9) we find

$$
\begin{equation*}
\int_{\Omega}\left(x_{i}-t_{i}\right)^{2}\left|\nabla e_{1}\right|_{N}^{2} d m_{N}+2 \int_{\Omega}\left(x_{i}-t_{i}\right) e_{1} \frac{\partial e_{1}}{\partial x_{i}} d m_{N}=\lambda_{1}(\Omega) \int_{\Omega}\left(x_{i}-t_{i}\right)^{2} e_{1}^{2} d m_{N}, \quad \forall i \in\{1, \ldots, N\} . \tag{10}
\end{equation*}
$$

By (7), (8) and (10) we infer

$$
\begin{align*}
\lambda_{2}(\Omega) & \leq \frac{\int_{\Omega}\left|\nabla\left[\left(x_{i}-t_{i}\right) e_{1}\right]\right|_{N}^{2} d m_{N}}{\int_{\Omega}\left(x_{i}-t_{i}\right)^{2} e_{1}^{2} d m_{N}} \\
& =\frac{\int_{\Omega}\left(x_{i}-t_{i}\right)^{2}\left|\nabla e_{1}\right|_{N}^{2} d m_{N}+2 \int_{\Omega}\left(x_{i}-t_{i}\right) e_{1} \frac{\partial e_{1}}{\partial x_{i}} d m_{N}+\int_{\Omega} e_{1}^{2} d m_{N}}{\int_{\Omega}\left(x_{i}-t_{i}\right)^{2} e_{1}^{2} d m_{N}} \tag{11}\\
& =\lambda_{1}(\Omega)+\frac{\int_{\Omega} e_{1}^{2} d m_{N}}{\int_{\Omega}\left(x_{i}-t_{i}\right)^{2} e_{1}^{2} d m_{N}}, \forall i \in\{1, \ldots, N\} .
\end{align*}
$$

Further, note that, integrating by parts, we get

$$
\begin{aligned}
2 \int_{\Omega}\left(x_{i}-t_{i}\right) e_{1} \frac{\partial e_{1}}{\partial x_{i}} d m_{N} & =2 \int_{\Omega}\left(x_{i}-t_{i}\right) e_{1} \frac{\partial e_{1}}{\partial x_{i}} e^{\left.|x|\right|_{N} ^{2} / 2} d x \\
& =\int_{\Omega}\left(x_{i}-t_{i}\right) \frac{\partial e_{1}^{2}}{\partial x_{i}} e^{|x|_{N}^{2} / 2} d x \\
& =\int_{\partial \Omega}\left(x_{i}-t_{i}\right) \frac{\partial e_{1}^{2}}{\partial x_{i}} e^{|x|_{N}^{2} / 2} \sigma_{i} d \sigma(x)-\int_{\Omega} \frac{\partial}{\partial x_{i}}\left(\left(x_{i}-t_{i}\right) e^{|x|_{N}^{2} / 2}\right) e_{1}^{2} d x \\
& =-\int_{\Omega}\left[e^{|x|_{N}^{2} / 2}+\left(x_{i}-t_{i}\right) x_{i} e^{|x|_{N}^{2} / 2}\right] e_{1}^{2} d x \\
& =-\int_{\Omega} e_{1}^{2} d m_{N}-\int_{\Omega}\left(x_{i}-t_{i}\right) x_{i} e_{1}^{2} d m_{N}, \quad \forall i \in\{1, \ldots, N\} .
\end{aligned}
$$

Since relation (6) holds true, we have

$$
\int_{\Omega}\left(x_{i}-t_{i}\right) x_{i} e_{1}^{2} d m_{N}=\int_{\Omega}\left(x_{i}-t_{i}\right)^{2} e_{1}^{2} d m_{N}+t_{i} \int_{\Omega}\left(x_{i}-t_{i}\right) e_{1}^{2} d m_{N}=\int_{\Omega}\left(x_{i}-t_{i}\right)^{2} e_{1}^{2} d m_{N}, \quad \forall i \in\{1, \ldots, N\}
$$

and then we deduce

$$
\int_{\Omega} e_{1}^{2} d m_{N}=-\int_{\Omega}\left(x_{i}-t_{i}\right)^{2} e_{1}^{2} d m_{N}-2 \int_{\Omega}\left(x_{i}-t_{i}\right) e_{1} \frac{\partial e_{1}}{\partial x_{i}} d m_{N}, \quad \forall i \in\{1, \ldots, N\} .
$$

The above equality implies

$$
\int_{\Omega} e_{1}^{2} e^{|x|_{N}^{2} / 2} d x \leq-2 \int_{\Omega}\left(x_{i}-t_{i}\right) e_{1} \frac{\partial e_{1}}{\partial x_{i}} e^{|x|_{N}^{2} / 2} d x, \quad \forall i \in\{1, \ldots, N\},
$$

or, using Hölder's inequality, we get

$$
\begin{aligned}
\left(\int_{\Omega} e_{1}^{2} e^{|x|_{N}^{2} / 2} d x\right)^{2} & \leq 4\left(\int_{\Omega}\left(x_{i}-t_{i}\right) e_{1} \frac{\partial e_{1}}{\partial x_{i}} e^{|x|_{N}^{2} / 2} d x\right)^{2} \\
& \leq 4\left(\int_{\Omega}\left(x_{i}-t_{i}\right)^{2} e_{1}^{2} e^{|x|_{N}^{2} / 2} d x\right)\left(\int_{\Omega}\left(\frac{\partial e_{1}}{\partial x_{i}}\right)^{2} e^{|x|_{N}^{2} / 2} d x\right), \quad \forall i \in\{1, \ldots, N\} .
\end{aligned}
$$

Equivalently, we have

$$
\begin{equation*}
\frac{\int_{\Omega} e_{1}^{2} d m_{N}}{\int_{\Omega}\left(x_{i}-t_{i}\right)^{2} e_{1}^{2} d m_{N}} \leq 4 \frac{\int_{\Omega}\left(\frac{\partial e_{1}}{\partial x_{i}}\right)^{2} d m_{N}}{\int_{\Omega} e_{1}^{2} d m_{N}}, \quad \forall i \in\{1, \ldots, N\} . \tag{12}
\end{equation*}
$$

Relations (11) and (12) yield

$$
\lambda_{2}(\Omega) \leq \lambda_{1}(\Omega)+4 \frac{\int_{\Omega}\left(\frac{\partial e_{1}}{\partial x_{i}}\right)^{2} d m_{N}}{\int_{\Omega} e_{1}^{2} d m_{N}}=\lambda_{1}(\Omega)+4 A_{i}, \quad \forall i \in\{1, \ldots, N\} .
$$

Letting $i=1$ above and using (5) we conclude that

$$
\lambda_{2}(\Omega) \leq \lambda_{1}(\Omega)+\frac{4}{N} \int_{\Omega}\left|\nabla e_{1}\right|_{N}^{2} d m_{N}=\lambda_{1}(\Omega)+\frac{4}{N} \lambda_{1}(\Omega) .
$$

The proof of Theorem 1.1 is now complete.

Acknowledgment

The last author (DS-D) has been partially supported by CNCS-UEFISCDI through Grant No. PN-III-P1-1.1-TE-2019-0456.

References

[1] M. S. Ashbaugh, R. D. Benguria, A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions, Ann. Math. 135 (1992) 601-628.
[2] B. Brandolini, F. Chiacchio, A. Henrot, C. Trombetti, Existence of minimizers for eigenvalues of the Dirichlet-Laplacian with a drift, J. Differential Equations 259 (2015) 708-727.
[3] J. A. M. Brands, Bounds for the ratios of the first three membrane eigenvalues, Arch. Rat. Mech. Anal. 16 (1964) $265-258$.
[4] G. Chiti, A bound for the ratio of the first two eigenvalues of a membrane, SIAM J. Math. Anal. 14 (1983) 1163-1167.
[5] H. L. de Vries, On the upper bound for the ratio of the first two membrane eigenvalues, Z. Naturforsch. A 22 (1967) $152-153$.
[6] S. Kesavan, Symmetrization and Applications, World Scientific, 2006.
[7] L. E. Payne, G. Pólya, H. F. Weinberger, On the ratio of consecutive eigenvalues, J. Math. Phys. 35 (1956) 289-298.
[8] C. J. Thompson, On the ratio of consecutive eigenvalues in n-dimensions, Stud. Appl. Math. 48 (1969) 281-283.
[9] M. Willem, Analyse fonctionnelle élémentaire, Vuibert, Paris, 2003.
[10] M. Willem, Functional Analysis: Fundamentals and Applications, Birkhäuser, New York, 2013.

[^0]: *Corresponding author (mmihailes@yahoo.com).

