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Abstract

Let Q@ C RY be an open and bounded set. Consider the eigenvalue problem of the Laplace operator with a drift term
—Au—z - Vu = lu in Q subject to the homogeneous Dirichlet boundary condition (v = 0 on 99). Denote by A1 (£2) and X2(£2)
the first two eigenvalues of the problem. We show that A2(Q)A1(Q) ! < 1+ 4N !, In particular, we complement a similar
result obtained by Thompson [Stud. Appl. Math. 48 (1969) 281-283] for the classical eigenvalue problem of the Laplace
operator.
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1. Motivation and main result

For each positive integer N denote by R" the N-dimensional Euclidean space and by | - | y the Euclidean norm in RY. Let
Q c RY be an open and bounded set.

1.1. The eigenvalue problem of the Dirichlet-Laplace operator

The eigenvalue problem for the Dirichlet-Laplace operator on 2 reads as follows

o)

—Au=XMu in Q,
u=20 on Jf2.

It is well-known that the spectrum of problem (1) consists of an increasing and unbounded sequence of positive real numbers
(see, e.g. [10, Theorem 8.2.1]). Denote by 11(Q2) and 2 () the first two eigenvalues of problem (1). Let us also denote by Q*
a ball from RY which has the same volume as Q2 (i.e., |2*| = |©2|). In 1955-1956, Payne, Pélya and Weinberger [7] showed
that

—~
~

pa2(§2
p1 (82
when N = 2 and conjectured that the right-hand side could be replaced by

p2(2%)
11 (€2%)

This result was extended to all dimensions in 1969 by Thompson [8], who showed that

p2(£2) i

<3,

—~
~—

~ 2.539.

and, again, it was conjectured that the right-hand side could be replaced by

p2(2%)
(%)

In the case N = 2 important advances on this problem were obtained by Brands [3], de Vries [5], Chiti [4], and the conjecture

was finally settled positively by Asbaugh and Benguria [1] in 1992. The above historical pieces of information are mainly
taken from the book by Kesavan [6, Section 4.4, pp. 98-99].
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1.2. The eigenvalue problem of the Dirichlet-Laplace operator with a drift

Consider the eigenvalue problem of the Dirichlet-Laplace operator with a drift term

—Au—x-Vu=u in{,
(2)
u=0 on 0f),
where ) is a real parameter. We say that )\ is an eigenvalue of problem (2) if there exists u) € X, \ {0} such that
/V'I.L)\-VQD dmN:)\/uAga dmy , 3)
Q Q

where dmy := el*I%/2dz and X, := H}(;dmy). Function uy from the above definition is called an eigenfunction corre-
sponding to the eigenvalue .

Using [2, relation (2.10) on page 715] (see also [9, Théoreme 8.7] with H = X, applied for the particular case induced
by problem (2)), we deduce that the first eigenvalue of problem (2) has the following variational characterization

/\Vuﬁv dmy
M(Q):= inf 2
ueXo\{0} / u? dimy
Q

and there exists a corresponding eigenfunction corresponding to A;(2), e; € Xj \ {0} such that
/ |Vei|% dmy = A (Q) and / e2dmy =1. (4)
Q Q
Moreover, the second eigenvalue of problem (2) has the following variational characterization

/ |Vul3 dmy
Q .

A2(2) = s
u€Xo\{0}; [ uer dmn=0 / u? dmpy
Q

The goal of this paper is to prove the following theorem:

Theorem 1.1. The following estimate holds true

Ao (Q) 4
MO

Consequently, we show that the result by Thompson [8] established in the case of the Laplace operator continues to

hold true in the case of the Laplace operator with the drift = - V-. Note that even if the two cases seem to be very similar
#2(9)

is invariant on rescaled
11(Q)

we can point out differences between them. For example, it is easy to check that the ratio

domains. More precisely, if for some ¢ > 0 we denote Q, :=tQ = {tz : x € Q} then

p2(2)  pa(Q) ViSO

() ()’

This equality holds since a simple change of variable shows that 1;(€;) = t=21,(Q) for i € {1,2}. Such a relation fails to

hold true in the case of \;({2;) and consequently in general

NS

A()
In other words, we want to point out the fact that in the case of the Laplace operator with the drift z - V- the dependence of

the ratio 222 on the domain Q is more involved than in the case of the ratio 2282 Despite this fact, we can establish the
A1(Q) 11(Q)

same bound from above (1 + 4N ') which depends only on the dimension of the Euclidean space and not on the domain
on which the eigenvalue problem is analysed.

2. Proof of Theorem 1.1

For each i € {1,..., N}, define
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Assume that A; = min;e(;. ny A;. Then we have

| X
< — A;.
<% ; i (5)
Next, note that taking t; := [, z;¢7 dmy we have
/(xi—ti)e? dmy =0, Vie{l, .., N} 6)
Q

since function e; satisfies (4).
By the definition of \,({2) and the fact that u € H}(€; dmy) if and only if ue*I¥/4 € HL(Q; dx) and |z|yuel®N/4 € L2(Q)
(see [2, Proposition 2.3]) we deduce

/ IV[(zi — ti)ea]|% dmy

/Q< P dmy

Simple computations imply that for each i € {1,..., N} we have

_ deq dey Oey
Vi(z; —ti)e1] = ((xl — tl)a—xl, vy (T — )&CZ +e1, ..., (x; —tl)axN> ,

Vie{l,..,N}. (7

and, thus, we find
0
V(i — to)ea][k = (2 — t:)?|Ver % + 2(z; — ti)el% el

Multiplying the last equality by elzl5/2 and then integrating on () we get
0
/ IV 61]|N dmy = /Q(l‘l — ti)Q\VelﬁvdmN + 2/Q($l — tﬁ(ﬁ% dmpy + /Q 6% dmp . (8)

On the other hand, since A;(Q) is the first eigenvalue of problem (2) with the corresponding eigenfunction e; satisfying (4),
by (8) with A = A\1(Q),u) = e; and ¢ = (z; — t;)%e; we know that

/Vel £)2e1] dmy = M (9 )/(mi—ti)zef dmy, Vie{l,..,N}. )

Q

Simple computations imply that for each i € {1,..., N} we have

861 861 861
. f. 2 — — Lt 2 . f. 2
Vi(z; —t;)“eq] <( ti)? o o (T — 1) oz, +2(x; — t)er, o, (T — ;) axN> ,
and, thus, we find
0
Ve - Vi(a; — ti)%er] = (@ — )| Veal}y + 2 — t)ea 5+
Multiplying the last equality by e/*I%/2 and then integrating on Q and using (9) we find
/(xi—ti)2|Vel|?v dmN+2/(xi = 1)ex 2 dmn = (9 )/(zi )22 dmy, Vi€ {l,..,N}. (10)
Q Q O Q
By (7), (8) and (10) we infer
/ IV[(x; —t)el]|% dmn
A2(2) <
(.Ifi — ti) 61 dmN

Q

0
/(acZ — ti)2\V61\?\,dmN + 2/ (z; — ti)elﬁ—el dmpy —|—/ e% dmy
— Q Q Lq Q (11)
(z; — ti)zef dmp
Q

/el dmpy
= M)+ Q , Vie{l,..,N}.
(z; — t;)%e? dmy
Q



S. Barbuleanu, M. Mihailescu, and D. Stancu-Dumitru / Contrib. Math. 4 (2021) 23-27 26

Further, note that, integrating by parts, we get

Oe Oe 2
2/9(1‘1' —ti)elaimt dmN Z/Q(l‘l —ti)elaiie‘ﬂN/Z dr

2 .
_ /(xi fti)%elm\fv/z i
A A

L

de? |2 0 2
N IR /2, _ el /2 2
/89(% tZ)aa:-e o;do(z) /Q oz, ((xZ t;)e ) ej dz

(2

= — / [el#IN/2 4 (2 — t)mielIN /2] 2 d
Q

—/ e? dmy — / (z; — t))zieddmy, Vie{l,..,N}.
Q Q
Since relation (6) holds true, we have

/(:E,» — ti)xiefdm]v = /(acl — ti)QefdmN + / (z; — ti)e%dmN = / (z; — ti)gefdmm vie{l,..,N}
Q Q Q Q

and then we deduce

/e%dmN:—/(Ii—ti)2e§dm1\f—2/(mi—ti)el%dmN, Vie {1,...,N}.
Q Q Q Ox;

The above equality implies

/ e%elc”ﬁV/2 dx < —2/ (x; — ti)el%elwﬁv/2 de, Yie{l,..,N},
Q Q Ox;

or, using Holder’s inequality, we get

2
(/ e2elolk /2 dm)
Q

IN

4 /(x —t;)e %e“’”‘%/z dx ’
0 i % 18.’1)1
2 oer\? | o
4 </ (z; —t;)%e2el®IN/2 dx) (/ (1) el®ln/2 dx) , Vie{l,..,N}.
Q o \0;

861 2
2
/Qel dmpy /g(@%) dmy

/(J:i — ti)Qef dmpy / e% dmp
Q Q

IN

Equivalently, we have

<4 vie{l,.,N}. 12)

Relations (11) and (12) yield

2
[, (5e)
A2 (Q) < A (Q) +4 L2 TT = A(Q) +44;, Vie{l,..,N}.
/e% dmpy
Q

Letting ¢ = 1 above and using (5) we conclude that

4 4
N /g N

The proof of Theorem 1.1 is now complete.
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