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Abstract
Let Ω ⊂ RN be an open and bounded set. Consider the eigenvalue problem of the Laplace operator with a drift term
−∆u−x ·∇u = λu in Ω subject to the homogeneous Dirichlet boundary condition (u = 0 on ∂Ω). Denote by λ1(Ω) and λ2(Ω)
the first two eigenvalues of the problem. We show that λ2(Ω)λ1(Ω)−1 ≤ 1 + 4N−1. In particular, we complement a similar
result obtained by Thompson [Stud. Appl. Math. 48 (1969) 281–283] for the classical eigenvalue problem of the Laplace
operator.
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1. Motivation and main result

For each positive integer N denote by RN the N -dimensional Euclidean space and by | · |N the Euclidean norm in RN . Let
Ω ⊂ RN be an open and bounded set.

1.1. The eigenvalue problem of the Dirichlet-Laplace operator
The eigenvalue problem for the Dirichlet-Laplace operator on Ω reads as follows{

−∆u = λu in Ω,

u = 0 on ∂Ω .
(1)

It is well-known that the spectrum of problem (1) consists of an increasing and unbounded sequence of positive real numbers
(see, e.g. [10, Theorem 8.2.1]). Denote by µ1(Ω) and µ2(Ω) the first two eigenvalues of problem (1). Let us also denote by Ω?

a ball from RN which has the same volume as Ω (i.e., |Ω?| = |Ω|). In 1955-1956, Payne, Pólya and Weinberger [7] showed
that

µ2(Ω)

µ1(Ω)
≤ 3 ,

when N = 2 and conjectured that the right-hand side could be replaced by

µ2(Ω?)

µ1(Ω?)
≈ 2.539 .

This result was extended to all dimensions in 1969 by Thompson [8], who showed that

µ2(Ω)

µ1(Ω)
≤ 1 +

4

N
,

and, again, it was conjectured that the right-hand side could be replaced by

µ2(Ω?)

µ1(Ω?)
.

In the caseN = 2 important advances on this problem were obtained by Brands [3], de Vries [5], Chiti [4], and the conjecture
was finally settled positively by Asbaugh and Benguria [1] in 1992. The above historical pieces of information are mainly
taken from the book by Kesavan [6, Section 4.4, pp. 98-99].
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1.2. The eigenvalue problem of the Dirichlet-Laplace operator with a drift
Consider the eigenvalue problem of the Dirichlet-Laplace operator with a drift term{

−∆u− x · ∇u = λu in Ω,

u = 0 on ∂Ω ,
(2)

where λ is a real parameter. We say that λ is an eigenvalue of problem (2) if there exists uλ ∈ X0 \ {0} such that∫
Ω

∇uλ · ∇ϕ dmN = λ

∫
Ω

uλϕ dmN , (3)

where dmN := e|x|
2
N/2dx and X0 := H1

0 (Ω; dmN ). Function uλ from the above definition is called an eigenfunction corre-
sponding to the eigenvalue λ.

Using [2, relation (2.10) on page 715] (see also [9, Théorème 8.7] with H = X0 applied for the particular case induced
by problem (2)), we deduce that the first eigenvalue of problem (2) has the following variational characterization

λ1(Ω) := inf
u∈X0\{0}

∫
Ω

|∇u|2N dmN∫
Ω

u2 dmN

,

and there exists a corresponding eigenfunction corresponding to λ1(Ω), e1 ∈ X0 \ {0} such that∫
Ω

|∇e1|2N dmN = λ1(Ω) and

∫
Ω

e2
1 dmN = 1 . (4)

Moreover, the second eigenvalue of problem (2) has the following variational characterization

λ2(Ω) := inf
u∈X0\{0};

∫
Ω
ue1 dmN=0

∫
Ω

|∇u|2N dmN∫
Ω

u2 dmN

.

The goal of this paper is to prove the following theorem:

Theorem 1.1. The following estimate holds true

λ2(Ω)

λ1(Ω)
≤ 1 +

4

N
.

Consequently, we show that the result by Thompson [8] established in the case of the Laplace operator continues to
hold true in the case of the Laplace operator with the drift x · ∇·. Note that even if the two cases seem to be very similar
we can point out differences between them. For example, it is easy to check that the ratio µ2(Ω)

µ1(Ω) is invariant on rescaled
domains. More precisely, if for some t > 0 we denote Ωt := tΩ = {tx : x ∈ Ω} then

µ2(Ω)

µ1(Ω)
=
µ2(Ωt)

µ1(Ωt)
, ∀ t > 0 .

This equality holds since a simple change of variable shows that µi(Ωt) = t−2µi(Ω) for i ∈ {1, 2}. Such a relation fails to
hold true in the case of λi(Ωt) and consequently in general

λ2(Ω)

λ1(Ω)
6= λ2(Ωt)

λ1(Ωt)
.

In other words, we want to point out the fact that in the case of the Laplace operator with the drift x ·∇· the dependence of
the ratio λ2(Ω)

λ1(Ω) on the domain Ω is more involved than in the case of the ratio µ2(Ω)
µ1(Ω) . Despite this fact, we can establish the

same bound from above (1 + 4N−1) which depends only on the dimension of the Euclidean space and not on the domain Ω

on which the eigenvalue problem is analysed.

2. Proof of Theorem 1.1

For each i ∈ {1, ..., N}, define

Ai :=

∫
Ω

(
∂e1

∂xi

)2

dmN .
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Assume that A1 = mini∈{1,...,N}Ai. Then we have

A1 ≤
1

N

N∑
i=1

Ai . (5)

Next, note that taking ti :=
∫

Ω
xie

2
1 dmN we have∫

Ω

(xi − ti)e2
1 dmN = 0, ∀ i ∈ {1, ..., N} (6)

since function e1 satisfies (4).
By the definition of λ2(Ω) and the fact that u ∈ H1

0 (Ω; dmN ) if and only if ue|x|2N/4 ∈ H1
0 (Ω; dx) and |x|Nue|x|

2
N/4 ∈ L2(Ω)

(see [2, Proposition 2.3]) we deduce

λ2(Ω) ≤

∫
Ω

|∇[(xi − ti)e1]|2N dmN∫
Ω

(xi − ti)2e2
1 dmN

, ∀ i ∈ {1, ..., N} . (7)

Simple computations imply that for each i ∈ {1, ..., N} we have

∇[(xi − ti)e1] =

(
(xi − ti)

∂e1

∂x1
, ..., (xi − ti)

∂e1

∂xi
+ e1, ..., (xi − ti)

∂e1

∂xN

)
,

and, thus, we find
|∇[(xi − ti)e1]|2N = (xi − ti)2|∇e1|2N + 2(xi − ti)e1

∂e1

∂xi
+ e2

1 .

Multiplying the last equality by e|x|2N/2 and then integrating on Ω we get∫
Ω

|∇[(xi − ti)e1]|2N dmN =

∫
Ω

(xi − ti)2|∇e1|2NdmN + 2

∫
Ω

(xi − ti)e1
∂e1

∂xi
dmN +

∫
Ω

e2
1 dmN . (8)

On the other hand, since λ1(Ω) is the first eigenvalue of problem (2) with the corresponding eigenfunction e1 satisfying (4),
by (3) with λ = λ1(Ω), uλ = e1 and ϕ = (xi − ti)2e1 we know that∫

Ω

∇e1 · ∇[(xi − ti)2e1] dmN = λ1(Ω)

∫
Ω

(xi − ti)2e2
1 dmN , ∀ i ∈ {1, ..., N} . (9)

Simple computations imply that for each i ∈ {1, ..., N} we have

∇[(xi − ti)2e1] =

(
(xi − ti)2 ∂e1

∂x1
, ..., (xi − ti)2 ∂e1

∂xi
+ 2(xi − ti)e1, ..., (xi − ti)2 ∂e1

∂xN

)
,

and, thus, we find
∇e1 · ∇[(xi − ti)2e1] = (xi − ti)2|∇e1|2N + 2(xi − ti)e1

∂e1

∂xi
.

Multiplying the last equality by e|x|2N/2 and then integrating on Ω and using (9) we find∫
Ω

(xi − ti)2|∇e1|2N dmN + 2

∫
Ω

(xi − ti)e1
∂e1

∂xi
dmN = λ1(Ω)

∫
Ω

(xi − ti)2e2
1 dmN , ∀ i ∈ {1, ..., N} . (10)

By (7), (8) and (10) we infer

λ2(Ω) ≤

∫
Ω

|∇[(xi − ti)e1]|2N dmN∫
Ω

(xi − ti)2e2
1 dmN

=

∫
Ω

(xi − ti)2|∇e1|2NdmN + 2

∫
Ω

(xi − ti)e1
∂e1

∂xi
dmN +

∫
Ω

e2
1 dmN∫

Ω

(xi − ti)2e2
1 dmN

= λ1(Ω) +

∫
Ω

e2
1 dmN∫

Ω

(xi − ti)2e2
1 dmN

, ∀ i ∈ {1, ..., N} .

(11)
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Further, note that, integrating by parts, we get

2

∫
Ω

(xi − ti)e1
∂e1

∂xi
dmN = 2

∫
Ω

(xi − ti)e1
∂e1

∂xi
e|x|

2
N/2 dx

=

∫
Ω

(xi − ti)
∂e2

1

∂xi
e|x|

2
N/2 dx

=

∫
∂Ω

(xi − ti)
∂e2

1

∂xi
e|x|

2
N/2σidσ(x)−

∫
Ω

∂

∂xi

(
(xi − ti)e|x|

2
N/2
)
e2

1 dx

= −
∫

Ω

[e|x|
2
N/2 + (xi − ti)xie|x|

2
N/2]e2

1 dx

= −
∫

Ω

e2
1 dmN −

∫
Ω

(xi − ti)xie2
1dmN , ∀ i ∈ {1, ..., N} .

Since relation (6) holds true, we have∫
Ω

(xi − ti)xie2
1dmN =

∫
Ω

(xi − ti)2e2
1dmN + ti

∫
Ω

(xi − ti)e2
1dmN =

∫
Ω

(xi − ti)2e2
1dmN , ∀ i ∈ {1, ..., N}

and then we deduce ∫
Ω

e2
1dmN = −

∫
Ω

(xi − ti)2e2
1dmN − 2

∫
Ω

(xi − ti)e1
∂e1

∂xi
dmN , ∀ i ∈ {1, ..., N} .

The above equality implies ∫
Ω

e2
1e
|x|2N/2 dx ≤ −2

∫
Ω

(xi − ti)e1
∂e1

∂xi
e|x|

2
N/2 dx, ∀ i ∈ {1, ..., N} ,

or, using Hölder’s inequality, we get(∫
Ω

e2
1e
|x|2N/2 dx

)2

≤ 4

(∫
Ω

(xi − ti)e1
∂e1

∂xi
e|x|

2
N/2 dx

)2

≤ 4

(∫
Ω

(xi − ti)2e2
1e
|x|2N/2 dx

)(∫
Ω

(
∂e1

∂xi

)2

e|x|
2
N/2 dx

)
, ∀ i ∈ {1, ..., N} .

Equivalently, we have ∫
Ω

e2
1 dmN∫

Ω

(xi − ti)2e2
1 dmN

≤ 4

∫
Ω

(
∂e1

∂xi

)2

dmN∫
Ω

e2
1 dmN

, ∀ i ∈ {1, ..., N} . (12)

Relations (11) and (12) yield

λ2(Ω) ≤ λ1(Ω) + 4

∫
Ω

(
∂e1

∂xi

)2

dmN∫
Ω

e2
1 dmN

= λ1(Ω) + 4Ai, ∀ i ∈ {1, ..., N} .

Letting i = 1 above and using (5) we conclude that

λ2(Ω) ≤ λ1(Ω) +
4

N

∫
Ω

|∇e1|2N dmN = λ1(Ω) +
4

N
λ1(Ω) .

The proof of Theorem 1.1 is now complete.
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