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Abstract
A graph is said to be Hamiltonian (respectively, traceable) if it has a Hamiltonian cycle (respectively, Hamiltonian path),
where a Hamiltonian cycle (respectively, Hamiltonian path) is a cycle (respectively, path) containing all the vertices of the
graph. In this short note, sufficient conditions involving the clique number for the Hamiltonian and traceable graphs are
presented.
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1. Introduction and statements of the main results

Throughout this note, only finite undirected graphs without loops or multiple edges are considered. The notation and
terminology used in this note, but not defined here, can be found in the book [1]. For a graph G = (V, E), its order
is denoted by n, that is n = |V |. Denote by δ(G), ω(G), and α(G) the minimum degree, the clique number, and the
independence number of a graph G, respectively. For each positive integer r ≤ α(G), define

σr(G) := min{d(v1) + d(v2) + · · ·+ d(vr) : where {v1, v2, . . . , vr} is an independent set in G}.

A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is called
Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian path of G if P contains all the
vertices of G. A graph G is called traceable if G has a Hamiltonian path. Recall the following well-known results obtained
by Chvátal and Erdős in [2].

Theorem 1.1. Let G be a k-connected graph of order n ≥ 3. If α ≤ k, then G is Hamiltonian.

Theorem 1.2. Let G be a k-connected graph of order n. If α ≤ k + 1, then G is traceable.

From Theorem 1.1, one can see that it is reasonable to find sufficient conditions for the Hamiltonicity of k-connected
graphs when α ≥ k + 1 and k ≥ 2. Also, from Theorem 1.2, one can see that it is reasonable to find sufficient conditions
for the traceability of k-connected graphs when α ≥ k + 2 and k ≥ 1. In this short note, sufficient conditions involving the
clique number, for the Hamiltonicity of k-connected (k ≥ 2) graphs with the constraint α ≥ k + 1 are presented. Sufficient
conditions involving the clique number, for the traceability of k-connected (k ≥ 1) graphs with the constraint α ≥ k+2 are
also presented. The main results of this note are as follows.

Theorem 1.3. Let G be a k-connected graph of order n ≥ 3 with α ≥ k + 1 ≥ 3. If

σα ≥ 2α(n− α)
(
1− 1

ω

)
,

then G is Hamiltonian or Kα, n−α with k ≤ n− α ≤ α− 1.

Theorem 1.4. Let G be a k-connected graph of order n with α ≥ k + 2 ≥ 3. If

σα ≥ 2α(n− α)
(
1− 1

ω

)
,

then G is traceable or Kα, n−α with k ≤ n− α ≤ α− 2.
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Notice that
δ =

σ1
1
≤ σ2

2
≤ · · · ≤ σα−1

α− 1
≤ σα

α
.

Thus, Theorem 1.3 and Theorem 1.4 have the following Corollary 1.1 and Corollary 1.2, respectively.

Corollary 1.1. Let G be a k-connected graph of order n ≥ 3 with α ≥ k + 1 ≥ 3. If

σα−1
α− 1

≥ · · · ≥ σ2
2
≥ σ1

1
= δ ≥ 2(n− α)

(
1− 1

ω

)
,

then G is Hamiltonian or Kα, n−α with k ≤ n− α ≤ α− 1.

Corollary 1.2. Let G be a k-connected graph of order n with α ≥ k + 2 ≥ 3. If

σα−1
α− 1

≥ · · · ≥ σ2
2
≥ σ1

1
= δ ≥ 2(n− α)

(
1− 1

ω

)
,

then G is traceable or Kα, n−α with k ≤ n− α ≤ α− 2.

2. Proofs of Theorems 1.3 and 1.4

In order to prove Theorem 1.3 and Theorem 1.4, we need the following result obtained in [3].

Lemma 2.1. Let G = (V,E) be a graph of order n such that V = { v1, v2, . . . , vn }. Let (x1, x2, . . . , xn) be any n-vector with
x1 + x2 + · · ·+ xn = 1 and xi ≥ 0 for each i, 1 ≤ i ≤ n. Then∑

vivj∈E
xixj ≤

1

2

(
1− 1

ω

)
.

Proof of Theorem 1.3. Let G be a graph satisfying the conditions of Theorem 1.3. Suppose that G is not Hamiltonian.
Let I := { v1, v2, . . . , vα } be a maximum independent set in G. Take V − I := { vα+1, vα+2, . . . , vn }. Define an n-vector
(x1, x2, . . . , xn) as follows. For each i with 1 ≤ i ≤ α, set

xi :=
1

2α

and for each i with α+ 1 ≤ i ≤ n, set
xi :=

1

2(n− α)
.

Then x1 + x2 + · · ·+ xn = 1 and xi ≥ 0 for each i, 1 ≤ i ≤ n.
By applying Lemma 2.1 on the graph G with the n-vector (x1, x2, . . . , xn) defined above, one has

1

2

(
1− 1

ω

)
≤ σα

4α(n− α)

≤ d(v1) + d(v2) + · · ·+ d(vα)

4α(n− α)
+ 0

≤
∑

vivj∈E, vi∈I, vj∈V−I
xixj +

∑
vivj∈E, vi∈V−I, vj∈V−I

xixj

=
∑

vivj∈E
xixj

≤ 1

2

(
1− 1

ω

)
.

Therefore, all the above inequalities become equalities. This implies that∑
vivj∈E, vi∈V−I, vj∈V−I

xixj = 0

and
d(v1) + d(v2) + · · ·+ d(vα) = σα = 2α(n− α)

(
1− 1

ω

)
.
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From ∑
vivj∈E, vi∈V−I, vj∈V−I

xixj = 0,

it follows that vivj 6∈ E for each pair of distinct vertices vi and vj of V − I. Thus, ω = 2. Therefore,

d(v1) + d(v2) + · · ·+ d(vα) = σα = 2α(n− α)
(
1− 1

ω

)
= α(n− α).

This implies that vivj ∈ E for each vi ∈ I and each vj ∈ V − I. Notice that V − I is independent and I is a maximum
independent set inG. One has α ≥ n−α. If α = n−α, thenG is Hamiltonian, which is a contradiction. Thus, α ≥ n−α+1.
Since G is k-connected, one has n− α ≥ k. Therefore, k ≤ n− α ≤ α− 1. This completes the proof.

Since the proof of Theorem 1.4 is similar to the proof of Theorem 1.3 (we just need to note that Kα, n−α is traceable
when α = n− α+ 1), the details of the proof of Theorem 1.4 are omitted.
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