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Abstract

In this short note, an alternative proof of a harmonic mean inequality involving Nielsen’s beta function is provided. This
inequality was first posed as a conjecture by Nantomah [Bull. Int. Math. Virtual Inst. 9 (2019) 263–269] and subsequently
proved by Matejı́čka [Probl. Anal. Issues Anal. 8(26) (2019) 105–111]. The present proof is more compact and relatively
simple.
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1. Introduction

The Nielsen’s beta function, which was introduced in [10, p. 16], may be defined by any of the following equivalent forms:
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for s > 0, where
ψ(s) =

d

ds
ln Γ(s)

is the digamma function and Γ(s) is the gamma function. This special function provides a powerful tool for evaluating cer-
tain integrals and it is directly connected to several famous mathematical constants. For some properties, generalizations
and applications of this function, one may refer to [2–12].

In [6], the author posed the following conjecture among other results.

Conjecture 1.1. For s ∈ (0,∞), the inequality

2β(s)β(1/s)

β(s) + β(1/s)
≤ ln 2, (1)

is satisfied, with equality if s = 1. In other words, for s ∈ (0,∞), the harmonic mean of β(s) and β(1/s) is at most ln 2.

Subsequently, Matejı́čka [1] came out with a solid proof of Conjecture 1.1. In this work, our objective is to provide a
more compact and relatively simple proof of the inequality (1).
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2. A proof of Conjecture 1.1

Lemma 2.1. [1] The inequality
2(β′(s))2 − β′′(s)β(s) > 0

holds for x > 0.

Lemma 2.2. The function
h(s) =

sβ′(s)

β2(s)

is decreasing on (0,∞).

Proof. By direct computations and using Lemma 2.1, we obtain

β3(s)h′(s) = β(s)β′(s) + s
[
β(s)β′′(s)− 2(β′(s))2

]
< 0.

Thus, h′(s) < 0 which completes the proof.

Proof of Conjecture 1.1. The case for equality is trivial. Let

A(s) =
2β(s)β(1/s)

β(s) + β(1/s)

and
Q(s) = lnA(s)

for s ∈ (0, 1) ∪ (1,∞). Then direct computations yield
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which implies that
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= K(s).

As a result of Lemma 2.2, we have K(s) > 0 if s ∈ (0, 1) and K(s) < 0 if s ∈ (1,∞). Hence Q(s) is increasing on (0, 1) and
decreasing on (1,∞). Consequently, A(s) is increasing on (0, 1) and decreasing on (1,∞). For both cases, we have

A(s) < A(1) = ln 2,

which completes the proof.
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