Research Article

An alternative proof of a harmonic mean inequality for Nielsen's beta function

Kwara Nantomah*

Department of Mathematics, School of Mathematical Sciences, C. K. Tedam University of Technology and Applied Sciences, P. O. Box 24, Navrongo, Upper-East Region, Ghana
(Received: 8 May 2021. Received in revised form: 2 August 2021. Accepted: 4 August 2021. Published online: 9 August 2021.)
(c) 2021 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

In this short note, an alternative proof of a harmonic mean inequality involving Nielsen's beta function is provided. This inequality was first posed as a conjecture by Nantomah [Bull. Int. Math. Virtual Inst. 9 (2019) 263-269] and subsequently proved by Matejíčka [Probl. Anal. Issues Anal. 8(26) (2019) 105-111]. The present proof is more compact and relatively simple.

Keywords: harmonic mean inequality; Nielsen's beta function.
2020 Mathematics Subject Classification: 33B15, 33Bxx, 26D07, 26A48.

1. Introduction

The Nielsen's beta function, which was introduced in [10, p. 16], may be defined by any of the following equivalent forms:

$$
\begin{aligned}
\beta(s) & =\int_{0}^{1} \frac{r^{s-1}}{1+r} d r \\
& =\int_{0}^{\infty} \frac{e^{-s r}}{1+e^{-r}} d r \\
& =\sum_{v=0}^{\infty} \frac{(-1)^{v}}{v+s} \\
& =\frac{1}{2}\left\{\psi\left(\frac{s+1}{2}\right)-\psi\left(\frac{s}{2}\right)\right\} \\
& =\psi(s)-\psi\left(\frac{s}{2}\right)-\ln 2
\end{aligned}
$$

for $s>0$, where

$$
\psi(s)=\frac{d}{d s} \ln \Gamma(s)
$$

is the digamma function and $\Gamma(s)$ is the gamma function. This special function provides a powerful tool for evaluating certain integrals and it is directly connected to several famous mathematical constants. For some properties, generalizations and applications of this function, one may refer to [2-12].

In [6], the author posed the following conjecture among other results.
Conjecture 1.1. For $s \in(0, \infty)$, the inequality

$$
\begin{equation*}
\frac{2 \beta(s) \beta(1 / s)}{\beta(s)+\beta(1 / s)} \leq \ln 2 \tag{1}
\end{equation*}
$$

is satisfied, with equality if $s=1$. In other words, for $s \in(0, \infty)$, the harmonic mean of $\beta(s)$ and $\beta(1 / s)$ is at most $\ln 2$.
Subsequently, Matejíčka [1] came out with a solid proof of Conjecture 1.1. In this work, our objective is to provide a more compact and relatively simple proof of the inequality (1).
*E-mail address: knantomah@cktutas.edu.gh

2. A proof of Conjecture 1.1

Lemma 2.1. [1] The inequality

$$
2\left(\beta^{\prime}(s)\right)^{2}-\beta^{\prime \prime}(s) \beta(s)>0
$$

holds for $x>0$.
Lemma 2.2. The function

$$
h(s)=\frac{s \beta^{\prime}(s)}{\beta^{2}(s)}
$$

is decreasing on $(0, \infty)$.
Proof. By direct computations and using Lemma 2.1, we obtain

$$
\begin{aligned}
\beta^{3}(s) h^{\prime}(s) & =\beta(s) \beta^{\prime}(s)+s\left[\beta(s) \beta^{\prime \prime}(s)-2\left(\beta^{\prime}(s)\right)^{2}\right] \\
& <0
\end{aligned}
$$

Thus, $h^{\prime}(s)<0$ which completes the proof.
Proof of Conjecture 1.1. The case for equality is trivial. Let

$$
A(s)=\frac{2 \beta(s) \beta(1 / s)}{\beta(s)+\beta(1 / s)}
$$

and

$$
Q(s)=\ln A(s)
$$

for $s \in(0,1) \cup(1, \infty)$. Then direct computations yield

$$
Q^{\prime}(s)=\frac{\beta^{\prime}(s)}{\beta(s)}-\frac{1}{s^{2}} \frac{\beta^{\prime}(1 / s)}{\beta(1 / s)}-\frac{s \beta^{\prime}(s)-\frac{1}{s^{2}} \beta(1 / s)}{\beta(s)+\beta(1 / s)}
$$

which implies that

$$
\begin{aligned}
s\left[\frac{1}{\beta(s)}+\frac{1}{\beta(1 / s)}\right] Q^{\prime}(s) & =s \frac{\beta^{\prime}(s)}{\beta^{2}(s)}-\frac{1}{s} \frac{\beta^{\prime}(1 / s)}{\beta^{2}(1 / s)} \\
& =K(s)
\end{aligned}
$$

As a result of Lemma 2.2, we have $K(s)>0$ if $s \in(0,1)$ and $K(s)<0$ if $s \in(1, \infty)$. Hence $Q(s)$ is increasing on $(0,1)$ and decreasing on $(1, \infty)$. Consequently, $A(s)$ is increasing on $(0,1)$ and decreasing on $(1, \infty)$. For both cases, we have

$$
A(s)<A(1)=\ln 2,
$$

which completes the proof.

Acknowledgement

The author would like thank the anonymous referees for their comments and suggestions which helped to improve the quality and readability of this paper.

References

[1] L. Matejíčka, Proof of a conjecture on Nielsen's β-function, Probl. Anal. Issues Anal. 8(26) (2019) 105-111.
[2] K. Nantomah, Monotonicity and convexity properties and some inequalities involving a generalized form of the Wallis' cosine formula, Asian Res. J. Math. 6 (2017) 1-10.
[3] K. Nantomah, Monotonicity and convexity properties of the Nielsen's β-function, Probl. Anal. Issues Anal. 6(24) (2017) 81-93.
[4] K. Nantomah, On some properties and inequalities for the Nielsen's β-function, Sci. Ser. A Math. Sci. (N.S.) 28 (2017-2018) 43-54.
[5] K. Nantomah, A generalization of the Nielsen's β-function, Int. J. Open Probl. Compt. Math. 11 (2018) 16-26.
[6] K. Nantomah, Certain properties of the Nielsen's β-function, Bull. Int. Math. Virtual Inst. 9 (2019) 263-269.
[7] K. Nantomah, New inequalities for Nielsen's beta function, Commun. Math. Appl. 10 (2019) 773-781.
[8] K. Nantomah, M. M. Iddrisu, C. A. Okpoti, On a q-analogue of the Nielsen's β-function, Int. J. Math. Appl. 6 (2018) $163-171$.
[9] K. Nantomah, K. S. Nisar, K. S. Gehlot, On a k-extension of the Nielsen's β-function, Int. J. Nonlinear Anal. Appl. 9 (2018) $191-201$.
[10] N. Nielsen, Handbuch der Theorie der Gammafunktion, First Edition, B. G. Teubner, Leipzig, 1906.
[11] J. Zhang, L. Yin, W. Cui, Some properties of generalized Nielsen's β-function with double parameters, Turkish J. Ineq. 2 (2018) 37-43.
[12] J. Zhang, L. Yin, W. Cui, Monotonic properties of generalized Nielsen's β-Function, Turkish J. Anal. Number Theory 7 (2019) 18-22.

