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Abstract

A Coulson-type integral formula for the degree-based energies of trees is established. Based on it, the energies pertaining
to various degree-based invariants of trees are compared, and also they are compared with the ordinary energy.
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1. Introduction

In this paper we are concerned with trees and their degree-based energies. Let G be a simple graph, with vertex set V(G)

and edge set E(G). Then |V(G)| and |E(G)| are, respectively, the number of vertices and edges of G. Let |V(G)| = n.
By uv ∈ E(G) we denote the edge of G, connecting the vertices u and v. The degree (= number of first neighbors) of a

vertex u ∈ V(G) is denoted by d(u).
By definition, a tree T is a connected simple graph with n vertices and n− 1 edges. Alternatively, a tree is defined as a

connected graph without cycles.
For other graph-theoretical notions, the readers are referred to textbooks [2,28].
In the mathematical and chemical literature, several dozens of vertex–degree–based graph invariants, usually referred

to as “topological indices” (TIs), have been and are currently studied [26,27]. Most of these are of the form

TI(G) =
∑

uv∈E(G)

FTI

(
d(u), d(v)

)
(1)

where FTI(x, y) is an appropriately chosen function with the property FTI(x, y) = FTI(y, x). Since the variables in FTI(x, y)

are vertex degrees, they are integers, satisfying x ≥ 1 and y ≥ 1. In all hitherto proposed topological indices of the form
(1) (cf. [12,26,27]), the function FTI(x, y) has non-negative values for all x, y ≥ 1.

The oldest among such graph invariants, conceived as early as in the 1970s, are the first and second Zagreb indices,
Zg1 and Zg2 [15,16]. Their F -functions are

FZg1(x, y) = x+ y (2)

and
FZg2(x, y) = x y . (3)

Some other topological indices of this kind, to be examined in the later parts of this paper, are the Randić connectivity
index R [23], the atom-bond connectivity index ABC [7], the sum-connectivity index SCI [29], the Sombor index SO [12],
and the Nirmala index Ni [19]. Their F -functions are

FR(x, y) =
1
√
x y

(4)

FABC(x, y) =

√
x+ y − 2

x y
(5)

FSCI(x, y) =
1√
x+ y

(6)

FSO(x, y) =
√
x2 + y2 (7)

FNi(x, y) =
√
x+ y . (8)
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The vertices of the graph G will be labeled by 1, 2, . . . , n. Then the adjacency matrix of G, denoted by A(G), is defined
as the symmetric square matrix of order n, whose (i, j)-element is

A(G)ij =


1 if ij ∈ E(G)

0 if ij 6∈ E(G)

0 if i = j .

The eigenvalues λ1, λ2, . . . , λn of A(G) form the spectrum of the graph G. The characteristic polynomial of A(G) is defined
as

φ(G,λ) = det
(
λ In −A(G)

)
(9)

where In is the unit matrix of order n. Recall that λi , i = 1, 2, . . . , n, are the zeros of φ(G,λ), i.e., satisfy the condition
φ(G,λi) = 0.

The energy of the graph G is defined as [20]

En(G) =

n∑
i=1

|λi| . (10)

This graph invariant was put forward in the 1970s, motivated by the study of total π-electron energy in theoretical chem-
istry [13]. Since then, it became a popular topic of research, with over one thousand published papers, see [14, 20], the
recent works [1,3,8,18] and the references cited therein.

For more details of spectral graph theory and on graph energy see [5,20].
Some time ago [6,17], it was attempted to combine the theory of graph energy with the theory of vertex-degree-based

topological indices. For this, using formula (1), an adjacency–matrix–type square symmetric matrix ATI(G) was intro-
duced, whose (i, j)-element is

ATI(G)ij =


FTI

(
d(i), d(j)

)
if ij ∈ E(G)

0 if ij 6∈ E(G)

0 if i = j .

The theory based on the matrix ATI and its spectrum was recently elaborated in some detail [21,25].
The eigenvalues of ATI(G) will be denoted by θ1, θ2, . . . , θn, and are said to form the TI-spectrum of the graph G. The

TI-characteristic polynomial is defined as

φTI(G,λ) = det
(
λ In −ATI(G)

)
in analogy to Equation (9). Thus θi , i = 1, 2, . . . , n, are the zeros of φTI(G,λ), i.e., satisfy the condition φTI(G, θi) = 0. In
analogy to Equation (10), it was found purposeful to define the TI-energy as [6]

EnTI(G) =

n∑
i=1

|θi| . (11)

Remark 1.1. All edges of the n-vertex star Sn connect vertices of degree 1 and n− 1. Therefore, for any vertex–degree–based
topological index TI satisfying Equation (1),

ATI(Sn) = FTI(1, n− 1)A(Sn)

implying θi = FTI(1, n− 1)λi for i = 1, 2, . . . , n, and

EnTI(Sn) = FTI(1, n− 1)En(Sn) = 2
√
n− 1FTI(1, n− 1) .

2. The TI-energy of a tree

In what follows, we focus our attention to trees. Let T be a tree on n vertices, n ≥ 2. The main result in the spectral theory
of trees is the formula [5,9,10,28]

φ(T, λ) = λn +
∑
k≥1

(−1)km(T, k)λn−2k (12)

where m(T, k) stands for the number of k-matchings (= selections of k mutually independent edges) in the tree T . By
definition, m(T, 1) = n− 1.

The matrix ATI(G) can be viewed as the adjacency matrix of a graph with weighted edges, the weight of the edge uv
being FTI

(
d(u), d(v)

)
. This, of course, applies also to trees.
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According to the Sachs coefficient theorem [5,24], for the TI-characteristic polynomial of a tree T , an expression anal-
ogous to Equation (12) would hold, namely

φTI(T, λ) = λn +
∑
k≥1

(−1)kmTI(T, k)λ
n−2k . (13)

The coefficient mTI(T, k) is equal to the sum of weights coming from all k-matchings of T . Each particular k-matching
contributes to mTI(T, k) by the product of the squares of the terms FTI

(
d(u), d(v)

)
, pertaining to the edges contained in

that matching [24]. Thus, let M be a distinct k-matching of T , and letM(k) be the set of all such k-matchings. Then for
k ≥ 1, M(k) consists of m(T, k) elements, i.e., |M(k)| = m(T, k).

The weight of a single matching M is equal to ∏
uv∈M

[
FTI

(
d(u), d(v)

)]2
and therefore

mTI(T, k) =
∑

M∈M(k)

∏
uv∈M

[
FTI

(
d(u), d(v)

)]2 (14)

providedM(k) 6= ∅. If, on the other hand,M(k) = ∅, then mTI(T, k) = 0.
The fact that the energy of a graph can be directly computed from the characteristic polynomial (without knowing the

graph eigenvalues, i.e., without using Equation (10)) was discovered by Coulson in 1940 [4]. In that time, formula (12) was
not known. Much later, the following Coulson-type integral formula was obtained for the energy of trees [11]:

En(T ) =
2

π

∞∫
0

dx

x2
ln

1 +∑
k≥1

m(T, k)x2k

 dx . (15)

The analogous expression for the TI-energy is

EnTI(T ) =
2

π

∞∫
0

dx

x2
ln

1 +∑
k≥1

mTI(T, k)x
2k

 dx (16)

and can be obtained in the exactly same manner as Equation (15) [11,22]. What is most important is that the coefficients
mTI(T, k) are non-negative, and that the TI-energy is a monotonically increasing function of these coefficients.

From a formal point of view, Equations (15) and (16) appear to be fully analogous. However, from Equations (13) and
(14) we see that the structure-dependency of the TI-characteristic polynomial (i.e., of its coefficients) is perplexed, and by
no means easy to comprehend. The same conclusion applies to formula (16). Yet, we can use (15) and (16) to compare
TI-energies of various topological indices. These results are collected in the subsequent section.

3. Comparing TI-energies of trees

Theorem 3.1. Let TIa and TIb be two degree–based topological indices, defined according to formula (1). Let T be any tree. If
FTIa(x, y) ≥ FTIb(x, y) holds for all x, y ≥ 1, thenEnTIa(T ) ≥ EnTIb(T ). If for a particular tree T0, FTIa(x0, y0) > FTIb(x0, y0)

holds for at least one pair x0, y0, then EnTIa(T0) > EnTIb(T0).

Proof. By Equation (14), the condition FTIa(x, y) ≥ FTIb(x, y) implies mTIa(T, k) ≥ mTIb(T, k) for all k ≥ 1. Also, the
condition FTIa(x0, y0) > FTIb(x0, y0) implies mTIa(T, k) > mTIb(T, k) for all values of k for which there exist k-matchings in
the tree T0, containing the edge x0y0. Theorem 3.1 follows then from formula (16).

Theorem 3.2. Let TI be a degree–based topological index, defined according to formula (1). Let T be any tree.

(a) If FTI(x, y) ≥ 1 holds for all x, y ≥ 1, then EnTI(T ) ≥ En(T ). If for a particular tree T0, FTI(x0, y0) > 1 holds for at
least one pair x0, y0, then EnTI(T0) > En(T0).

(b) If FTI(x, y) ≤ 1 holds for all x, y ≥ 1, then EnTI(T ) ≤ En(T ). If for a particular tree T0, FTI(x0, y0) < 1 holds for at
least one pair x0, y0, then EnTI(T0) < En(T0).

Proof. The right–hand side of Equation (14) reduces to m(T, k) if FTI(x, y) = 1 for all xy ∈ E(T ). If so, then the right–hand
sides of (15) and (16) coincide.
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Applying Theorems 3.1 and 3.2 to the above listed degree–based topological indices, Equations (2)–(8), we obtain the
following inequalities.

Corollary 3.1. For TI = Zg1, Zg2, SO,Ni, and for any tree T ,

EnTI(T ) > En(T ) .

For TI = R,ABC, SCI, and for any tree T ,
EnTI(T ) < En(T ) .

Exceptionally, if n = 2, i.e., if T ∼= S2, then EnZg2(T ) = EnR(T ) = En(T ) = 2.

Proof. The inequalities stated in Corollary 3.1 follow from Equations (2)–(8), from which the conditions TI > 1 or TI < 1

are obvious. Here we only verify the relation TI < 1 for the ABC index, Equation (5).
For x = 1, FABC(x, y) =

√
(y − 1)/y < 1. For x = 2, FABC(x, y) =

√
1/2 < 1. By symmetry, the same holds for y = 1

and y = 2. What remains is to consider the case x, y ≥ 3. This yields√
x+ y − 2

x y
<

√
x+ y

x y
=

√
1

x
+

1

y
≤
√

1

3
+

1

3
=

√
2

3
< 1 .

Bearing in mind the evident relations

x+ y >
√
x2 + y2 >

√
x+ y and 1

x y
<
x+ y − 2

x y

we arrive at:

Corollary 3.2. For any tree T ,
EnZg1(T ) > EnSO(T ) > EnNi(T )

and
EnR(T ) < EnABC(T )

except for T ∼= S2, in which case 2 = EnR(S2) > EnABC(S2) = 0.

Remark 3.1. The two Zagreb indices are not comparable because of

FZg1(1, 3) > FZg2(1, 3) whereas FZg1(2, 3) < FZg2(2, 3) .

The Randić and sum-connectivity indices are not comparable because of

FR(1, 3) > FSCI(1, 3) whereas FR(2, 3) < FSCI(2, 3) .
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