Research Article

Some results on the Sombor indices of graphs

Igor Milovanović ${ }^{1, *}$, Emina Milovanović ${ }^{1}$, Akbar Ali ${ }^{2}$, Marjan Matejić ${ }^{1}$
${ }^{1}$ Faculty of Electronic Engineering, University of Niš, Niš, Serbia
${ }^{2}$ Department of Mathematics, Faculty of Science, University of Hail, Hail, Saudi Arabia

(Received: 16 April 2021. Received in revised form: 1 May 2021. Accepted: 1 May 2021. Published online: 4 May 2021.)
(c) 2021 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

This paper is concerned with three recently introduced degree-based graph invariants; namely, the Sombor index, the reduced Sombor index and the average Sombor index. The first aim of the present paper is to give some results that may be helpful in proving a recently proposed conjecture concerning the Sombor index. Establishing inequalities related to the aforementioned three graph invariants is the second aim of this paper.

Keywords: graph invariant; topological index; Sombor indices; bounds; chemical graph theory.
2020 Mathematics Subject Classification: 05C05, 05C09, 05C90.

1. Introduction

The study of the mathematical aspects of the degree-based graph invariants (also known as topological indices) is considered to be one of the very active research areas within the field of chemical graph theory [17]. Recently, the mathematical chemist Ivan Gutman [18], one of the pioneers of chemical graph theory, proposed a geometric approach to interpret degree-based graph invariants and based on this approach, he devised three new graph invariants; namely the Sombor index, the reduced Sombor index and the average Sombor index. The Sombor index, being the simplest one among the aforementioned three invariants, has attracted a significant attention from researchers within a very short time [3, 7-9, 14, 15, 19, 23, 26-31, 34, 35, 39, 41, 42].

The first aim of this paper to give some results that may be helpful in proving a conjecture concerning the Sombor index posed in the reference [35]. In order to state this conjecture, we need some definitions first. An acyclic graph is the graph containing no cycle. For a graph G, its cyclomatic number $\nu(G)$ (or simply ν) is the least number of edges whose deletion makes the graph G as acyclic. A ν-cyclic graph is the one having the cyclomatic number ν. A pendent vertex of a graph is a vertex of degree 1 . For $\nu \geq 1$, denote by $H_{n, \nu}$ the graph deduced from the star graph of order n by adding ν edge(s) between a fixed pendent vertex and ν other pendent vertices.

Conjecture 1.1. [35] For the fixed integers n and ν with $6 \leq \nu \leq n-2, H_{n, \nu}$ is the only graph attaining the maximum Sombor index in the class of all ν-cyclic connected graphs of order n.

Establishing inequalities related to the Sombor index, the reduced Sombor index and the average Sombor index is another aim of this paper.

2. Preliminaries

Let G be a graph. Denote by $E(G)$ and $V(G)$ the edge set and vertex set, respectively, of G. Denote by $i \sim j$ the edge connecting the vertices $v_{i}, v_{j} \in V(G)$. For a vertex $v_{i} \in V(G)$, its degree is denoted by $d_{v_{i}}(G)$ (or simply by $d_{i}(G)$). A regular graph is the one in which all of its vertices have the same degree. For an edge $e \in E(G)$, its degree is the number of edges adjacent to e. By an edge-regular graph, we mean a graph in which all of its edges have the same degree. A graph of order n is also known as an n-vertex graph. Denote by $G-v_{i}$ and $G-v_{i} v_{j}$ the graphs obtained from G by removing the vertex v_{i} and the edge $v_{i} v_{j}$, respectively. The n-vertex complete graph and the n-vertex star graph are denoted as K_{n} and $K_{1, n-1}$, respectively. From the notations $E(G), V(G), \nu(G)$ and $d_{i}(G)$, we remove " (G) " whenever the graph under consideration is clear. The graph-theoretical notation and terminology used in this paper but not defined here, may be found in some standard graph-theoretical books, like [4, 6, 10].

[^0]If $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $|E(G)|=m$ then the Sombor index, the average Sombor index and the reduced Sombor index of the graph G are defined as

$$
S O(G)=\sum_{i \sim j} \sqrt{d_{i}^{2}+d_{j}^{2}}, \quad S O_{a v r}(G)=\sum_{i \sim j} \sqrt{\left(d_{i}-\frac{2 m}{n}\right)^{2}+\left(d_{j}-\frac{2 m}{n}\right)^{2}} \quad \text { and } \quad S O_{r e d}(G)=\sum_{i \sim j} \sqrt{\left(d_{i}-1\right)^{2}+\left(d_{j}-1\right)^{2}}
$$

respectively.
Most of the degree-based graph invariants can be written [22,38] as:

$$
\begin{equation*}
B I D(G)=\sum_{i \sim j} f\left(d_{i}, d_{j}\right) \tag{1}
\end{equation*}
$$

where f is a symmetric non-negative real-valued function of d_{i} and d_{j}. The graph invariants having the form (1) are known as the bond incident degree indices [36], BID indices in short [2]. Those choices of the function f are given in Table 1 that correspond to the graph invariants used in the next sections.

Table 1: The graph invariants to be used in the next sections.

Function $f\left(d_{i}, d_{j}\right)$	Equation (1) corresponds to	Symbol
$d_{i}+d_{j}$	first Zagreb index [20,21]	M_{1}
$d_{i} d_{j}$	second Zagreb index [20]	M_{2}
$2\left(d_{i}+d_{j}\right)^{-1}$	harmonic index [13]	H
$d_{i}^{-2}+d_{j}^{-2}$	inverse degree [13]	$I D$
$\left\|d_{i}-d_{j}\right\|$	Albertson index [1]	$A l b$
$2 \sqrt{d_{i} d_{j}}\left(d_{i}+d_{j}\right)^{-1}$	geometric-arithmetic index [37]	$G A$
$d_{i} d_{j}\left(d_{i}+d_{j}\right)^{-1}$	inverse sum indeg index [38]	$I S I$
$d_{i}\left(d_{j}\right)^{-1}+d_{j}\left(d_{i}\right)^{-1}$	symmetric division deg index [38]	$S D D$
$\left(d_{i}+d_{j}\right)\left(4 d_{i} d_{j}\right)^{-1 / 2}$	arithmetic-geometric index [11]	$A G$
$d_{i}^{2}+d_{j}^{2}$	forgotten topological index [16]	F

3. Towards the proof of Conjecture 1.1

The p-Sombor index of a graph G is denoted by $S O_{p}(G)$ and is defined [35] as the sum of the quantities $\left(d_{i}^{p}+d_{j}^{p}\right)^{1 / p}$ over all edges $i \sim j$ of G, where p is not equal to 0 . The first lemma (Lemma 3.1) of this section gives an upper bound on a generalized variant $S O_{p, q}$ of the p-Sombor index:

$$
S O_{p, q}(G)=\sum_{i \sim j}\left[\left(d_{i}+q\right)^{p}+\left(d_{j}+q\right)^{p}\right]^{1 / p}=\sum_{i \sim j} \varphi_{p, q}(i \sim j)
$$

where q is a real number provided that $\varphi_{p, q}(i \sim j)$ is a real number for every edge $i \sim j$ of G. The name (p, q)-Sombor index may be associated with the graph invariant $S O_{p, q}$.

Lemma 3.1. If G is a graph of size $m \geq 1$ then for any real number q, it holds that

$$
S O_{2, q}(G) \leq \sqrt{m\left[F(G)+2 q \cdot M_{1}(G)+2 q^{2} m\right]}
$$

with equality if and only if there exist a fixed real number t such that $\left(d_{i}+q\right)^{2}+\left(d_{j}+q\right)^{2}=t$ for every edge $i \sim j$ of G, where $F(G)$ and $M_{1}(G)$ are the forgotten topological index and first Zagreb index of G, respectively; see Table 1.
Proof. From Cauchy-Bunyakovsky-Schwarz's inequality, it follows that

$$
\begin{equation*}
\left(\sum_{i \sim j} \sqrt{\left(d_{i}+q\right)^{2}+\left(d_{j}+q\right)^{2}}\right)^{2} \leq\left(\sum_{i \sim j}(1)\right)\left(\sum_{i \sim j}\left[\left(d_{i}+q\right)^{2}+\left(d_{j}+q\right)^{2}\right]\right) \tag{2}
\end{equation*}
$$

$$
=m\left[F(G)+2 q \cdot M_{1}(G)+2 q^{2} m\right] .
$$

Note that the equality sign in (2) holds if and only if there exist a fixed real number t^{\prime} such that $\sqrt{\left(d_{i}+q\right)^{2}+\left(d_{j}+q\right)^{2}}=t^{\prime}$ for every edge $i \sim j$ of G.

Next, the bound on the invariant $S O_{2, q}$ given in Lemma 3.1 is used to derive another bound on $S O_{2, q}$ in terms of the parameters m and q only (see Lemma 3.4); however, to proceed, bounds on the forgotten topological index F and first Zagreb index M_{1} in terms of m are required first.

Lemma 3.2. For any n-vertex graph G of size m with $0 \leq m \leq n-1$, it holds that

$$
F(G) \leq m\left(m^{2}+1\right)
$$

with equality if and only if the star S_{m+1} is a component of G.
Proof. We fix n and use induction on m. For $m=0,1$, the lemma is obviously true; thus, the induction starts. Suppose that G is an n-vertex graph of size k such that $0 \leq k \leq n-1$ and $k \geq 2$. Take an edge $i \sim j$. Without loss of generality, assume that $d_{j} \leq d_{i}$. Note that $d_{i}+d_{j} \leq k+1$, which gives $d_{i}^{2}+d_{j}^{2}-\left(d_{i}+d_{j}\right) \leq\left(k+1-d_{j}\right)^{2}+d_{j}^{2}-(k+1)$ and hence the equation $F(G)-F\left(G-v_{i} v_{j}\right)=3\left(d_{i}^{2}+d_{j}^{2}-d_{i}-d_{j}\right)+2$ gives

$$
\begin{equation*}
F(G)-F\left(G-v_{i} v_{j}\right) \leq 3\left[\left(k+1-d_{j}\right)^{2}+d_{j}^{2}-(k+1)\right]+2, \tag{3}
\end{equation*}
$$

where the equality sign in (3) holds if and only if $d_{i}+d_{j}=k+1$. (It needs to be mentioned here that, throughout this proof, d_{r} denotes the degree of a vertex v_{r} in G not in $G-v_{i} v_{j}$.) The inequalities $d_{j} \leq d_{i}$ and $d_{i}+d_{j} \leq k+1$ confirm that $2 d_{j} \leq k+1$, which forces that the right hand side of (3) is maximum if and only if $d_{j}=1$. Thus, (3) gives

$$
\begin{equation*}
F(G)-F\left(G-v_{i} v_{j}\right) \leq 3\left(k^{2}-k\right)+2, \tag{4}
\end{equation*}
$$

with equality if and only if $d_{i}=k$ and $d_{j}=1$. Also, by inductive hypothesis, it holds that

$$
\begin{equation*}
F\left(G-v_{i} v_{j}\right) \leq(k-1)\left[(k-1)^{2}+1\right] \tag{5}
\end{equation*}
$$

with equality if and only if the star S_{k} is a component of $G-v_{i} v_{j}$. Thus, from (4) and (5), it follows that $F(G) \leq k\left(k^{2}+1\right)$ with equality if and only if the star S_{k+1} is a component of G. This completes the induction and hence the proof.

Lemma 3.3. [40] For any n-vertex graph G of size m with $0 \leq m \leq n-1$, it holds that

$$
M_{1}(G) \leq m(m+1)
$$

with equality if and only if

$$
\begin{cases}\text { the star } S_{m+1} \text { is a component of } G, & \text { if } m \neq 3, \\ \text { either the star } S_{4} \text { is a component of } G \text { or the cycle } C_{3} \text { is a component of } G, & \text { if } m=3 .\end{cases}
$$

The next result follows directly from Lemmas 3.1, 3.2 and 3.3.
Lemma 3.4. For any n-vertex graph G of size m with $0 \leq m \leq n-1$ and for any non-negative real number q, it holds that

$$
S O_{2, q}(G) \leq m \sqrt{m^{2}+2 q(m+q+1)+1}
$$

with equality if and only if the star S_{m+1} is a component of G.
The next two results were proven in [35].
Lemma 3.5. [35] If ν and n are fixed integers such that $0 \leq \nu \leq n-2$ then the graph attaining the maximum Sombor index in the class of all connected ν-cyclic graphs of order n has the maximum degree $n-1$.

Lemma 3.6. [35] Let ν and n be fixed integers such that $2 \leq \nu \leq n-2$. Let G be a graph with the maximum value of the Sombor index in the class of all connected ν-cyclic graphs of order n. If $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is the vertex-degree sequence of G such that $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$, then the vertex v_{2} is adjacent to all non-pendent vertices of G, where $d_{i}=d_{v_{i}}$ for $v_{i} \in V(G)$.

For a real number α, define the graph invariant $S O_{V, \alpha}$ as follows

$$
S O_{V, \alpha}(G)=\sum_{v_{i} \in V(G)} \sqrt{\left(d_{i}+1\right)^{2}+\alpha^{2}}
$$

Towards the Proof of Conjecture 1.1. Let G be a ν-cyclic connected graph of order n with the vertex set $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, where $6 \leq \nu \leq n-2$. Let $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be the vertex-degree sequence of G such that $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$, where $d_{i}=d_{v_{i}}$ for $v_{i} \in V(G)$. If either $d_{1} \leq n-2$ or v_{2} is not adjacent to any non-pendent vertex of G then from either Lemma 3.5 or Lemma 3.6, respectively, it follows that G does not have the maximum value of $S O$ in the class of all ν-cyclic connected graphs of order n. In what follows, assume that $d_{1}=n-1$ and that v_{2} is adjacent to all non-pendent vertices of G. Note that the graph $G-v_{1}$ has exactly one connected non-trivial component C and the subgraph induced by $V(C)$ (the vertex set of C) has a vertex of degree $|V(C)|-1$, and that $G-v_{1}$ has the size $m^{\prime}=\nu$, where $6 \leq m^{\prime} \leq n-2=\left|V\left(G-v_{1}\right)\right|-1$. Thus, from Lemma 3.4, it follows that

$$
\begin{align*}
S O(G) & =S O_{V, n-1}\left(G-v_{1}\right)+S O_{2,1}\left(G-v_{1}\right) \tag{6}\\
& \leq S O_{V, n-1}\left(G-v_{1}\right)+\nu \sqrt{(\nu+1)^{2}+4} \tag{7}
\end{align*}
$$

where the equality sign in (7) holds if and only if the star $S_{\nu+1}$ is a component of $G-v_{1}$.
We believe that the next result concerning the invariant $S O_{V, \alpha}$ is true. However, at the present moment, we do not have its proof; thus, we state it as a conjecture (if one proves this conjecture then from (7), the proof of Conjecture 1.1 follows directly).

Conjecture 3.1. For any n-vertex graph G of size m with $6 \leq m \leq n-1$, it holds that

$$
S O_{V, n-1}(G) \leq m \sqrt{(n-1)^{2}+4}+\sqrt{(n-1)^{2}+(m+1)^{2}}+(n-m-1) \sqrt{(n-1)^{2}+1}
$$

with equality if and only if the star S_{m+1} is a component of G.

4. Some relations between Sombor indices and other degree-based graph invariants

Before establishing the main results of this section, we first recall an inequality for the real number sequences reported in [33].

Lemma 4.1. [33] Let $x=\left(x_{i}\right), i=1,2, \ldots, n$, be a sequence of non-negative real numbers and $a=\left(a_{i}\right), i=1,2, \ldots, n, a$ sequence of positive real numbers. Then, for any $r \geq 0$ holds

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{x_{i}^{r+1}}{a_{i}^{r}} \geq \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{r+1}}{\left(\sum_{i=1}^{n} a_{i}\right)^{r}} \tag{8}
\end{equation*}
$$

Equality holds if and only if $r=0$ or $\frac{x_{1}}{a_{1}}=\frac{x_{2}}{a_{2}}=\cdots=\frac{x_{n}}{a_{n}}$.
In the next theorem we determine a relationship between $S O(G)$ and $M_{1}(G)$ and $I S I(G)$.
Theorem 4.1. Let G be a connected graph. Then

$$
\begin{equation*}
S O(G) \leq \sqrt{M_{1}(G)\left(M_{1}(G)-2 I S I(G)\right)} \tag{9}
\end{equation*}
$$

Equality holds if and only if G is an edge-regular graph.
Proof. From the definitions of $M_{1}(G)$ and $I S I(G)$ we have that

$$
\begin{equation*}
M_{1}(G)-2 I S I(G)=\sum_{i \sim j}\left(d_{i}+d_{j}\right)-\sum_{i \sim j} \frac{2 d_{i} d_{j}}{d_{i}+d_{j}}=\sum_{i \sim j} \frac{d_{i}^{2}+d_{j}^{2}}{d_{i}+d_{j}} \tag{10}
\end{equation*}
$$

On the other hand, for $r=1, x_{i}:=\sqrt{d_{i}^{2}+d_{j}^{2}}, a_{i}:=d_{i}+d_{j}$, with summation performed over all adjacent vertices v_{i} and v_{j} in G, the inequality (8) becomes

$$
\sum_{i \sim j} \frac{d_{i}^{2}+d_{j}^{2}}{d_{i}+d_{j}}=\sum_{i \sim j} \frac{\left(\sqrt{d_{i}^{2}+d_{j}^{2}}\right)^{2}}{d_{i}+d_{j}} \geq \frac{\left(\sum_{i \sim j} \sqrt{d_{i}^{2}+d_{j}^{2}}\right)^{2}}{\sum_{i \sim j}\left(d_{i}+d_{j}\right)}
$$

that is

$$
\begin{equation*}
\sum_{i \sim j} \frac{d_{i}^{2}+d_{j}^{2}}{d_{i}+d_{j}} \geq \frac{S O(G)^{2}}{M_{1}(G)} \tag{11}
\end{equation*}
$$

From the above and inequality (10) we arrive at (9).
Equality in (11) holds if and only if $\frac{\sqrt{d_{i}^{2}+d_{j}^{2}}}{d_{i}+d_{j}}$ is constant for any pair of adjcent vertices v_{i} and v_{j} in G. Suppose that v_{j} and v_{k} are adjacent to vertex v_{i}. Then

$$
\frac{\sqrt{d_{i}^{2}+d_{j}^{2}}}{d_{i}+d_{j}}=\frac{\sqrt{d_{i}^{2}+d_{k}^{2}}}{d_{i}+d_{k}}
$$

that is

$$
2 d_{i}\left(d_{i}^{2}-d_{j} d_{k}\right)\left(d_{j}-d_{k}\right)=0
$$

From the above identity it follows that equality in (9) holds if and only if G is an edge-regular graph.
Corollary 4.1. Let G be a connected graph with $n \geq 2$ vertices and medges. Then

$$
\begin{equation*}
S O(G) \leq \sqrt{M_{1}(G)\left(M_{1}(G)-\frac{2 m^{2}}{n}\right)} . \tag{12}
\end{equation*}
$$

Equality holds if and only if G is an edge-regular graph.
Proof. The inequality (12) is obtained from (9) and

$$
I S I(G) \geq \frac{m^{2}}{n}
$$

which was proven in [12]
Corollary 4.2. Let G be a connected graph with $n \geq 2$ vertices and medges. Then

$$
\begin{equation*}
S O(G) \leq \frac{m}{n-1} \sqrt{(2 m+(n-1)(n-2))\left(\frac{2 m}{n}+(n-1)(n-2)\right)} \tag{13}
\end{equation*}
$$

Equality holds if and only if $G \cong K_{n}$ or $G \cong K_{1, n-1}$.
Proof. The inequality (13) is obtained from (12) and

$$
M_{1}(G) \leq m\left(\frac{2 m}{n-1}+n-2\right)
$$

which was proven in [5].
Corollary 4.3. Let T be a tree with $n \geq 2$ vertices. Then

$$
\begin{equation*}
S O(T) \leq(n-1) \sqrt{n^{2}-2 n+2} \tag{14}
\end{equation*}
$$

Equality holds if and only if $T \cong K_{1, n-1}$.
The inequality (14) was proven in [18].
Proofs of the following theorems are analogous to that of Theorem 4.1, thus omitted.
Theorem 4.2. Let G be a connected graph with $m \geq 1$ edges. Then

$$
S O_{r e d}(G) \leq \sqrt{M_{1}(G)\left(M_{1}(G)-2 I S I(G)+H(G)-2 m\right)} .
$$

Equality holds if and only if G is an edge-regular graph.
Theorem 4.3. Let G be a connected graph with $n \geq 2$ vertices and medges. Then

$$
S O_{a v r}(G) \leq \sqrt{M_{1}(G)\left(M_{1}(G)-2 I S I(G)+\frac{4 m^{2}}{n^{2}} H(G)-\frac{4 m^{2}}{n}\right)}
$$

Equality holds if and only if G is an edge-regular graph.

Theorem 4.4. Let G be a connected graph with $n \geq 2$ vertices and medges. Then

$$
S O(\bar{G}) \leq \sqrt{M_{1}(G)\left(M_{1}(G)-2 I S I(G)+\frac{1}{2}(n-1)^{2} H(G)-m(n-1)\right)} .
$$

Equality holds if and only if G is an edge-regular graph.
The next theorem reveals a connection between Sombor index and indices $F(G), M_{2}(G), A G(G)$ and $G A(G)$.
Theorem 4.5. Let G be a connected graph. Then

$$
\begin{equation*}
S O(G) \leq \sqrt{\frac{1}{2}\left(F(G)+2 M_{2}(G)\right)(2 A G(G)-G A(G))} . \tag{15}
\end{equation*}
$$

Equality holds if and only if G is regular.
Proof. The following identity holds

$$
\begin{equation*}
2 A G(G)-G A(G)=\sum_{i \sim j}\left(\frac{d_{i}+d_{j}}{\sqrt{d_{i} d_{j}}}-\frac{2 \sqrt{d_{i} d_{j}}}{d_{i}+d_{j}}\right)=\sum_{i \sim j} \frac{d_{i}^{2}+d_{j}^{2}}{\sqrt{d_{i} d_{j}}\left(d_{i}+d_{j}\right)} . \tag{16}
\end{equation*}
$$

By the arithmetic-geometric mean inequality (see e.g. [32]) we have that

$$
\begin{equation*}
\sqrt{d_{i} d_{j}} \leq \frac{1}{2}\left(d_{i}+d_{j}\right) . \tag{17}
\end{equation*}
$$

Combining (16) and (17) gives

$$
\begin{equation*}
2 A G(G)-G A(G) \geq 2 \sum_{i \sim j} \frac{d_{i}^{2}+d_{j}^{2}}{\left(d_{i}+d_{j}\right)^{2}} . \tag{18}
\end{equation*}
$$

On the other hand, for $r=1, x_{i}:=\sqrt{d_{i}^{2}+d_{j}^{2}}, a_{i}:=\left(d_{i}+d_{j}\right)^{2}$, with summation performed over all adjacent vertices v_{i} and v_{j} in G, the inequality (8) transforms into

$$
\sum_{i \sim j} \frac{d_{i}^{2}+d_{j}^{2}}{\left(d_{i}+d_{j}\right)^{2}}=\sum_{i \sim j} \frac{\left(\sqrt{d_{i}^{2}+d_{j}^{2}}\right)^{2}}{\left(d_{i}+d_{j}\right)^{2}} \geq \frac{\left(\sum_{i \sim j} \sqrt{d_{i}^{2}+d_{j}^{2}}\right)^{2}}{\sum_{i \sim j}\left(d_{i}+d_{j}\right)^{2}}
$$

that is

$$
\begin{equation*}
\sum_{i \sim j} \frac{d_{i}^{2}+d_{j}^{2}}{\left(d_{i}+d_{j}\right)^{2}} \geq \frac{S O(G)^{2}}{F(G)+2 M_{2}(G)} . \tag{19}
\end{equation*}
$$

Now, from the above and (18) we arrive at (15).
Equality in (17) holds if and only if $d_{i}=d_{j}$ for any pair of adjacent vertices v_{i} and v_{j} in G, which implies that equality in (15) holds if and only if G is regular.

Corollary 4.4. Let G be a connected graph. Then

$$
\begin{equation*}
S O(G) \leq \sqrt{F(G)(2 A G(G)-G A(G))} . \tag{20}
\end{equation*}
$$

Equality holds if and only if G is regular.
Proof. By the AM-GM inequality we have that

$$
F(G)=\sum_{i \sim j}\left(d_{i}^{2}+d_{j}^{2}\right) \geq \sum_{i \sim j} 2 d_{i} d_{j}=2 M_{2}(G) .
$$

The inequality (20) is obtained from the above and (15).
Corollary 4.5. Let G be a connected graph and Δ be its maximum vertex degree. Then

$$
S O(G) \leq \sqrt{\Delta M_{1}(G)(2 A G(G)-G A(G))} .
$$

Equality holds if and only if G is regular.
Proof. The following is valid

$$
F(G)=\sum_{i=1}^{n} d_{i}^{3} \leq \Delta \sum_{i=1}^{n} d_{i}^{2}=\Delta M_{1}(G) .
$$

From the above and inequality (20) we obtain the required result.

The following inequality was proven in [24] for the real number sequences.
Lemma 4.2. [24] Let $p=\left(p_{i}\right), i=1,2, \ldots, n$ be a sequence of non-negative real numbers and $a=\left(a_{i}\right), i=1,2, \ldots, n$, positive real number sequence.Then, for any real $r, r \leq 0$ or $r \geq 1$, holds

$$
\begin{equation*}
\left(\sum_{i=1}^{n} p_{i}\right)^{r-1} \sum_{i=1}^{n} p_{i} a_{i}^{r} \geq\left(\sum_{i=1}^{n} p_{i} a_{i}\right)^{r} . \tag{21}
\end{equation*}
$$

When $0 \leq r \leq 1$ the opposite inequality is valid.
Equality holds if and only if either $r=0$, or $r=1$, or $a_{1}=a_{2}=\cdots=a_{n}$, or $p_{1}=p_{2}=\cdots=p_{t}=0$ and $a_{t+1}=\cdots=a_{n}$, for some $t, 1 \leq t \leq n-1$.

In the next theorem we determine a relationship between $S O(G)$ and $I D(G), F(G)$ and $M_{2}(G)$.
Theorem 4.6. Let G be a connected graph. Then

$$
\begin{equation*}
S O(G) \leq \sqrt[4]{I D(G) F(G) M_{2}(G)^{2}} \tag{22}
\end{equation*}
$$

Equality holds if and only if G is an edge-regular graph.
Proof. For $r=2, p_{i}:=d_{i}^{2}+d_{j}^{2}, a_{i}:=\frac{1}{d_{i} d_{j}}$, with summation performed over all pairs of adjacent vertices v_{i} and v_{j} in G, the inequality (21) becomes

$$
\sum_{i \sim j}\left(d_{i}^{2}+d_{j}^{2}\right) \sum_{i \sim j} \frac{d_{i}^{2}+d_{j}^{2}}{\left(d_{i} d_{j}\right)^{2}} \geq\left(\sum_{i \sim j} \frac{d_{i}^{2}+d_{j}^{2}}{d_{i} d_{j}}\right)^{2},
$$

that is

$$
\begin{equation*}
I D(G) F(G) \geq\left(\sum_{i \sim j} \frac{d_{i}^{2}+d_{j}^{2}}{d_{i} d_{j}}\right)^{2} \tag{23}
\end{equation*}
$$

On the other hand, for $r=1, x_{i}:=\sqrt{d_{i}^{2}+d_{j}^{2}}, a_{i}:=d_{i} d_{j}$, with summation performed over all pairs of adjacent vertices v_{i} and v_{j} in G, the inequality (8) becomes

$$
\sum_{i \sim j} \frac{d_{i}^{2}+d_{j}^{2}}{d_{i} d_{j}}=\sum_{i \sim j} \frac{\left(\sqrt{d_{i}^{2}+d_{j}^{2}}\right)^{2}}{d_{i} d_{j}} \geq \frac{\left(\sum_{i \sim j} \sqrt{d_{i}^{2}+d_{j}^{2}}\right)^{2}}{\sum_{i \sim j} d_{i} d_{j}},
$$

that is

$$
\begin{equation*}
\sum_{i \sim j} \frac{d_{i}^{2}+d_{j}^{2}}{d_{i} d_{j}} \geq \frac{S O(G)^{2}}{M_{2}(G)} \tag{24}
\end{equation*}
$$

Now, from (23) and (24) we arrive at (22).
Equality in (23) holds if and only if $d_{i} d_{j}$ is constant for any pairs of adjacent vertices v_{i} and v_{j} in G. Suppose that vertices v_{j} and v_{k} are adjacent to v_{i}. In that case, we have that $d_{i} d_{j}=d_{i} d_{k}$, that is $d_{j}=d_{k}$. This means that equality (23) holds if and only if G is an edge-regular graph. Equality in (24) holds if and only if $\frac{\sqrt{d_{i}^{2}+d_{i}^{2}}}{d_{i} d_{j}}$ is constant for any pair of adjacent vertices v_{i} and v_{j} in G. Suppose that vertices v_{j} and v_{k} are adjacent to v_{i}. In that case holds $\frac{\sqrt{d_{i}^{2}+d_{j}^{2}}}{d_{i} d_{j}}=\frac{\sqrt{d_{i}^{2}+d_{k}^{2}}}{d_{i} d_{k}}$, that is $d_{j}=d_{k}$. This means that equality in (24) holds if and only if G is an edge-regular graph, which means that equality in (22) holds if and only if G is an edge-regular graph.

One can easily verify that from (24) the inequality

$$
S O(G) \leq \sqrt{M_{2}(G) S D D(G)},
$$

(which was proven in [31]) follows.
Corollary 4.6. Let G be a connected graph. Then

$$
S O(G) \leq \sqrt[4]{\frac{1}{4} I D(G) F(G)^{3}}
$$

Equality holds if and only if G is regular.

Theorem 4.7. Let G be a connected graph. Then

$$
\begin{equation*}
S O(G) \geq \sqrt{\frac{M_{1}(G)^{2}+A l b(G)^{2}}{2}} \tag{25}
\end{equation*}
$$

Equality holds if and only if G is an edge-regular graph.
Proof. The following identities are valid

$$
S O(G)-\sum_{i \sim j} \frac{2 d_{i} d_{j}}{\sqrt{d_{i}^{2}+d_{j}^{2}}}=\sum_{i \sim j} \frac{\left(d_{i}-d_{j}\right)^{2}}{\sqrt{d_{i}^{2}+d_{j}^{2}}}
$$

and

$$
S O(G)+\sum_{i \sim j} \frac{2 d_{i} d_{j}}{\sqrt{d_{i}^{2}+d_{j}^{2}}}=\sum_{i \sim j} \frac{\left(d_{i}+d_{j}\right)^{2}}{\sqrt{d_{i}^{2}+d_{j}^{2}}}
$$

Taking $r=1, x_{i}:=\left|d_{i}-d_{j}\right|$, and $a_{i}:=\sqrt{d_{i}^{2}+d_{j}^{2}}$ in inequality (8) with summation performed over all pairs of adjacent vertices v_{i} and v_{j} in G , we obtain

$$
S O(G)-\sum_{i \sim j} \frac{2 d_{i} d_{j}}{\sqrt{d_{i}^{2}+d_{j}^{2}}} \geq \frac{A l b(G)^{2}}{S O(G)}
$$

Similarly, taking $r=1, x_{i}:=d_{i}+d_{j}$, and $a_{i}:=\sqrt{d_{i}^{2}+d_{j}^{2}}$ in inequality (8) with summation performed over all pairs of adjacent vertices v_{i} and v_{j} in G, we obtain

$$
S O(G)+\sum_{i \sim j} \frac{2 d_{i} d_{j}}{\sqrt{d_{i}^{2}+d_{j}^{2}}} \geq \frac{M_{1}(G)^{2}}{S O(G)}
$$

From the above inequalities we obtain the assertion of the Theorem 4.7.
Corollary 4.7. Let G be a connected graph. Then

$$
\begin{equation*}
S O(G) \geq \frac{\sqrt{2}}{2} M_{1}(G) \tag{26}
\end{equation*}
$$

Equality holds if and only if G is regular.
Proof. Since $\operatorname{Alb}(G)^{2} \geq 0$, the inequality (26) is obtained from (25).
The inequality (26) was proven in $[15,31]$ (see also [19]). By a similar arguments, the following results can be proven.
Theorem 4.8. Let G be a graph with $m \geq 1$ edges. Then

$$
S O_{r e d}(G) \geq \sqrt{\frac{\left(M_{1}(G)-2 m\right)^{2}+\operatorname{Alb}(G)^{2}}{2}}
$$

Equality holds if and only if G is an edge-regular graph.
Theorem 4.9. Let G be a connected graph with $n \geq 2$ vertices and m edges. Then

$$
S O_{a v r}(G) \geq \sqrt{\frac{\left(M_{1}(G)-\frac{4 m^{2}}{n}\right)^{2}+A l b(G)^{2}}{2}}
$$

Equality holds if and only if G is an edge-regular graph.
From Theorems 4.8 and 4.9 we have the following corollaries.
Corollary 4.8. Let G be a graph with $m \geq 1$ edges. Then

$$
\begin{equation*}
S O_{r e d}(G) \geq \frac{\sqrt{2}}{2}\left(M_{1}(G)-2 m\right) \tag{27}
\end{equation*}
$$

Equality holds if and only if G is regular or each of its components is regular.
Corollary 4.9. Let G be a connected graph with $n \geq 2$ vertices and m edges. Then

$$
\begin{equation*}
S O_{a v r}(G) \geq \frac{\sqrt{2}}{2}\left(M_{1}(G)-\frac{4 m^{2}}{n}\right) \tag{28}
\end{equation*}
$$

Equality holds if and only if G is regular.
Inequalities (27) and (28) were proven in [31] (see also [19]).

Acknowledgment

This research has been funded by Scientific Research Deanship at University of Hail, Saudi Arabia, through project number RG-20 031.

References

[1] M. O. Albertson, The irregularity of a graph, Ars Combin. 46 (1997) 219-225.
[2] A. Ali, Z. Raza, A. A. Bhatti, Bond incident degree (BID) indices of polyomino chains: a unified approach, Appl. Math. Comput. 287-288 (2016) 28-37.
[3] S. Alikhani, N. Ghanbari, Sombor index of polymers, MATCH Commun. Math. Comput. Chem. 86 (2021) 715-728.
[4] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, London, 2008.
[5] D. Caen, An upper bound on the sum of squares of degrees in a graph, Discrete Math. 185 (1998) 245-248.
[6] G. Chartrand, L. Lesniak, P. Zhang, Graphs \& Digraphs, Sixth Edition, CRC Press, Boca Raton, 2016
[7] R. Cruz, I. Gutman, J. Rada, Sombor index of chemical graphs Appl. Math. Comput. 399 (2021) Art\# 126018.
[8] R. Cruz, J. Rada, Extremal values of the Sombor index in unicyclic and bicyclic graphs, J. Math. Chem. 59 (2021) $1098-1116$.
[9] K. C. Das, A. S. Çevik, I. N. Cangul, Y. Shang, On Sombor Index, Symmetry 13 (2021) Art\# 140.
[10] R. Diestel, Graph Theory, Third Edition, Springer, New York, 2005.
[11] M. Eliasi, A. Iranmanesh, On ordinary generalized geometric-Uarithmetic index, Appl. Math. Lett. 24 (2011) 582-587
[12] F. Falahati-Nezhad, M. Azari, T. Došlić, Sharp bounds on the inverse sum indeg index, Discrete Appl. Math. 217 (2017) 185-195.
[13] S. Fajtlowicz, On conjectures of Graffiti-II, Congr. Numer. 60 (1987) 187-197.
[14] X. Fang, L. You, H. Liu, The expected values of Sombor indices in random hexagonal chains, phenylene chains and Sombor indices of some chemical graphs, arXiv:2103.07172 [math.CO], (2021).
[15] S. Filipovski, Relations between Sombor index and some degree-based topological indices, Iranian J. Math. Chem. 12 (2021) 19-26.
[16] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-1190.
[17] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351-361.
[18] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) $11-16$.
[19] I. Gutman, Some basic properties of Sombor indices, Open J. Discrete Appl. Math. 4 (2021) 1-3.
[20] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) $3399-3405$.
[21] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[22] B. Hollas, The covariance of topological indices that depend on the degree of a vertex, MATCH Commun. Math. Comput. Chem. 54 (2005) $177-187$.
[23] B. Horoldagva, C. Xu, On Sombor index of graphs, MATCH Commun. Math. Comput. Chem. 86 (2021) 703-713.
[24] J. L. W. V. Jensen, Sur les functions convexes et les inequalites entre les valeurs moyennes, Acta Math. 30 (1906) $175-193$.
[25] X. Li, H. Zhao, Trees with the first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57-62.
[26] Z. Lin, On the spectral radius and energy of the Sombor matrix of graphs, arXiv:2102.03960 [math.CO], (2021).
[27] H. Liu, Ordering chemical graphs by their Sombor indices, arXiv:2103.05995 [math.CO], (2021).
[28] H. Liu, Maximum Sombor index among cacti, arXiv:2103.07924 [math.CO], (2021).
[29] H. Liu, L. You, Y. Huang: Ordering chemical graphs by Sombor indices and its applications, MATCH Commun. Math. Comput. Chem. 87 (2022), In press.
[30] H. Liu, L. You, Z. Tang, J. B. Liu, On the reduced Sombor index and its applications, MATCH Commun. Math. Comput. Chem. 86 (2021) $729-753$.
[31] I. Milovanović, E. Milovanović, M. Matejić, On some mathematical properties of Sombor indices, Bull. Int. Math. Virtual Inst. 11 (2021) $341-353$.
[32] D. S. Mitrinović, P. M. Vasić, Analytic Inequalities, Springer, Berlin, 1970.
[33] J. Radon, Über Die Absolut Additiven Mengenfunkcionen, Wien. Sitzungsber 122 (1913) 1295-1438.
[34] I. Redžepović, Chemical applicability of Sombor indices, J. Serb. Chem. Soc., DOI: 10.2298/JSC201215006R, In press.
[35] T. Réti, T. Došlić, A. Ali, On the Sombor index of graphs, Contrib. Math. 3 (2021) 11-18.
[36] D. Vukičević, J. Đurđević, Bond additive modeling 10. Upper and lower bounds of bond incident degree indices of catacondensed fluoranthenes, Chem. Phys. Lett. 515 (2011) 186-189.
[37] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369-1376.
[38] D. Vukičević, M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta 83 (2010) 243-260.
[39] Z. Wang, Y. Mao, Y. Li, B. Furtula, On relations between Sombor and other degree-based indices, J. Appl. Math. Comput., DOI: 10.1007/s12190-021-01516-x, In press.
[40] K. Xu, K. C. Das, S. Balachandran, Maximizing the Zagreb indices of (n, m)-graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) $641-654$.
[41] T. Zhou, Z. Lin, L. Miao, The Sombor index of trees and unicyclic graphs with given matching number, arXiv:2103.04645 [math.CO], (2021).
[42] T. Zhou, Z. Lin, L. Miao, The Sombor index of trees and unicyclic graphs with given maximum degree, arXiv:2103.07947 [math.CO], (2021).

[^0]: *Corresponding author (Igor.Milovanovic@elfak.ni.ac.rs).

