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Abstract

This paper is concerned with three recently introduced degree-based graph invariants; namely, the Sombor index, the
reduced Sombor index and the average Sombor index. The first aim of the present paper is to give some results that may
be helpful in proving a recently proposed conjecture concerning the Sombor index. Establishing inequalities related to the
aforementioned three graph invariants is the second aim of this paper.
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1. Introduction

The study of the mathematical aspects of the degree-based graph invariants (also known as topological indices) is con-
sidered to be one of the very active research areas within the field of chemical graph theory [17]. Recently, the math-
ematical chemist Ivan Gutman [18], one of the pioneers of chemical graph theory, proposed a geometric approach to
interpret degree-based graph invariants and based on this approach, he devised three new graph invariants; namely
the Sombor index, the reduced Sombor index and the average Sombor index. The Sombor index, being the simplest one
among the aforementioned three invariants, has attracted a significant attention from researchers within a very short
time [3,7–9,14,15,19,23,26–31,34,35,39,41,42].

The first aim of this paper to give some results that may be helpful in proving a conjecture concerning the Sombor index
posed in the reference [35]. In order to state this conjecture, we need some definitions first. An acyclic graph is the graph
containing no cycle. For a graph G, its cyclomatic number ν(G) (or simply ν) is the least number of edges whose deletion
makes the graph G as acyclic. A ν-cyclic graph is the one having the cyclomatic number ν. A pendent vertex of a graph
is a vertex of degree 1. For ν ≥ 1, denote by Hn,ν the graph deduced from the star graph of order n by adding ν edge(s)
between a fixed pendent vertex and ν other pendent vertices.

Conjecture 1.1. [35] For the fixed integers n and ν with 6 ≤ ν ≤ n − 2, Hn,ν is the only graph attaining the maximum
Sombor index in the class of all ν-cyclic connected graphs of order n.

Establishing inequalities related to the Sombor index, the reduced Sombor index and the average Sombor index is
another aim of this paper.

2. Preliminaries

Let G be a graph. Denote by E(G) and V (G) the edge set and vertex set, respectively, of G. Denote by i ∼ j the edge
connecting the vertices vi, vj ∈ V (G). For a vertex vi ∈ V (G), its degree is denoted by dvi(G) (or simply by di(G)). A regular
graph is the one in which all of its vertices have the same degree. For an edge e ∈ E(G), its degree is the number of edges
adjacent to e. By an edge-regular graph, we mean a graph in which all of its edges have the same degree. A graph of order
n is also known as an n-vertex graph. Denote by G − vi and G − vivj the graphs obtained from G by removing the vertex
vi and the edge vivj , respectively. The n-vertex complete graph and the n-vertex star graph are denoted as Kn and K1,n−1,
respectively. From the notations E(G), V (G), ν(G) and di(G), we remove “(G)” whenever the graph under consideration
is clear. The graph-theoretical notation and terminology used in this paper but not defined here, may be found in some
standard graph-theoretical books, like [4,6,10].
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If V (G) = {v1, v2, . . . , vn} and |E(G)| = m then the Sombor index, the average Sombor index and the reduced Sombor
index of the graph G are defined as

SO(G) =
∑
i∼j

√
d2i + d2j , SOavr(G) =

∑
i∼j

√(
di −

2m

n

)2

+

(
dj −

2m

n

)2

and SOred(G) =
∑
i∼j

√
(di − 1)2 + (dj − 1)2,

respectively.
Most of the degree-based graph invariants can be written [22,38] as:

BID(G) =
∑
i∼j

f(di, dj), (1)

where f is a symmetric non-negative real-valued function of di and dj . The graph invariants having the form (1) are known
as the bond incident degree indices [36], BID indices in short [2]. Those choices of the function f are given in Table 1 that
correspond to the graph invariants used in the next sections.

Table 1: The graph invariants to be used in the next sections.

Function f(di, dj) Equation (1) corresponds to Symbol

di + dj first Zagreb index [20,21] M1

di dj second Zagreb index [20] M2

2(di + dj)
−1 harmonic index [13] H

d−2i + d−2j inverse degree [13] ID

|di − dj | Albertson index [1] Alb

2
√
di dj(di + dj)

−1 geometric-arithmetic index [37] GA

di dj(di + dj)
−1 inverse sum indeg index [38] ISI

di(dj)
−1 + dj(di)

−1 symmetric division deg index [38] SDD

(di + dj)(4di dj)
−1/2 arithmetic-geometric index [11] AG

d2i + d2j forgotten topological index [16] F

3. Towards the proof of Conjecture 1.1

The p-Sombor index of a graph G is denoted by SOp(G) and is defined [35] as the sum of the quantities (dpi + dpj )
1/p over

all edges i ∼ j of G, where p is not equal to 0. The first lemma (Lemma 3.1) of this section gives an upper bound on a
generalized variant SOp,q of the p-Sombor index:

SOp,q(G) =
∑
i∼j

[(di + q)p + (dj + q)p]1/p =
∑
i∼j

ϕp,q(i ∼ j) ,

where q is a real number provided that ϕp,q(i ∼ j) is a real number for every edge i ∼ j of G. The name (p, q)-Sombor index
may be associated with the graph invariant SOp,q.

Lemma 3.1. If G is a graph of size m ≥ 1 then for any real number q, it holds that

SO2,q(G) ≤
√
m[F (G) + 2q ·M1(G) + 2q2m]

with equality if and only if there exist a fixed real number t such that (di + q)2 + (dj + q)2 = t for every edge i ∼ j of G, where
F (G) and M1(G) are the forgotten topological index and first Zagreb index of G, respectively; see Table 1.

Proof. From Cauchy-Bunyakovsky-Schwarz’s inequality, it follows that∑
i∼j

√
(di + q)2 + (dj + q)2

2

≤

∑
i∼j

(1)

∑
i∼j

[
(di + q)2 + (dj + q)2

] (2)
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= m[F (G) + 2q ·M1(G) + 2q2m].

Note that the equality sign in (2) holds if and only if there exist a fixed real number t′ such that
√

(di + q)2 + (dj + q)2 = t′

for every edge i ∼ j of G.

Next, the bound on the invariant SO2,q given in Lemma 3.1 is used to derive another bound on SO2,q in terms of the
parametersm and q only (see Lemma 3.4); however, to proceed, bounds on the forgotten topological index F and first Zagreb
index M1 in terms of m are required first.

Lemma 3.2. For any n-vertex graph G of size m with 0 ≤ m ≤ n− 1, it holds that

F (G) ≤ m(m2 + 1)

with equality if and only if the star Sm+1 is a component of G.

Proof. We fix n and use induction on m. For m = 0, 1, the lemma is obviously true; thus, the induction starts. Suppose
that G is an n-vertex graph of size k such that 0 ≤ k ≤ n − 1 and k ≥ 2. Take an edge i ∼ j. Without loss of generality,
assume that dj ≤ di. Note that di + dj ≤ k + 1, which gives d2i + d2j − (di + dj) ≤ (k + 1− dj)2 + d2j − (k + 1) and hence the
equation F (G)− F (G− vivj) = 3(d2i + d2j − di − dj) + 2 gives

F (G)− F (G− vivj) ≤ 3[(k + 1− dj)2 + d2j − (k + 1)] + 2 , (3)

where the equality sign in (3) holds if and only if di + dj = k + 1. (It needs to be mentioned here that, throughout this
proof, dr denotes the degree of a vertex vr in G not in G − vivj .) The inequalities dj ≤ di and di + dj ≤ k + 1 confirm that
2 dj ≤ k + 1, which forces that the right hand side of (3) is maximum if and only if dj = 1. Thus, (3) gives

F (G)− F (G− vivj) ≤ 3(k2 − k) + 2, (4)

with equality if and only if di = k and dj = 1. Also, by inductive hypothesis, it holds that

F (G− vivj) ≤ (k − 1)[(k − 1)2 + 1], (5)

with equality if and only if the star Sk is a component of G− vivj . Thus, from (4) and (5), it follows that F (G) ≤ k(k2 + 1)

with equality if and only if the star Sk+1 is a component of G. This completes the induction and hence the proof.

Lemma 3.3. [40] For any n-vertex graph G of size m with 0 ≤ m ≤ n− 1, it holds that

M1(G) ≤ m(m+ 1)

with equality if and only if{
the star Sm+1 is a component of G, if m 6= 3,
either the star S4 is a component of G or the cycle C3 is a component of G, if m = 3.

The next result follows directly from Lemmas 3.1, 3.2 and 3.3.

Lemma 3.4. For any n-vertex graph G of size m with 0 ≤ m ≤ n− 1 and for any non-negative real number q, it holds that

SO2,q(G) ≤ m
√
m2 + 2q(m+ q + 1) + 1

with equality if and only if the star Sm+1 is a component of G.

The next two results were proven in [35].

Lemma 3.5. [35] If ν and n are fixed integers such that 0 ≤ ν ≤ n−2 then the graph attaining the maximum Sombor index
in the class of all connected ν-cyclic graphs of order n has the maximum degree n− 1.

Lemma 3.6. [35] Let ν and n be fixed integers such that 2 ≤ ν ≤ n − 2. Let G be a graph with the maximum value of the
Sombor index in the class of all connected ν-cyclic graphs of order n. If (d1, d2, . . . , dn) is the vertex-degree sequence of G
such that d1 ≥ d2 ≥ · · · ≥ dn, then the vertex v2 is adjacent to all non-pendent vertices of G, where di = dvi for vi ∈ V (G).
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For a real number α, define the graph invariant SOV,α as follows

SOV,α(G) =
∑

vi∈V (G)

√
(di + 1)2 + α2 .

Towards the Proof of Conjecture 1.1. Let G be a ν-cyclic connected graph of order n with the vertex set V (G) =

{v1, v2, . . . , vn}, where 6 ≤ ν ≤ n − 2. Let (d1, d2, . . . , dn) be the vertex-degree sequence of G such that d1 ≥ d2 ≥ · · · ≥ dn,
where di = dvi for vi ∈ V (G). If either d1 ≤ n − 2 or v2 is not adjacent to any non-pendent vertex of G then from either
Lemma 3.5 or Lemma 3.6, respectively, it follows that G does not have the maximum value of SO in the class of all ν-cyclic
connected graphs of order n. In what follows, assume that d1 = n− 1 and that v2 is adjacent to all non-pendent vertices of
G. Note that the graph G− v1 has exactly one connected non-trivial component C and the subgraph induced by V (C) (the
vertex set of C) has a vertex of degree |V (C)|−1, and thatG−v1 has the sizem′ = ν, where 6 ≤ m′ ≤ n−2 = |V (G−v1)|−1.
Thus, from Lemma 3.4, it follows that

SO(G) = SOV,n−1(G− v1) + SO2,1(G− v1) (6)

≤ SOV,n−1(G− v1) + ν
√

(ν + 1)2 + 4, (7)

where the equality sign in (7) holds if and only if the star Sν+1 is a component of G− v1.
We believe that the next result concerning the invariant SOV,α is true. However, at the present moment, we do not have

its proof; thus, we state it as a conjecture (if one proves this conjecture then from (7), the proof of Conjecture 1.1 follows
directly).

Conjecture 3.1. For any n-vertex graph G of size m with 6 ≤ m ≤ n− 1, it holds that

SOV,n−1(G) ≤ m
√

(n− 1)2 + 4 +
√

(n− 1)2 + (m+ 1)2 + (n−m− 1)
√

(n− 1)2 + 1

with equality if and only if the star Sm+1 is a component of G.

4. Some relations between Sombor indices and other degree-based graph invariants

Before establishing the main results of this section, we first recall an inequality for the real number sequences reported
in [33].

Lemma 4.1. [33] Let x = (xi), i = 1, 2, . . . , n, be a sequence of non-negative real numbers and a = (ai), i = 1, 2, . . . , n, a
sequence of positive real numbers. Then, for any r ≥ 0 holds

n∑
i=1

xr+1
i

ari
≥

(
∑n
i=1 xi)

r+1

(
∑n
i=1 ai)

r . (8)

Equality holds if and only if r = 0 or x1

a1
= x2

a2
= · · · = xn

an
.

In the next theorem we determine a relationship between SO(G) and M1(G) and ISI(G).

Theorem 4.1. Let G be a connected graph. Then

SO(G) ≤
√
M1(G)(M1(G)− 2ISI(G)) . (9)

Equality holds if and only if G is an edge-regular graph.

Proof. From the definitions of M1(G) and ISI(G) we have that

M1(G)− 2ISI(G) =
∑
i∼j

(di + dj)−
∑
i∼j

2didj
di + dj

=
∑
i∼j

d2i + d2j
di + dj

. (10)

On the other hand, for r = 1, xi :=
√
d2i + d2j , ai := di + dj , with summation performed over all adjacent vertices vi and vj

in G, the inequality (8) becomes

∑
i∼j

d2i + d2j
di + dj

=
∑
i∼j

(√
d2i + d2j

)2
di + dj

≥

(∑
i∼j

√
d2i + d2j

)2
∑
i∼j(di + dj)

,
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that is ∑
i∼j

d2i + d2j
di + dj

≥ SO(G)2

M1(G)
. (11)

From the above and inequality (10) we arrive at (9).
Equality in (11) holds if and only if

√
d2i+d

2
j

di+dj
is constant for any pair of adjcent vertices vi and vj in G. Suppose that vj

and vk are adjacent to vertex vi. Then √
d2i + d2j

di + dj
=

√
d2i + d2k
di + dk

,

that is
2di(d

2
i − djdk)(dj − dk) = 0 .

From the above identity it follows that equality in (9) holds if and only if G is an edge-regular graph.

Corollary 4.1. Let G be a connected graph with n ≥ 2 vertices and m edges. Then

SO(G) ≤

√
M1(G)

(
M1(G)− 2m2

n

)
. (12)

Equality holds if and only if G is an edge-regular graph.

Proof. The inequality (12) is obtained from (9) and

ISI(G) ≥ m2

n
,

which was proven in [12]

Corollary 4.2. Let G be a connected graph with n ≥ 2 vertices and m edges. Then

SO(G) ≤ m

n− 1

√
(2m+ (n− 1)(n− 2))

(
2m

n
+ (n− 1)(n− 2)

)
. (13)

Equality holds if and only if G ∼= Kn or G ∼= K1,n−1.

Proof. The inequality (13) is obtained from (12) and

M1(G) ≤ m
(

2m

n− 1
+ n− 2

)
,

which was proven in [5].

Corollary 4.3. Let T be a tree with n ≥ 2 vertices. Then

SO(T ) ≤ (n− 1)
√
n2 − 2n+ 2 . (14)

Equality holds if and only if T ∼= K1,n−1.

The inequality (14) was proven in [18].
Proofs of the following theorems are analogous to that of Theorem 4.1, thus omitted.

Theorem 4.2. Let G be a connected graph with m ≥ 1 edges. Then

SOred(G) ≤
√
M1(G) (M1(G)− 2ISI(G) +H(G)− 2m) .

Equality holds if and only if G is an edge-regular graph.

Theorem 4.3. Let G be a connected graph with n ≥ 2 vertices and m edges. Then

SOavr(G) ≤

√
M1(G)

(
M1(G)− 2ISI(G) +

4m2

n2
H(G)− 4m2

n

)
.

Equality holds if and only if G is an edge-regular graph.
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Theorem 4.4. Let G be a connected graph with n ≥ 2 vertices and m edges. Then

SO(G) ≤

√
M1(G)

(
M1(G)− 2ISI(G) +

1

2
(n− 1)2H(G)−m(n− 1)

)
.

Equality holds if and only if G is an edge-regular graph.

The next theorem reveals a connection between Sombor index and indices F (G), M2(G), AG(G) and GA(G).

Theorem 4.5. Let G be a connected graph. Then

SO(G) ≤
√

1

2
(F (G) + 2M2(G))(2AG(G)−GA(G)) . (15)

Equality holds if and only if G is regular.

Proof. The following identity holds

2AG(G)−GA(G) =
∑
i∼j

(
di + dj√
didj

−
2
√
didj

di + dj

)
=
∑
i∼j

d2i + d2j√
didj(di + dj)

. (16)

By the arithmetic–geometric mean inequality (see e.g. [32]) we have that√
didj ≤

1

2
(di + dj) . (17)

Combining (16) and (17) gives

2AG(G)−GA(G) ≥ 2
∑
i∼j

d2i + d2j
(di + dj)2

. (18)

On the other hand, for r = 1, xi :=
√
d2i + d2j , ai := (di + dj)

2, with summation performed over all adjacent vertices vi and
vj in G, the inequality (8) transforms into

∑
i∼j

d2i + d2j
(di + dj)2

=
∑
i∼j

(√
d2i + d2j

)2
(di + dj)2

≥

(∑
i∼j

√
d2i + d2j

)2
∑
i∼j(di + dj)2

,

that is ∑
i∼j

d2i + d2j
(di + dj)2

≥ SO(G)2

F (G) + 2M2(G)
. (19)

Now, from the above and (18) we arrive at (15).
Equality in (17) holds if and only if di = dj for any pair of adjacent vertices vi and vj in G, which implies that equality

in (15) holds if and only if G is regular.

Corollary 4.4. Let G be a connected graph. Then

SO(G) ≤
√
F (G)(2AG(G)−GA(G)) . (20)

Equality holds if and only if G is regular.

Proof. By the AM–GM inequality we have that

F (G) =
∑
i∼j

(d2i + d2j ) ≥
∑
i∼j

2didj = 2M2(G) .

The inequality (20) is obtained from the above and (15).

Corollary 4.5. Let G be a connected graph and ∆ be its maximum vertex degree. Then

SO(G) ≤
√

∆M1(G)(2AG(G)−GA(G)) .

Equality holds if and only if G is regular.

Proof. The following is valid

F (G) =

n∑
i=1

d3i ≤ ∆

n∑
i=1

d2i = ∆M1(G) .

From the above and inequality (20) we obtain the required result.
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The following inequality was proven in [24] for the real number sequences.

Lemma 4.2. [24] Let p = (pi), i = 1, 2, . . . , n be a sequence of non–negative real numbers and a = (ai), i = 1, 2, . . . , n,
positive real number sequence.Then, for any real r, r ≤ 0 or r ≥ 1, holds(

n∑
i=1

pi

)r−1 n∑
i=1

pia
r
i ≥

(
n∑
i=1

piai

)r
. (21)

When 0 ≤ r ≤ 1 the opposite inequality is valid.
Equality holds if and only if either r = 0, or r = 1, or a1 = a2 = · · · = an, or p1 = p2 = · · · = pt = 0 and at+1 = · · · = an,

for some t, 1 ≤ t ≤ n− 1.

In the next theorem we determine a relationship between SO(G) and ID(G), F (G) and M2(G).

Theorem 4.6. Let G be a connected graph. Then

SO(G) ≤ 4
√
ID(G)F (G)M2(G)2 . (22)

Equality holds if and only if G is an edge-regular graph.

Proof. For r = 2, pi := d2i + d2j , ai := 1
didj

, with summation performed over all pairs of adjacent vertices vi and vj in G, the
inequality (21) becomes ∑

i∼j
(d2i + d2j )

∑
i∼j

d2i + d2j
(didj)2

≥

∑
i∼j

d2i + d2j
didj

2

,

that is

ID(G)F (G) ≥

∑
i∼j

d2i + d2j
didj

2

. (23)

On the other hand, for r = 1, xi :=
√
d2i + d2j , ai := didj , with summation performed over all pairs of adjacent vertices vi

and vj in G, the inequality (8) becomes

∑
i∼j

d2i + d2j
didj

=
∑
i∼j

(√
d2i + d2j

)2
didj

≥

(∑
i∼j

√
d2i + d2j

)2
∑
i∼j didj

,

that is ∑
i∼j

d2i + d2j
didj

≥ SO(G)2

M2(G)
. (24)

Now, from (23) and (24) we arrive at (22).
Equality in (23) holds if and only if didj is constant for any pairs of adjacent vertices vi and vj in G. Suppose that

vertices vj and vk are adjacent to vi. In that case, we have that didj = didk, that is dj = dk. This means that equality
(23) holds if and only if G is an edge-regular graph. Equality in (24) holds if and only if

√
d2i+d

2
j

didj
is constant for any pair of

adjacent vertices vi and vj in G. Suppose that vertices vj and vk are adjacent to vi. In that case holds
√
d2i+d

2
j

didj
=

√
d2i+d

2
k

didk
,

that is dj = dk. This means that equality in (24) holds if and only if G is an edge-regular graph, which means that equality
in (22) holds if and only if G is an edge-regular graph.

One can easily verify that from (24) the inequality

SO(G) ≤
√
M2(G)SDD(G) ,

(which was proven in [31]) follows.

Corollary 4.6. Let G be a connected graph. Then

SO(G) ≤ 4

√
1

4
ID(G)F (G)3 .

Equality holds if and only if G is regular.
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Theorem 4.7. Let G be a connected graph. Then

SO(G) ≥
√
M1(G)2 +Alb(G)2

2
. (25)

Equality holds if and only if G is an edge-regular graph.

Proof. The following identities are valid

SO(G)−
∑
i∼j

2didj√
d2i + d2j

=
∑
i∼j

(di − dj)2√
d2i + d2j

,

and
SO(G) +

∑
i∼j

2didj√
d2i + d2j

=
∑
i∼j

(di + dj)
2√

d2i + d2j

.

Taking r = 1, xi := |di − dj |, and ai :=
√
d2i + d2j in inequality (8) with summation performed over all pairs of adjacent

vertices vi and vj in G, we obtain

SO(G)−
∑
i∼j

2didj√
d2i + d2j

≥ Alb(G)2

SO(G)
.

Similarly, taking r = 1, xi := di + dj , and ai :=
√
d2i + d2j in inequality (8) with summation performed over all pairs of

adjacent vertices vi and vj in G,we obtain

SO(G) +
∑
i∼j

2didj√
d2i + d2j

≥ M1(G)2

SO(G)
.

From the above inequalities we obtain the assertion of the Theorem 4.7.

Corollary 4.7. Let G be a connected graph. Then

SO(G) ≥
√

2

2
M1(G) . (26)

Equality holds if and only if G is regular.

Proof. Since Alb(G)2 ≥ 0, the inequality (26) is obtained from (25).

The inequality (26) was proven in [15,31] (see also [19]). By a similar arguments, the following results can be proven.

Theorem 4.8. Let G be a graph with m ≥ 1 edges. Then

SOred(G) ≥
√

(M1(G)− 2m)2 +Alb(G)2

2
.

Equality holds if and only if G is an edge-regular graph.

Theorem 4.9. Let G be a connected graph with n ≥ 2 vertices and m edges. Then

SOavr(G) ≥

√(
M1(G)− 4m2

n

)2
+Alb(G)2

2
.

Equality holds if and only if G is an edge-regular graph.

From Theorems 4.8 and 4.9 we have the following corollaries.

Corollary 4.8. Let G be a graph with m ≥ 1 edges. Then

SOred(G) ≥
√

2

2
(M1(G)− 2m) . (27)

Equality holds if and only if G is regular or each of its components is regular.

Corollary 4.9. Let G be a connected graph with n ≥ 2 vertices and m edges. Then

SOavr(G) ≥
√

2

2

(
M1(G)− 4m2

n

)
. (28)

Equality holds if and only if G is regular.

Inequalities (27) and (28) were proven in [31] (see also [19]).
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