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Abstract

For motion constrained to a two-dimensional surface in three-dimensional Euclidean space, motion with respect to intrinsic
geometry is quantized. The case of the helicoid is investigated here which is a minimal surface. It is shown how quantization
can be carried out by including a geometrically induced potential and correction in the Hamiltonian.
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1. Introduction

The study of quantum motion on a two-dimensional curved surface has been a subject of interest recently. The motion
of a particle in a one or two-dimensional subset of Cartesian three-dimensional space is a problem which has come down
by way of classical mechanics. It is often treated by means of the Newtonian approach as moving freely but subjected to
spatial forces its velocity along a particular set of directions. There is also the Lagrangian approach in which the constraint
is introduced from the beginning through generalized coordinates [1, 7, 10]. The standard parametrization r(q1, q2) of a
two-dimensional surface is given by

r(q1, q2) = (x(q1, q2), y(q1, q2), z(q1, q2)). (1)

In (1), (q1, q2) is denoted qµ where µ = 1, 2 and rµ = gµνrν = gµν ∂νr = gµν∂r/∂qν . The metric tensor is given as gµν = ∂µr ·
∂νr. At r the normal vector is n = (nx, ny, nz) and Mn denotes the mean curvature vector field. There exist two geometric
invariants at r. There is the mean curvature M and along with this, the gaussian curvature K. These respectively
characterize the extrinsic and intrinsic curvature.

The objective here is to look at one problem quantum mechanically, and to do this, it should be possible to produce
a Hamiltonian [5, 11, 12, 14]. A procedure has been proposed by de Witt [9] which requires the quantum kinetic energy
operator be proportional to the Laplace-Beltrami operator ∆LB for the surface

Tk = − ~2

2m
∆LB . (2)

A two-dimensional surface can be more realistically considered as a three-dimensional shell whose thickness is negli-
gible in comparison with the dimensions of the entire system. There are two methods for calculating on this surface. First
thinking of the surface as a limiting case of a curved shell or uniform thickness δ, where the limit δ → 0 is considered.
The second method is referred to as the confining procedure for studying motion on a two-dimensional surface embedded
in three dimensions.

It was da Costa [8] who considered the motion of a particle rigidly bound to a surface and showed that a part of the
Hamiltonian should result from a geometrically induced potential. The confining procedure is applied to the momentum
operator P = −i~∇ and it is found that the resultant momentum on the surface with normal vector n is

P = −i~
(
rµ∂µ +Mn

)
(3)

was put forward in 2007 by an entirely independent development of quantization of momentum on a two dimensional
surface embedded in three-dimensional flat space. This momentum corresponds to the so-called standard parametrization
of the two-dimensional surface. There was also found to be a geometrically induced confining potential which is given by
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Vg = − ~2

2m
(M2 −K), (4)

where K is the Gaussian curvature. For the helicoid, the curvature K is given by

K = − a2

(u2 + a2)2
.

Another approach is canonical quantization whose fundamental hypotheses are that the fundamental quantum conditions
between generalized coordinates xµ and momenta pν with µ = 1, 2, or Cartesian xi and pi preserve the same algebraic
structure as they do in classical mechanics.

To generalize the quantum conditions, the commutator is modified and introduced in the form

[A,B] = i~{A,B}D,

for any pair of quantities A and B, and {A,B}D is the Dirac bracket for a system which has second-class constraints. It
reduces to the usual Poisson bracket when the system is free of constraints. Some of the constraints may be superfluous,
and a good generalization would be to include some quantum conditions into the fundamental category, so an enlarged
canonical quantization procedure results and will be looked at here. The interaction of geometry and topology frequently
manifests itself in the form of unusual electronic and magnetic properties of materials. For example, for electrons confined
to a helicoid ribbon, potential (4) leads to the appearance of localized states at the rim of the helicoid [13].

There has recently appeared an example which seems to yield some inconsistencies in Dirac’s procedure when the
manifold is coordinatized intrinsically. It will be shown that this can be treated by including an additional contribution
to Vg. It might be thought of as quantum mechanical in origin, as a particle confined to a surface immersed in three-
dimensional space should be subjected to uncertainty relations normal or off the surface penetrating the ambient space.
It also may account for why Dirac thought his procedure best used in Cartesian coordinates, as these are not intrinsically
confined to the surface. So in three-dimensional Euclidean space, the Dirac procedure seems to be satisfactory [15].

2. Second-class constraints for the helicoid-classical case

The helicoid can be coordinatized by means of two local coordinates u ∈ (−∞,∞) and v ∈ (−∞,∞) accompanied by a real
parameter a which characterizes the pitch as

r(u, v) = (u cos v, u sin v, a v). (5)

First the classical mechanics is given for the motion on the helicoid within Dirac’s theory of second class constraints.
The quantum case is turned to next. In classical mechanics, the theory appears nothing surprising. However, after the
transition to quantum mechanics, it seems to become self-contradictory. The main contribution here is to explain or account
for this problem in physical terms.

The Lagrangian L in terms of local coordinates is given by

L =
1

2
m
(
v̇2(r2 + u2) + 2rṙ vv̇ + ṙ2v2 + u̇2

)
− λ (r − a). (6)

A Lagrange multiplier λ is used in (6) to enforce constrained motion on the surface. Moreover, λ can be treated as an
additional dynamical variable. The Lagrangian is singular because it does not contain the time derivative or velocity λ̇.
Dirac’s theory of quantization with constraints is required. The canonical momenta which are conjugate to r, u, v and λ
are calculated first,

pr =
∂L

∂ṙ
= mv(rv̇ + vṙ),

pu =
∂L

∂u̇
= mu̇,

pv =
∂L

∂v̇
= m(r2v̇ + rvṙ + u2 v̇) = m((r2 + u2)v̇ + rṙ v),

pλ =
∂H

∂λ̇
= 0.

(7)

The final equation in (7) generates the primary constraint

ϕ1 = pλ ≡ 0.
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Solving this system of equations for the variables ṙ, u̇ and v̇, we obtain

ṙ =
1

mu2v2
(pru

2 − rvpv + r2pr), u̇ =
pu
m
, v̇ =

1

mu2v
(vpv − rpr). (8)

The primary Hamiltonian is then obtained from L and (8) as

H = Hp = ṙpr + v̇pv + u̇pu − L

=
1

2mu2v2
[
(r2 + u2)p2r − 2rv pr pv + (p2v + u2p2u) v2

]
+ λ(r − a) + η pλ.

The variable η is also a Lagrange multiplier which guarantees that this Hamiltonian is defined on the symplectic manifold.
The Poisson bracket {f, g} is defined as follows

{f, g} =
∂f

∂qk

∂g

∂pk
+
∂f

∂λ

∂g

∂pλ
−
(
∂f

∂pk

∂g

∂qk
+

∂f

∂pλ

∂g

∂λ

)
.

To compute Poisson brackets, let us suppose q1 = r, q2 = u, q3 = v and p1 = pr, p2 = pu and p3 = pv.
The complete system of secondary constraints can now be determined to be

ϕ2 = {ϕ1, H} = {pλ, H} = a− r ≈ 0,

ϕ3 = {ϕ2, H} = {a− r,H} =
∂

∂r
(a− r)∂H

∂pr
= − 1

2mu2v2
(
(
2(r2 + u2)pr − 2rvpv

)
≈ 0,

ϕ4 = {ϕ3, H} =
r2 + u2

mu2v2
λ+ 2

(pvv − prr)(pr(r2 + u2)− ruv2 pu − rv pv)
m2u4v4

≈ 0.

The ≈ means to vanish as a constraint, or weak equality. It defines a subspace in phase space and can be set to zero after
all brackets have been worked out. Solving the constraints ϕ3 ≈ 0 and ϕ4 ≈ 0 on the constraint surface for the variables pr
and λ, it follows that

pr =
rv

r2 + u2
pv,

λ = 2
(prr − pvv)(prr

2 + pru
2 − pvrv − puru v2)

mu2r2(r2 + u2)
=

2ruv

m(r2 + u2)2
pupv.

These results show that on the surface of the helicoid r = a the dynamical variable λ is determined. By the conservation
condition of the secondary constraint ϕ4, the Lagrange multiplier η can be determined.

The Dirac bracket is defined for the two variables A and B in terms of their Poisson bracket as follows

{A,B}D = {A,B} − {A,ϕα}C−1αβ {ϕβ , B}, (9)

The 4 × 4 matrix C = (Cαβ) has matrix elements which are defined in terms of the ϕα to be as Cαβ = {ϕα, ϕβ} with
α, β = 1, . . . , 4, or explicitly as

C =


0 C12 C13 C14

C21 0 C23 C24

C31 C32 0 C34

C41 C42 C43 0

 (10)

The matrix elements in (10) are given be

C12 = {ϕ1, ϕ2} = {pλ, a− r} = 0, C13 = {pλ, ϕ3} = 0,

C14 = {pλ, ϕ4} = −r
2 + u2

mu2v2
, C23 =

r2 + u2

mu2v2
,

C24 = −2
r2v pu + upv
m2u3v3

, C34 = 2
2u2r2pu + 2uvr2pv + 3r4pu − u4pu

m3u3v3 (r2 + u2)2
pv.

The inverse matrix C−1 is required to evaluate the Dirac bracket (9), and it is given by

C−1 =


0 C−112 C−113 C−114

−C−112 0 C−123 0

−C−113 −C−123 0 0

−C−114 0 0 0
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The matrix elements for matrix C−1 will appear explicitly when the inverse of the matrix C is calculated. The following
matrix elements are found

C−112 =
2uvpv(3a

4pu + 2a2u(upu + vpv)− u4pu)

m(u2 + a2)4
,

C−123 =
2uv(a2vpu + upv)

(u2 + a2)2
,

C−114 = −C−123 =
mu2v2

u2 + a2
.

Therefore, the generalized positions qµ = (u, v) and momenta pν = (pu, pv) satisfy the following Dirac brackets,

{qµ, qν}D = 0, {pµ, pν}D = 0, {qµ, pν}D = δµν .

Explicitly for example, these can be verified in the following way,

{u, v}D = −{u, ϕα}C−1αβ {ϕβ , v} = −∂ϕα
∂pu

C−143

∂ϕ3

∂pv
= 0,

{pu, pv}D = −{pu, ϕα}C−1αβ {ϕβ , pv} = −{pu, ϕ3}C−134 {ϕ4, p4} − {pu, ϕ4}C−143 {ϕ3, p} = 0,

{u, pu}D = −{u, pu} − {u, ϕα}C−1αβ {ϕβ , pu} = {u, pu} − {u, ϕ4}C−143 {ϕ3, pu} = 1.

Using the general form of the equation of motion for the variable f ,

ḟ = {f,H}D,

the equations of motion for the position variables u, v and their associated momenta pu, pv can be determined in the fol-
lowing way. The usual Hamiltonian H can be obtained from Hp by substituting the expression for pr into Hp and applying
the constraints. The usual form of the Hamiltonian is given by

H =
1

2m

(
p2u +

p2v
u2 + a2

)
.

It can be seen that the Dirac theory for the classical motion on the helicoid is complete and consistent in itself.
Therefore, the brackets are found to yield the following equations of motion,

u̇ = {u,H}D = {u,H} − {u, ϕ4}C−14β {ϕβ , H} =
pu
m
,

v̇ = {v,H}D = {v,H} − {v, ϕα}C−1αβ {ϕβ , H} =
pv

m(u2 + a2)
,

ṗu = {pu, H}D = {pu, H} − {pu, ϕα}C−1αβ {ϕβ , H} =
u

m(u2 + a2)2
p2v,

ṗv = {pv, H}D = 0.

3. Quantum case

This system can now be studied from the quantum point of view. It is necessary to construct a quantum Hamiltonian. To
this end one approach is to calculate the Laplace-Beltrami operator by calculating a metric for the surface and using it to
calculate

∆LBφ =
1
√
g

∂

∂qi

[
√
ggij

∂φ

∂qi

]
. (11)

In (11), (gij) are the components of the metric on the surface, (gij) its inverse and g = det(gij). The physical Tk follows from
(5) by using (2). Starting with the component representation of the helicoid, r(u, v) = (u cos(v), u sin(v), a v), the metric is

gij =

1 0

0 u2 + a2


Clearly det(g) = u2 + a2. The desired operator is found to be

∆LBφ =
1√

u2 + a2

[
∂2

∂u

√
u2 + a2

∂φ

∂u
+

∂

∂v

√
u2 + a2

1

u2 + a2
∂φ

∂v

]
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=
∂2φ

∂u2
+

u

u2 + a2
∂φ

∂u
+

1

u2 + a2
∂2φ

∂v2
.

It can also be determined by finding the geometric momenta on the surface from (3). Since the helicoid is a minimal surface
M = 0 and we find

P̂1 = −i~
(

cos v
∂

∂u
− u

u2 + a2
sin v

∂

∂v

)
,

P̂2 = −i~
(

sin v
∂

∂u
+

u

u2 + a2
cos v

∂

∂v

)
, (12)

P̂3 = −i~ a2

u2 + a2
∂

∂v
.

The Hamiltonian is calculated based on the results of (12) and it is

Tk = − ~2

2m

(
∂2

∂u2
+

u

u2 + a2
∂

∂u
+

1

u2 + a2
∂2

∂v2

)
.

Another way to get this is to begin with the more general metric

g = (r2 + a2)dv ⊗ dv + rv dr ⊗ dv + rv dv ⊗ dr + v2dr ⊗ dr + du⊗ du.

It is required to determine three linearly independent Killing vector fields for this metric. This means the Lie derivative of
the metric with respect to the vector field must vanish. To carry this out, let X be a vector field with unknown coefficients
f, h, k which depend on the coordinates r, u, v

X = f
∂

∂r
+ h

∂

∂u
+ k

∂

∂v
= fe1 + he2 + ke3.

This also serves to define the basis set {e1, e2, e3} = {∂/∂r, ∂/∂u, ∂/∂v}. These three functions are determined by requiring
that the Lie derivative of the metric vanish

LX g = 0.

After a calculation [4] a coupled system of six partial differential equations is obtained for these functions from (12). Solving
the system and assigning the integration constants the following Noether momenta vector fields result

Pn1 = − r

uv
cos ve1 + sin v e2 +

1

u
cos ve3, Pn2 =

r

uv
sin ve1 + cos v e2 −

1

u
sin v e3,

Pn3 =
1

v
e1. (13)

The same notation is used as above since the results will be identical. To transform this to the constrained system, in
which r = a is applied, note that the classical momenta pr and pv are related as

pr =
rv

u2 + r2
pv, r = a.

Putting the constraints in (13), the Pni in (13) take the form

P1 = sin ve2 +
u

u2 + a2
cos ve3 P2 = cos ve2 −

u

u2 + a2
sin ve3, P3 =

a

a2 + u2
e3.

Identifying these as operators, the quantum momenta result,

P̂1 = −i~
(

sin v
∂

∂u
+

u

u2 + a2
cos v

∂

∂v

)
,

P̂2 = −i~
(

cos v
∂

∂u
− u

u2 + a2
sin v

∂

∂v

)
,

P̂3 = −i~ a

u2 + a2
∂

∂v
.

(14)

The results in (10) are identical with the results given in (12). Combining momenta (14) leads to the same kinetic Hamil-
tonian

Tk = − ~2

2m

(
∂2

∂u2
+

u

u2 + a2
∂

∂u
+

1

u2 + a2
∂2

∂v2

)
. (15)
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The total Hamiltonian is now formed by including the geometrically induced potential and any other correction terms along
with (15) [2,3]. This potential is denoted U(u, v) depending just on the coordinates u, v and the total Hamiltonian is given
by

H = − ~2

2m

(
∂2

∂u2
+

u

u2 + a2
∂

∂u
+

1

u2 + a2
∂2

∂v2
+ U(u, v)

)
. (16)

To study the quantum equations of motion now, it is required that the Dirac bracket be replaced by a commutator
bracket multiplied by i/~ as here

Q̇ =
i

~
[H,Q].

From the Dirac brackets the fundamental commutator are given as follows

[qµ, qν ] = 0, [pµ, pν ] = 0, [qµ, pν ] = i~ δµν .

Using Hamiltonian (16), the quantum equations for u and v take the form

[u,H] = i
~
m
pu, [v,H] = i

~
m

pv
u2 + a2

.

Using H given by (16), it is found that [6]

[u,H] =
~2

m

(
∂

∂u
+

u

2(u2 + a2)

)
= i

~
m
pu, [v,H] =

~2

m

(
1

u2 + a2
∂

∂v

)
= i

~
m

pv
u2 + a2

.

This gives a explicit form for the operators pu and pv

pu = −i~
(
∂

∂u
+

u

2(u2 + a2)

)
, pv = −i~ ∂

∂v
. (17)

Finally, we can calculate directly the two quantum commutator [pu, H] and [pv, H] with this Hamiltonian with the following
results

[pu, H] = i~{pu, H}D, [pv, H] = 0,

provided the potential function U(u, v) in H is taken to have the form

U(u, v) =
2a2 − u2

4(u2 + a2)2
= K +

6a2 − u2

4(u2 + a2)2
.

It is also the case that if momenta (17) to construct a Hamiltonian, the result from (16) is recovered.

4. Conclusions

The behavior of quantum systems constrained to move on a surface has been of interest to study for some time. Also,
the topic of quantum mechanics in curved space has been looked at via different methods such as canonical quantization,
path integral method and Dirac approach. An investigation of the quantum motion of a particle on the helicoid has been
carried out here. On a curved surface no exact Cartesian coordinate system within intrinsic geometry is present. In
effect, an enlarged canonical quantization procedure has been proposed in which positions, momenta and Hamiltonian are
simultaneously quantized. It has been proposed that an inconsistency within Dirac theory occurs and it has been proposed
that this can be accounted for by means of quantum correction to the surface. Future work might be to see if these results
can be attained another way such as by using string theory, or whether this kind of calculation can be fitted in to drive a
string theory calculation. It remains to see whether this modified potential can better account for experimental results.
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