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Abstract
The reduced second Zagreb index RM2(G) of a graph G is defined as RM2(G) =

∑
uv∈E(G)(dG(u) − 1)(dG(v) − 1), where

dG(u) and dG(v) are the degrees of vertices u and v, respectively. The exponential reduced second Zagreb index eRM2(G) of G
is defined as eRM2(G) =

∑
uv∈E(G) e

(dG(u)−1)(dG(v)−1). In this paper, we determine the minimum and maximum exponential
reduced second Zagreb index of (chemical) trees, and characterize the corresponding extremal graphs.
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1. Introduction

Chemical graph theory is a branch of mathematical chemistry. In chemical graph theory, graphs are used to represent
compounds, in which vertices represent atoms and edges represent covalent bonds between atoms. In order to describe
the structural properties of various molecules, mathematical chemists have introduced a variety of molecular descriptors
(or topological indices). Topological indices are the numerical invariants that describe the structural characteristics of
molecules. They are often used for the development of QSAR (Quantitative Structure-Activity Relationships) and QSPR
(Quantitative Structure-Property Relationships). In recent years, topological indices have been widely used in the research
of complex networks, such as biological networks, communication networks and social networks.

Let G = (V (G), E(G)) be a simple connected graph with its vertex set V (G) and edge set E(G). For a vertex u ∈ V (G),
the degree of u, denoted by dG(u) (or simply d(u)), is the number of vertices adjacent to u. Let r-vertex be a vertex of
degree r. A tree having maximum vertex degree at most 4 is called a molecular tree or chemical tree. Denote by Tn
(respectively, Cn) the set of trees (respectively, chemical trees) with n vertices. Throughout this paper, undefined notations
and terminologies can be found in [4].

The first Zagreb index (M1) and the second Zagreb index (M2) are among the most famous topological indices, and they
are defined [16] as

M1(G) =
∑

v∈V (G)

(dG(u))
2,

M2(G) =
∑

uv∈E(G)

dG(u)dG(v).

For details about M1 and M2, see [1–3,12,14,15,19,22,24].
The reduced second Zagreb index RM2(G) of graph G is defined [17] as

RM2(G) =
∑

uv∈E(G)

(dG(u)− 1)(dG(v)− 1).

For details about RM2, see [5,18,20,21,26].
Recently, Rada [23] introduced the concept of exponential topological indices. Naturally, the exponential reduced second

Zagreb index of graph G can be defined as

eRM2(G) =
∑

uv∈E(G)

e(dG(u)−1)(dG(v)−1).
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Recently, the study of exponential topological indices caught some scholars’ eyes. Cruz et al. [8,11] obtained extremal values
of some exponential topological indices over trees and chemical trees. The same authors [9] determined the maximum ABC
index and minimum exponential GA index of chemical trees. They [10] also obtained maximum exponential Randić index
of trees. Zeng et al. [27] solved an open problem proposed by Cruz and Rada [11]; they showed that exponential second
Zagreb index attains its maximum value for the balanced double star among trees. Some other recent investigations on
this topic can be found in [6,7].

Motivated by the papers [6,13,27], we determine the minimum and maximum exponential reduced second Zagreb index
of (chemical) trees, and characterize the extremal (chemical) trees.

In Section 2, we investigate (chemical) trees with the minimum exponential reduced second Zagreb index. Chemical
trees with the maximum exponential reduced second Zagreb index are investigated in Section 3. In Section 4, we investigate
trees with the maximum exponential reduced second Zagreb index and in Section 5 we conclude this paper.

2. (Chemical) Trees with the minimum exponential reduced second Zagreb index

In the following, we consider (chemical) trees with the minimum exponential reduced second Zagreb index. Note that

eRM2(T ) =
∑

uv∈E(T )

e(dT (u)−1)(dT (v)−1) ≥
∑

uv∈E(T )

e0 = 2(n− 1),

with equality if and only if T ∼= Sn. Therefore, the star tree Sn has the minimum exponential reduced second Zagreb index
among Tn. Next, we only consider trees T � Sn.

Figure 1: Transformations used in the proof of Theorem 2.1.

Theorem 2.1. Let T ∈ Tn such that T � Sn. Then, eRM2(T ) ≥ eRM2(Pn) with equality if and only if T ∼= Pn.

Proof. Suppose that T ∈ Tn \ {Sn} is the minimal tree with respect to the exponential reduced second Zagreb index and
let v0v1v2, · · · , vl−1vl (l ≥ 3) be one of the longest paths in T . If T ∼= Pn then the conclusion holds. If T � Pn then there is a
vertex of the longest path with neighbors not in the path. Without loss of generality, let i be the smallest index such that
vi has a neighbor not in the longest path. Let di = d(vi) for convenience.

Case 1: i ≥ 2.
Suppose that NT (vi) = {vi−1, vi+1, vi1 , vi2 · · · , vidi−2

}. Let

T ∗ = T − {vivi1 , vivi2 , · · · , vividi−2
}+ {vi−1vi1 , vi−1vi2 , · · · , vi−1vidi−2

},

see Figure 1(a). Note that di−2 ≤ di−1 = 2, di+1 ≥ 2, di ≥ 3. Then

eRM2(T ∗)− eRM2(T ) =
{
e(di−1)(di−1−1) + e(di−1)(di−2−1) + e(di−1−1)(di+1−1)

}
−
{
e(di−1)(di−1−1) + e(di−1)(di+1−1) + e(di−2−1)(di−1−1)

}
=
{
edi+1−1 − edi−2−1

}
−
{
e(di−1)(di+1−1) − e(di−1)(di−2−1)

}
< 0.
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Case 2: i = 1.
Suppose that NT (v1) = {v0, v2, v11

, v12
· · · , v1d1−2

}. Let T ∗∗ = T − {v1v11
, v1v12

, · · · , v1v1d1−2
} + {v0v11

, v0v12
, · · · , v0v1d1−2

},
see Figure 1(b). Note that di−2 ≤ di−1 = 2, di+1 ≥ 2, and di ≥ 3. Then,

eRM2(T ∗∗)− eRM2(T ) =
{
(d1 − 2)e0 + ed1−2 + ed2−1

}
−
{
(d1 − 1)e0 + e(d1−1)(d2−1)

}
= ed1−2 + ed2−1 − e(d1−1)(d2−1) − 1.

Subcase 2.1: d2 = 2.

eRM2(T ∗∗)− eRM2(T ) = ed1−2 + ed2−1 − e(d1−1)(d2−1) − 1

< 2ed1−2 − ed1−1

< 0.

Subcase 2.2: d2 ≥ 3.
Suppose that d1 ≥ d2. Since d1 ≥ 3 and d2 ≥ 3, it holds that

eRM2(T ∗∗)− eRM2(T ) = ed1−2 + ed2−1 − e(d1−1)(d2−1) − 1

< ed1−1 + ed2−1 − e(d1−1)(d2−1)

≤ 2ed1−1 − e(d1−1)(d2−1)

< 2ed1−1 − e2(d1−1)

< 0.

For T ∈ Tn \ {Sn}, by using the transformations (a) and (b) of Figure 1 over and over again, we can finally obtain Pn.
Thus, eRM2(T ) ≥ eRM2(Pn) with equality if and only if T ∼= Pn.

By Theorem 2.1, we derive the following conclusion.

Corollary 2.1. Let T ∈ Cn (n ≥ 6). Then eRM2(T ) ≥ eRM2(Pn) with equality if and only if T ∼= Pn.

3. Chemical trees with the maximum exponential reduced second Zagreb index

In this section, we find the maximal chemical trees with respect to the exponential reduced second Zagreb index. These
structures have some particular properties: (i) The number of 2-vertices is at most 1; (ii) The number of 3-vertices is at
most 1; (iii) There do not exist both the 2-vertex and 3-vertex simultaneously. Denote by (n1, n2, n3, n4) the sequence of
T ∈ Cn such that ni is the number of vertices of T with degree i (1 ≤ i ≤ 4). It is obvious that ex+t − ex > ey+t − ey if x > y

and t > 0. This property will be frequently used in the upcoming lemmas.

Figure 2: Transformation A used in Lemma 3.1.

Transformation A. Suppose that T ∈ Cn (n ≥ 5), and dT (u) = dT (v) = 2, NT (u) = {u1, u2}, NT (v) = {v1, v2}, dT (v1) ≥
dT (u1). Without loss of generality, we assume that the path between u and v contains u1 and v1. Note that if the path
between u and v only has one edge, then u = v1 and v = u1. Let T ∗ = T − uu2 + vu2. These chemical trees are illustrated
in Figure 2.

Lemma 3.1. Let T ∈ Cn and T ∗ ∈ Cn (n ≥ 5) as shown in Figure 2. Then eRM2(T ∗) > eRM2(T ).

Proof. We proceed with the following two cases.
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Case 1: uv /∈ E(T ).
According to the definition of the exponential reduced second Zagreb index, we have

eRM2(T ∗)− eRM2(T ) =
{
e(dT∗ (v)−1)(dT∗ (u2)−1) + e(dT∗ (v)−1)(dT∗ (v2)−1) + e(dT∗ (v)−1)(dT∗ (v1)−1) + e(dT∗ (u)−1)(dT∗ (u1)−1)

}
−
{
e(dT (u)−1)(dT (u2)−1) + e(dT (v)−1)(dT (v2)−1) + e(dT (v)−1)(dT (v1)−1) + e(dT (u)−1)(dT (u1)−1)

}
=
{
e2(dT (u2)−1) + e2(dT (v2)−1) + e2(dT (v1)−1) + e0

}
−
{
e(dT (u2)−1) + e(dT (v2)−1) + e(dT (v1)−1) + e(dT (u1)−1)

}
≥
{
e2dT (v1)−2 − edT (v1)−1

}
−
{
edT (u1)−1 − e0

}
≥
{
edT (u1)−1+dT (v1)−1 − edT (v1)−1

}
−
{
edT (u1)−1 − e0

}
> 0.

Case 2: uv ∈ E(T ).
Since n ≥ 5, we have min{dT (u2), dT (v2)} ≥ 2. Without loss of generality, we assume that dT (v2) ≥ 2. Then,

eRM2(T ∗)− eRM2(T ) =
{
e(dT∗ (v)−1)(dT∗ (v2)−1) + e(dT∗ (v)−1)(dT∗ (u2)−1) + e(dT∗ (v)−1)(dT∗ (u)−1)

}
−
{
e(dT (v)−1)(dT (v2)−1) + e(dT (u)−1)(dT (u2)−1) + e(dT (u)−1)(dT (v)−1)

}
=
{
e2(dT (v2)−1) + e2(dT (u2)−1) + e0

}
−
{
e(dT (v2)−1) + e(dT (u2)−1) + e1

}
≥
{
e2dT (v2)−2 − edT (v2)−1

}
−
{
e1 − e0

}
≥
{
edT (v2) − edT (v2)−1

}
−
{
e1 − e0

}
> 0.

From Lemma 3.1, we know that the number of 2-vertices of chemical trees with the maximum exponential reduced
second Zagreb index is at most 1.

Figure 3: Transformation B used in Lemma 3.2.

Transformation B. Suppose that T ∈ Cn (n ≥ 7) and dT (u) = dT (v) = 3, NT (u) = {u1, u2, u3}, NT (v) = {v1, v2, v3}.
Without loss of generality, we assume that the path between u and v contains u1 and v1. Note that if the path between u

and v has only one edge, then u = v1 and v = u1. Let T ∗ = T − uu2 + vu2. These chemical trees are shown in Figure 3.

Lemma 3.2. Let T ∈ Cn and T ∗ ∈ Cn (n ≥ 7) as shown in Figure 3. Then, eRM2(T ∗) > eRM2(T ).

Proof. We proceed by the following two cases.

Case 1: uv /∈ E(T ).
Without loss of generality, we assume that dT (u1) ≤ dT (v1) and dT (u3) ≤ dT (u2), then

eRM2(T ∗)− eRM2(T ) =
{
e(dT∗ (u)−1)(dT∗ (u3)−1) + e(dT∗ (u)−1)(dT∗ (u1)−1) + e(dT∗ (v)−1)(dT∗ (v1)−1) + e(dT∗ (v)−1)(dT∗ (v3)−1)

+e(dT∗ (v)−1)(dT∗ (v2)−1) + e(dT∗ (v)−1)(dT∗ (u2)−1)
}
−
{
e(dT (u)−1)(dT (u2)−1) + e(dT (u)−1)(dT (u3)−1)

+e(dT (u)−1)(dT (u1)−1) + e(dT (v)−1)(dT (v1)−1) + e(dT (v)−1)(dT (v2)−1) + e(dT (v)−1)(dT (v3)−1)
}

=
{
e(dT (u3)−1) + e(dT (u1)−1) + e3(dT (v1)−1) + e3(dT (u2)−1) + e3(dT (v2)−1) + e3(dT (v3)−1)

}
−
{
e2(dT (u2)−1) + e2(dT (u3)−1) + e2(dT (u1)−1) + e2(dT (v1)−1) + e2(dT (v2)−1) + e2(dT (v3)−1)

}
≥
{
e3dT (v1)−3 − e2dT (v1)−2

}
+
{
e3dT (u2)−3 − e2dT (u2)−2

}
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+
{
edT (u1)−1 − e2dT (u1)−2

}
+
{
edT (u3)−1 − e2dT (u3)−2

}
≥
{
e2dT (v1)−2+dT (u1)−1 − e2dT (v1)−2

}
−
{
e2dT (u1)−2 − edT (u1)−1

}
+
{
e2dT (u2)−2+dT (u3)−1 − e2dT (u2)−2

}
−
{
e2dT (u3)−2 − edT (u3)−1

}
> 0.

Case 2: uv ∈ E(T ).
Without loss of generality, we assume max{dT (u2), dT (u3), dT (v2), dT (v3)} = dT (v3), then dT (v3) ≥ 2 (since n ≥ 7). Also,
assume that dT (u3) ≤ dT (u2).

Subcase 2.1: dT (v3) ≥ 3.

eRM2(T ∗)− eRM2(T ) =
{
e(dT∗ (u)−1)(dT∗ (u3)−1) + e(dT∗ (v)−1)(dT∗ (u)−1) + e(dT∗ (v)−1)(dT∗ (u2)−1) + e(dT∗ (v)−1)(dT∗ (v2)−1)

+e(dT∗ (v)−1)(dT∗ (v3)−1)
}
−
{
e(dT (u)−1)(dT (u2)−1) + e(dT (u)−1)(dT (u3)−1) + e(dT (u)−1)(dT (v)−1)

+e(dT (v)−1)(dT (v2)−1) + e(dT (v)−1)(dT (v3)−1)
}

=
{
e(dT (u3)−1) + e3 + e3(dT (u2)−1) + e3(dT (v2)−1) + e3(dT (v3)−1)

}
−
{
e2(dT (u2)−1) + e4 + e2(dT (u3)−1) + e2(dT (v2)−1) + e2(dT (v3)−1)

}
≥
{
e3dT (v3)−3 − e2dT (v3)−2

}
−
{
e4 − e3

}
+
{
e3dT (u3)−3 − e2dT (u2)−2

}
−
{
e2dT (u3)−2 − edT (u3)−1

}
≥
{
e2dT (v3)−1 − e2dT (v3)−2

}
−
{
e4 − e3

}
+
{
edT (u3)−1+2dT (u2)−2 − e2dT (u2)−2

}
−
{
e2dT (u3)−2 − edT (u3)−1

}
> 0.

Subcase 2.2: dT (v3) = 2.
Since dT (v3) = 2, let NT (v3) = {v, v4}. Let T ∗∗ = T − {v3v4}+ {vv4}. Then

eRM2(T ∗∗)− eRM2(T ) =
{
e(dT∗ (v)−1)(dT∗ (u)−1) + e(dT∗ (v)−1)(dT∗ (v2)−1) + e(dT∗ (v)−1)(dT∗ (v3)−1) + e(dT∗ (v)−1)(dT∗ (v4)−1)

}
−
{
e(dT (v)−1)(dT (u)−1) + e(dT (v)−1)(dT (v2)−1) + e(dT (v)−1)(dT (v3)−1) + e(dT (v4)−1)(dT (v3)−1)

}
=
{
e6 + e3(dT (v2)−1) + e0 + e3(dT (v4)−1)

}
−
{
e4 + e2(dT (v2)−1) + e2 + e(dT (v4)−1)

}
≥
{
e6 − e4

}
−
{
e2 − e0

}
> 0.

By Lemma 3.2, we know that the number of 3-vertices of chemical trees with the maximum exponential reduced second
Zagreb index is at most 1.

Figure 4: Transformation C used in Lemma 3.3.

Transformation C. Suppose that T ∈ Cn (n ≥ 7) and dT (u) = 2, dT (v) = 3, NT (u) = {u1, u2}, NT (v) = {v1, v2, v3}. Without
loss of generality, we assume that the path between u and v contains u1 and v1. Note that if the path between u and v has
only one edge, then u = v1 and v = u1. Let T ∗ = T − uu2 + vu2. These chemical trees are illustrated in Figure 4.

Lemma 3.3. Let T ∈ Cn and T ∗ ∈ Cn (n ≥ 7) as shown in Figure 4. Then eRM2(T ∗) > eRM2(T ).

Proof. We consider the following two cases.
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Case 1: uv /∈ E(T ).
By Lemma 3.1 (Lemma 3.2, respectively), the number of 2-vertices (3-vertices, respectively) of chemical trees with the
maximum exponential reduced second Zagreb index is at most 1. Thus, dT (u1) = dT (v1) = 4. Then

eRM2(T ∗)− eRM2(T ) =
{
e(dT∗ (u)−1)(dT∗ (u1)−1) + e(dT∗ (v)−1)(dT∗ (v1)−1) + e(dT∗ (v)−1)(dT∗ (v2)−1) + e(dT∗ (v)−1)(dT∗ (v3)−1)

+e(dT∗ (v)−1)(dT∗ (u2)−1)
}
−
{
e(dT (u)−1)(dT (u1)−1) + e(dT (u)−1)(dT (u2)−1) + e(dT (v)−1)(dT (v1)−1)

+e(dT (v)−1)(dT (v2)−1) + e(dT (v)−1)(dT (v3)−1)
}

=
{
e0 + e9 + e3(dT (v2)−1) + e3(dT (v3)−1) + e3(dT (u2)−1)

}
−
{
e3 + e6 + e(dT (u2)−1) + e2(dT (v2)−1) + e2(dT (v3)−1)

}
≥
{
e9 − e6} − {e3 − e0

}
> 0.

Case 2: uv ∈ E(T ).
Since n ≥ 7, we have max{dT (u2), dT (v2), dT (v3)} ≥ 2. Without loss of generality, we assume that dT (v2) ≥ 2. By Lemma
3.1 (Lemma 3.2, respectively), the number of 2-vertices (3-vertices, respectively) of chemical trees with the maximum
exponential reduced second Zagreb index is at most 1. Thus dT (v2) = 4. Then

eRM2(T ∗)− eRM2(T ) =
{
e(dT∗ (v)−1)(dT∗ (u)−1) + e(dT∗ (v)−1)(dT∗ (u2)−1) + e(dT∗ (v)−1)(dT∗ (v2)−1) + e(dT∗ (v)−1)(dT∗ (v3)−1)

}
−
{
e(dT (u)−1)(dT (u2)−1) + e(dT (v)−1)(dT (u)−1) + e(dT (v)−1)(dT (v2)−1) + e(dT (v)−1)(dT (v3)−1)

}
=
{
e0 + e3(dT (u2)−1) + e3(dT (v2)−1) + e3(dT (v3)−1)

}
−
{
e2 + e(dT (u)−1) + e2(dT (v2)−1) + e2(dT (v3)−1)

}
≥
{
e9 − e6

}
−
{
e2 − e0

}
> 0.

By Lemma 3.3, we know that there do not exist both the 2-vertex and 3-vertex simultaneously in chemical trees with
the maximum exponential reduced second Zagreb index. By Lemma 3.1, if T ∈ Cn with the sequence (n1, n2, n3, n4), there
exists T ∗ ∈ Cn such that eRM2(T ∗) > eRM2(T ) where the sequence of T ∗ is(n1 + k, 0, n3 + k, n4) if n2 = 2k,

(n1 + k, 1, n3 + k, n4) if n2 = 2k + 1.

By Lemma 3.3, if T ∗ ∈ Cn with vertex sequence (n1 + k, 1, n3 + k, n4) (n3 + k ≥ 1) then by using Transformation C, there
exists T ∗∗ ∈ Cn such that eRM2(T ∗∗) > eRM2(T ∗), where the sequence of T ∗∗ is (n1 + k + 1, 0, n3 + k − 1, n4 + 1). Thus, we
have the following result.

Lemma 3.4. Let T ∈ Cn (n ≥ 7) with sequence (n1, n2, n3, n4), then there exists T ∗ ∈ Cn such that eRM2(T ∗) > eRM2(T ) where
T ∗ has the sequence (n1 +

n2

2 , 0, n3 +
n2

2 , n4) if n2 ≡ 0 (mod 2),

(n1 +
n2+1

2 , 0, n3 +
n2−3

2 , n4 + 1) if n2 ≡ 1 (mod 2).

If T ∈ Cn with the sequence (n1, 0, n3, n4) (n3 ≥ 2) then by Lemma 3.2, there exists T ∗ ∈ Cn with the sequence (n1, 1, n3−
2, n4+1) such that eRM2(T ∗) > eRM2(T ). If n3−2 ≥ 1, by Lemma 3.3, there exists T ∗∗ ∈ Cn with the sequence (n1+1, 0, n3−
3, n4 + 1) such that eRM2(T ∗∗) > eRM2(T ∗). Next, if n3 − 3 ≥ 2, by Lemma 3.2, there exists T ∗∗∗ ∈ Cn with the sequence
(n1 +1, 1, n3 − 5, n4 +2) such that eRM2(T ∗∗∗) > eRM2(T ∗∗). Thus, using Transformations A, B, and C, repeatedly, we have
the following result.

Lemma 3.5. Let T ∈ Cn (n ≥ 7) with the sequence (n1, 0, n3, n4), then there exists T ∗ ∈ Cn such that eRM2(T ∗) > eRM2(T )

where T ∗ has the sequence 
(n1 +

n3

3 , 0, 0, n4 +
2n3

3 ) if n3 ≡ 0 (mod 3),

(n1 +
n3−1

3 , 0, 1, n4 +
2n3−2

3 ) if n3 ≡ 1 (mod 3),

(n1 +
n3−2

3 , 1, 0, n4 +
2n3−1

3 ) if n3 ≡ 2 (mod 3).
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For a chemical tree, one knows that n = n1+n2+n3+n4 and 2(n−1) = n1+2n2+3n3+4n4. Thus, n = 2+n2+2n3+3n4.
By Lemma 3.4 and Lemma 3.5, we have the following result.

Lemma 3.6. Let T ∈ Cn (n ≥ 7) with the sequence (n1, n2, n3, n4), then there exists T ∗ ∈ Cn such that eRM2(T ∗) > eRM2(T )

where T ∗ has the sequence 
(n1, 1, 0, n4) if n ≡ 0 (mod 3),

(n1, 0, 1, n4) if n ≡ 1 (mod 3),

(n1, 0, 0, n4) if n ≡ 2 (mod 3).

In the following, we derive the maximum exponential reduced second Zagreb index of chemical tree Cn.

Theorem 3.1. Let T ∈ Cn (n ≥ 7), then

eRM2(T ) ≤


1
3 (n− 6)e9 + e3 + 2

3n if n ≡ 0 (mod 3),

1
3 (n− 7)e9 + e6 + 1

3 (2n+ 1) if n ≡ 1 (mod 3),

1
3 (n− 5)e9 + 1

3 (2n+ 2) if n ≡ 2 (mod 3).

Proof. If T ∈ Cn then

eRM2(T ) =
∑

uv∈E(T )

e(dT (u)−1)(dT (v)−1) = m12 +m13 +m14 +m22e+m23e
2 +m24e

3 +m33e
4 +m34e

6 +m44e
9.

Suppose that T ∗ ∈ Cn has the maximum exponential reduced second Zagreb index.

Case 1: n ≡ 0 (mod 3).
By Lemma 3.6, T ∗ has the sequence (n1, 1, 0, n4). Since n = 2+n2 +2n3 +3n4 and n = n1 +n2 +n3 +n4, we have n4 = n

3 −1

and n1 = 2n
3 . Since T ∗ has only one 2-vertex and has no 3-vertex, we proceed with the following two subcases.

Subcase 1.1: m12 = 0.
In this case, we have m24 = 2, m44 = n

3 − 3, m14 = 2n
3 and hence eRM2(T ∗) = m44e

9 +m24e
3 +m14 = 1

3 (n− 9)e9 + 2e3 + 2n
3 .

Subcase 1.2: m12 = 1.
We havem24 = 1, m44 = n

3−2, m12 = 1, m14 = 2n
3 −1which imply eRM2(T ∗) = m44e

9+m24e
3+m12+m14 = 1

3 (n−6)e
9+e3+ 2n

3 .

Case 2: n ≡ 1 (mod 3).
By Lemma 3.6, T ∗ has the sequence (n1, 0, 1, n4). Since n = 2+ n2 +2n3 +3n4 and n = n1 + n2 + n3 + n4, we have n4 = n−4

3

and n1 = 2n+1
3 . Since T ∗ has only one 3-vertex and has no 2-vertex, we can proceed with the following three subcases.

Subcase 2.1: m13 = 0.
Then m34 = 3, m14 = 2n+1

3 , m44 = n−13
3 and eRM2(T ∗) = m44e

9 +m34e
6 +m14 = 1

3 (n− 13)e9 + 3e6 + 1
3 (2n+ 1).

Subcase 2.2: m13 = 1.
Then m34 = 2, m44 = 1

3 (n− 10), m13 = 1, m14 = 1
3 (2n− 2) and

eRM2(T ∗) = m44e
9 +m34e

6 +m13 +m14 =
1

3
(n− 10)e9 + 2e6 +

1

3
(2n+ 1).

Subcase 2.3: m13 = 2.
Thenm34 = 1, m44 = 1

3 (n−7), m13 = 2, m14 = 1
3 (2n−5) and eRM2(T ∗) = m44e

9+m34e
6+m13+m14 = 1

3 (n−7)e
9+e6+ 1

3 (2n+1).

Case 3: n ≡ 2 (mod 3).
By Lemma 3.6, T ∗ has the sequence (n1, 0, 0, n4). Since n = 2+n2+2n3+3n4 and n = n1+n2+n3+n4, we have n4 = 1

3 (n−2)
and n1 = 2n+2

3 . Since T ∗ has no 2-vertex and has no 3-vertex, we get m14 = 1
3 (2n+ 2), m44 = 1

3 (n− 5) and

eRM2(T ∗) = m44e
9 +m14 =

1

3
(n− 5)e9 +

1

3
(2n+ 2).

In summary, we complete the proof.
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4. Trees with the maximum exponential reduced second Zagreb index

In the following, we derive some properties of the tree with the maximum exponential reduced second Zagreb index.

Transformation D. Let T ∈ Tn. Suppose that u∆ is a vertex with the maximum degree and there exist one pendent
vertex up such that dT (u∆, up) ≥ 3. Then, there exist a path P = u∆vw from u∆ to up such that dT (w) ≥ 2. Let dT (v) = k,
dT (w) = l and NT (v) = {u∆, w, v1, v2, · · · , vk−2}, NT (w) = {v, w1, w2, · · · , wl−1}. Let

T ∗ = T − {ww1, ww2, · · · , wwl−1}+ {vw1, vw2, · · · , vwl−1}.

Lemma 4.1. Let T ∈ Tn and T ∗ ∈ Tn as defined above. Then, eRM2(T ∗) > eRM2(T ).

Proof. According to the definition of the exponential reduced second Zagreb index, we have

eRM2(T ∗)− eRM2(T ) =

{
e(∆−1)(k+l−2) +

k−2∑
i=1

e(dT (vi)−1)(k+l−2) +

l−1∑
i=1

e(dT (wi)−1)(k+l−2) + e0

}

−

{
e(∆−1)(k−1) +

k−2∑
i=1

e(dT (vi)−1)(k−1) +

l−1∑
i=1

e(dT (wi)−1)(l−1) + e(k−1)(l−1)

}
= e(∆−1)(k+l−2) + e0 − e(∆−1)(k−1) − e(k−1)(l−1)

+

k−2∑
i=1

(e(dT (vi)−1)(k+l−2) − e(dT (vi)−1)(k−1)) +

l−1∑
i=1

(e(dT (wi)−1)(k+l−2) − e(dT (wi)−1)(l−1))

≥ e(∆−1)(k+l−2) + e0 − 2e(∆−1)(k−1)

> e(∆−1)(k+l−2) − e(∆−1)(k−1)+1

> 0.

Figure 5: The structure of T ∈ Tn with the maximum exponential reduced second Zagreb index.

By Lemma 4.1, if T ∈ Tn with the maximum eRM2 index, then dT (u∆, up) ≤ 2. The tree T is shown in Figure 5. If k = 1

then T is a double star tree. If k ≥ 2, then u∆ is the only vertex of T with the maximum degree.

Transformation E. Suppose that T1 ∈ Tn−k−l−2 and u∆ is the maximum degree vertex of T1. Let S1 be the star graph
with k+1 vertices such that v is the center vertex and its pendent vertices are v1, v2, · · · , vk. Let S2 be the star graph with
l + 1 vertices such that w is the center vertex and its pendent vertices are w1, w2, · · · , wl. Let k ≥ l ≥ 1. The graph T ∈ Tn
is obtained from T1, S1, S2 by connecting the vertices u and v, and the vertices u and w. Let T ∗ = T − {ww1}+ {vw1}.

Lemma 4.2. Let T ∈ Tn and T ∗ ∈ Tn as defined above. Then, eRM2(T ∗) > eRM2(T ).

Proof. According to the definition of the exponential reduced second Zagreb index, we have

eRM2(T ∗)− eRM2(T ) =
{
e(∆−1)(k+l) + (k + 1)e0 + e(∆−1)(l−1) + (l − 1)e0

}
−
{
e(∆−1)k + ke0 + e(∆−1)l + le0

}
=
{
e(∆−1)(k+l) − e(∆−1)k

}
−
{
e(∆−1)(l−1) − e(∆−1)l

}
= (e(∆−1)k − e(∆−1)(l−1))(e(∆−1) − 1)

> 0.
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Lemma 4.3. Let T ∼= Sa,b be the double star tree with n vertices, where n = a+ b+2 and a ≥ b+2. Let T ∗ ∼= Sa−1,b+1. Then,
eRM2(T ∗) > eRM2(T ).

Proof. According to the structure of the double star tree and the definition of the exponential reduced second Zagreb index,
we have

eRM2(T ∗)− eRM2(T ) =
{
e(a−1)(b+1) + (a− 1)e0 + (b+ 1)e0

}
−
{
eab + ae0 + be0

}
= e(a−1)(b+1) − eab

= eab+a−b−1 − eab

> 0.

By Lemma 4.3, one knows that the balanced double star tree obtain the maximum exponential reduced second Zagreb
index among double star trees. Also, by Lemma 4.1, Lemma 4.2 and Lemma 4.3, we can find the maximum exponential
reduced second Zagreb index of a tree.

Theorem 4.1. If T ∈ Tn (n ≥ 4) then
eRM2(T ) ≤ eRM2

(
Sbn−2

2 c,d
n−2
2 e

)
,

where the equality holds if and only if T ∼= Sbn−2
2 c,d

n−2
2 e

and it holds that

eRM2

(
Sbn−2

2 c,d
n−2
2 e

)
=

{
e

1
4 (n−2)2 + n− 2, if n ≡ 0 (mod 2),

e
1
4 (n−3)(n−1) + n− 2, if n ≡ 1 (mod 2).

5. Conclusion

In this study, we determine the minimum and maximum exponential reduced second Zagreb index of trees and chemical
trees, and characterize the corresponding extremal (chemical) trees. A chemical tree is a tree of maximum degree at most
four. Actually, a chemical tree models the skeleton of an acyclic molecule [25]. The results obtained in this paper may play
a useful role in the QSAR and QSPR researches.

Recently, the study of the exponential topological indices caught some scholars’ eyes. Cruz et al. [8,11] obtained extremal
values of some exponential topological indices over trees and chemical trees. It is natural to study the extremal chemical
trees for other exponential topological indices, such as the exponential general sum-connectivity index. On the other hand,
one may also study the relationship between the exponential reduced second Zagreb index and some other topological
indices such as the exponential ABC index, the exponential GA index and so on.
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