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Abstract

In this paper, the Diophantine equation P, — P,, = 3? is considered and all solutions for this equation are obtained. In the
proof of the main theorem, lower bounds for the absolute value of linear combinations of logarithms and a version of the
Baker-Davenport reduction method are used.

Keywords: Pell numbers; Diophantine equation; Baker’s theory.

2020 Mathematics Subject Classification: 11D61, 11J86, 11B37, 11B39.

1. Introduction

In recent years, many researchers investigated the solutions of Diophantine equations of the form

Uy, £ Uy = p©
where (u,,) is a fixed linear recurrence sequence and p is a prime. For example, Bravo and Luca [3, 4] solved the equation
Uy + Uy, = 2% for the cases when (u,) is the Fibonacci sequence and when (u,,) is the Lucas sequence. Also, Bitim and
Keskin [1] found all the solutions of the equation w,, — u,, = 3% for the case when (u,,) is the Fibonacci sequence. Also,
many other researches on this topic, such as [6], have been carried out.

In this paper, we search all the solutions of the Diophantine equation

P,—- P, =3¢ 1)

where P, is the Pell sequence and n, m and a are nonnegative integers such that n > m. The main argument used for
the solution of such problems is Baker’s theory (lower bound for the absolute value of linear combinations of logarithms of
algebraic numbers) and a version of the Baker-Davenport reduction method.

2. Preliminaries

A linear recurrence sequence of order k is a sequence whose general termis (a,) = L (an—1,an-2,. .., an—x) Where k is a fixed
positive integer and L is a linear function. A linear recurrence sequence of order 2 is known as a binary recurrence sequence.
Pell sequence, one of the most familiar binary recurrence sequence, is defined by Py =0, P, =1 and P, = 2P, 1 + P, .
Some of the terms of the Pell sequence are given by 0,1,2,5,12,29,70,.... Its characteristic polynomial is of the form
z? — 2z — 1 = 0 whose roots are « = 1 + v/2 and 3 = 1 — /2. Binet’s formula enables us to rewrite the Pell sequence by
using the roots o and 3 as 8
o — 3"
P, = 7 (2)
Also, it is known that
a" 2 <P, <a™ 3)

We give the definition of the logarithmic height of an algebraic number and some of its properties.
Definition 2.1. Let £ be an algebraic number of degree d with minimal polynomial

d
aoxd+a1xd*1+"‘+ad:a0'H($*5i)
=1
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where the a;’s are relatively prime integers with ag > 0 and the &;’s are conjugates of . Then
1 d
h(§) = P <log ao + Zlog (max {[&], 1}))
i=1

is called the logarithmic height of &.

Proposition 2.1. Let £,£1,&o, ..., & be elements of an algebraic closure of Q and m € Z. Then

Loh(&- &) <0 h(&),
2. h(éi 4 +&) < (t—1)log2+ >, h(&),
3. k(&™) =|m|h (&)

We will use the following theorem (see [8] or Theorem 9.4 in [5]) and lemma (see [2] which is a variation of the result due
to [7]) for proving our results.

Theorem 2.1 (Matveev’s theorem). Let 71,72, ..., be positive elements of a number field L of degree D, and by, bs, ..., b,
be rational integers. Set
B :=max{[bi], ..., [b[}

and
A::'yll”...’yf‘ -1

If A is nonzero, then
log|A| > —3-30" . (t+1)%5-D?- (1 +log D) - (1 +log(tB)) - Ay --- A,

where
A; > max{D - h(v;),|log~i|,0.16}

forall1 <i<t If L CR, then
log |A] > —1.4-30"3 . ¢*° . D?. (1 +1log D) - (1 +logB) - A; - - - Ay.

Lemma 2.1. Let A, B, 11 be some real numbers with A > 0and B > 1, and let vy be an irrational number and M be a positive
integer. Take p/q as a convergent of the continued fraction of v such that ¢ > 6M. Set € := ||uq|| — M ||vq|| > 0 where ||-||
denotes the distance from the nearest integer. Then there is no solution to the inequality

O<|uy—v+p <AB™Y
in positive integers u, v and w with

log %
logB "~

u<M and w>

3. Main result

Theorem 3.1. The only triples of nonnegative integers n, m,a with n > m satisfying the Diophantine equation (1) are the
following:
(n,m,a) € {(1,0,0),(2,1,0),(3,2,1),(5,2,3) }.

Proof. In the case that n = m, it is obvious that there exists no solution for the Diophantine equation (1). So we consider
the case that n > m in the rest of the paper.

By a simple computation, we observe that all triples (n,m,a) with 0 < m < n < 200 satisfying the equation (1) form the
set {(1,0,0),(2,1,0),(3,2,1),(5,2,3)}.

Assume that n > 200. From (1) and (3), we get

3=pP,—P,<P,<a" ' <3"
and so a < n. When we replace P, in the equation (1) with its closed form, we obtain
a'I’L ﬁn

_ 39 —
2v/2 2v/2

+ P,
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By taking the absolute value of both sides of the above relation and using the upper bound in relation (3), it is yielded that

< 187
2f

a”
_ Sa + Pm < = + a77L 1
22

1-30a 2[’ Q‘f( +am™ 1)

1 1
— 2fa77L—n (a—m + )

6 I}
1 1
2 2 m—n - -
< 2V2a (6+2>
:4\/§am—n
3

2

aqnh—m )

4)

Let us take t := 3, (71,72, 73) := (3,,2v2) and (b1, b2, b3) := (a, —n,1). We have D := 2 since each v; belongs to Q (v/2).
Note that 1 — 3% - o~ - 21/2 is nonzero. Indeed, if it were zero, we could get

aTL
30 = = _ =" =3".2/2=qa?" =832
22

2n

and so o™ € Z, which is a contradiction.

A1, Ao, A3 and B can be chosen as follows:

A1 =22>21972~2-log3 =D h(7),

Ay = 09> 08813 ~loga = D - h(y),
Ag:=2.1>2.079 =2 log (2v2) = D h (1),
B :=n.

From Theorem 2.1, we obtain that

1-3%a™™-2v2| > exp(=C; - (1 +1logn)-2.2-0.9-2.1)

— >exp (—C1 - (1 +1logn)-2.2-0.9-2.1) from (4)

o™

where C; = 1.4-30°-3%%.22. (1 + log2). Proceeding to appropriate operations, we have

>exp (—C - (1+1logn)-2.2-0.9-2.1)

anfm

(n—m)loga —log2 < Cy-(1+1logn)-2.2-0.9-2.1.
Since C; < 9.7-10' and 1 +logn < 2logn for n > 3, we get

(n —m)loga —log2 < 9.7- 10" - (1 +logn)-2.2-0.9-2.1
(n —m)loga < 8.2-10'% -logn (%)

To find an upper bound on n, let’s rewrite the equation (1) as a second linear form in logarithms and perform some opera-

tions as follows: N

a a™ . 671 ﬁm

22 22 T 22 22

and taking the absolute value of both sides, we have

ot o™ | | A AT

22 2V/2 C2v2 2v2)|]
It follows from the triangle inequality that

o < 1B+ 18"

(1 _ am—n) _ 3@

2v/2 = 22
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Dividing both sides by ;‘—\;5 (1 —a™~™), we obtain

a . —n m—n)—1 |B‘”+|ﬁ‘m
‘17304 2v2(1—a™™") (Swl_—am_n)-

It follows from the fact that éﬁ\“rlﬁlm < 0.59 for n > 3 and m > 1, that

’1 — 3% "2V2 (1 — am_”)_l‘ < 0-59

an

: (6)

Let us apply the result of Matveev once more. We take t := 3, (71,72,73) = (3, ,2v/2 (1 — ozm‘")_l) and (by, bo, b3) =

(a,—n,1). We have D := 2 since each ~; belongs to Q (v/2). Note that 1 —3% - o~ -2v2- (1 — a™=)"" is nonzero. Indeed, if
it were zero, we could get

3. 2\/§ —a" (1 _ am—n)
3a . 2\/5 —a" —a™
—3%.2y/2=p"— " conjugating both sides in Q (\/5)

and the last two equations would imply that
a <a o™= g =B < A"+ 1B < 1,

which contradicts that o™ > 1 for positive integer n.
Ay, A; and B can be chosen as follows:

A =22>21972~2-log3=D-h(7),
As :=0.9>0.8813 ~loga =D - h(y),
B :=n.

Now, let’s find an appropriate value for As:

hw) = b (fﬁ)
<h (2\/5) +h(l—a™") from Proposition 2.1(1)
< log (2\/5) +h(1)+h(@™™) +1log2 from Proposition 2.1(2)
= log (4\/5) +|m —n|-h(a) from Proposition 2.1(3)

log o
2

= log <4\/§) + (n—m)
and so,
Az :=3.47+ (n —m) -loga >log 32 + (n —m) - log & = max {2h (v3) , |logy3],0.16} .
Now Theorem 2.1 implies that

OC% > |1-3%""2v2(1—a™ ")

>exp(—Cq - (1+1logn)-2.2-0.9-(3.47+ (n — m)loga))
=exp(—Cy- (1 +1logn)-1.98-(3.47 + (n —m)loga))

,1‘

where Cy :=1.4-30%-3%5.22. (1 +log2) < 9.7-10''. Taking the logarithm of both sides in the last inequality, considering
that 1 + logn < 2logn for n > 3 and using the inequality (5), one can see that

log0.59 — nloga > —Cy - (1 +logn) - 1.98 - (3.47 4+ (n — m) log a)
nloga <1log0.59 4+ Cs - (1 +logn) - 1.98 - (3.47 + (n — m) log a)
nloga < 3.85-10'2 -logn - (3.47 + (n —m)log ) (7
nloga < 3.85- 102 - logn - (3.47 +8.2-101og n) .
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Thus, we obtain
n < 3.59-10%log?n

and so,
n < 1.63-10%. (8)

Now let’s improve the upper bound on n a little bit more. Set
z1 :=alog3 — nloga + log (2\/5) .

The inequality (4) can be also written as

2
1—e] < —rn-.
(0%
By using (1) and (2), we get
an n
=P, +——>P,>P,— P, =3%
2v2 " 22 oo

Therefore, we have

322
s =log| —— | <0.

It is easy to see that ﬁ < 0.829 for all n — m > 1. Therefore we have e/*1| < 5.85. Then we get

1] 1] : 12
0< |z < =1 < el —e®| < —rnr
«
and so 12
0< ‘aloganlogaJrlog (2\@)’ < .
an—m
Thus we have
1 log (2v2 12
0< a—OgS —-n 2 (2v2) < Lo~ (nmm) 9)
log « log v log v

by dividing both sides of the inequality above by log a. From Lemma 2.1, we have the irrational number v = 1253 with

log o

log (2v/2 12
yolev?) 12
log o log o

=, w=n-—m.

On the other hand, we recall that a < n < 1.63 - 10%°. From Lemma 2.1, we can set M := 1.63 - 10* and if we take the
denominator of the 58th convergent of +, then we get ¢ = 15.50 - 102° > 6M. By using Mathematica Script Language, we
obtain ¢ = ||uq|| — M ||vq|| = 0.184766 > 0.

Applying Lemma 2.1 to the above parameters, we conclude that there is no solution to the inequality (9) for the values

n — m with
log (Ag/¢)
log B

Therefore, for the inequality (9) to be solvable, our upper limit for n — m must be at most 81. By substituting the upper

n—m> = 81.788.

bound value for n — m in the inequality (7), we get n < 1.211 - 10'6. Let us improve this upper bound value on n a little
more. Put
29 1= alog3 — nloga + log (2\/§ (1- am_")_1> .

Therefore, (6) implies that

1= e < 299

an

0.59

am

It is easy to see that < 1. Suppose that 25 > 0. Then 0 < zp < e® —1 < %32 If 2z, < 0, then 1 —e*2 < %52 < 1 and we

am™ *

obtain } < e* so that again e/*2| < 2. Therefore, we have

0.59
0<|zm| <ell —1<ell. |1 —e2] < 2. o
and
-1
] log (2\/@(1 —a™m"n) ) 1.1
0<|a®d )y < 18 g (10)

log o log o log o
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by dividing both sides of the inequality above by log a. Now to apply Lemma 2.1 again, set

m—n -1
_ log3 _log(%@(l—a ) 4 L8

)

=a, wW=n.

7_loga’ s log o :loga’

Firstly, we can choose M = 1.211-10'6. Since 6M = 7.266 - 10'%, in order to apply Lemma 2.1, we must choose ¢ = 8.27-10'®
which is the 33rd denominator of the continued fraction of . Therefore, with the aid of Mathematica, we get ¢ < 0.49473

forn —m e {1,...,81}. From Lemma 2.1, there is no solution to the inequality (10) for
log (A
o> eUlE) g, oo
log B
Thus, n must be less than or equal to 50 for a solution which contradicts our assumption. This completes the proof. O

4, Conclusion

We obtain all solutions of the Diophantine equation P, — P,, = 3“. Linear forms in logarithms and Baker’s theory are the
main tools used in our proofs. The method used in this paper may be applied to other Diophantine equations.
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