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Abstract
In this paper, the Diophantine equation Pn − Pm = 3a is considered and all solutions for this equation are obtained. In the
proof of the main theorem, lower bounds for the absolute value of linear combinations of logarithms and a version of the
Baker-Davenport reduction method are used.
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1. Introduction

In recent years, many researchers investigated the solutions of Diophantine equations of the form

un ± um = pa

where (un) is a fixed linear recurrence sequence and p is a prime. For example, Bravo and Luca [3,4] solved the equation
un + um = 2a for the cases when (un) is the Fibonacci sequence and when (un) is the Lucas sequence. Also, Bitim and
Keskin [1] found all the solutions of the equation un − um = 3a for the case when (un) is the Fibonacci sequence. Also,
many other researches on this topic, such as [6], have been carried out.

In this paper, we search all the solutions of the Diophantine equation

Pn − Pm = 3a (1)

where Pn is the Pell sequence and n, m and a are nonnegative integers such that n ≥ m. The main argument used for
the solution of such problems is Baker’s theory (lower bound for the absolute value of linear combinations of logarithms of
algebraic numbers) and a version of the Baker-Davenport reduction method.

2. Preliminaries

A linear recurrence sequence of order k is a sequence whose general term is (an) = L (an−1, an−2, . . . , an−k) where k is a fixed
positive integer and L is a linear function. A linear recurrence sequence of order 2 is known as a binary recurrence sequence.
Pell sequence, one of the most familiar binary recurrence sequence, is defined by P0 = 0, P1 = 1 and Pn = 2Pn−1 + Pn−2.
Some of the terms of the Pell sequence are given by 0, 1, 2, 5, 12, 29, 70, . . . . Its characteristic polynomial is of the form
x2 − 2x − 1 = 0 whose roots are α = 1 +

√
2 and β = 1 −

√
2. Binet’s formula enables us to rewrite the Pell sequence by

using the roots α and β as
Pn =

αn − βn

2
√

2
. (2)

Also, it is known that
αn−2 ≤ Pn ≤ αn−1. (3)

We give the definition of the logarithmic height of an algebraic number and some of its properties.

Definition 2.1. Let ξ be an algebraic number of degree d with minimal polynomial

a0x
d + a1x

d−1 + · · ·+ ad = a0 ·
d∏
i=1

(x− ξi)
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where the ai’s are relatively prime integers with a0 > 0 and the ξi’s are conjugates of ξ. Then

h (ξ) =
1

d

(
log a0 +

d∑
i=1

log (max {|ξi| , 1})

)

is called the logarithmic height of ξ.

Proposition 2.1. Let ξ, ξ1, ξ2, . . . , ξt be elements of an algebraic closure of Q and m ∈ Z. Then

1. h (ξ1 · · · ξt) ≤
∑t
i=1 h (ξi),

2. h (ξ1 + · · ·+ ξt) ≤ (t− 1) log 2 +
∑t
i=1 h (ξi),

3. h (ξm) = |m|h (ξ).

We will use the following theorem (see [8] or Theorem 9.4 in [5]) and lemma (see [2] which is a variation of the result due
to [7]) for proving our results.

Theorem 2.1 (Matveev’s theorem). Let γ1, γ2, . . . , γt be positive elements of a number field L of degree D, and b1, b2, . . . , bt

be rational integers. Set
B := max{|b1| , . . . , |bt|}

and
Λ := γb11 . . . γbtt − 1.

If Λ is nonzero, then
log |Λ| > −3 · 30t+4 · (t+ 1)5.5 ·D2 · (1 + logD) · (1 + log(tB)) ·A1 · · ·At

where
Ai ≥ max{D · h(γi), |log γi| , 0.16}

for all 1 ≤ i ≤ t. If L ⊂ R, then

log |Λ| > −1.4 · 30t+3 · t4.5 ·D2 · (1 + logD) · (1 + logB) ·A1 · · ·At.

Lemma 2.1. Let A, B, µ be some real numbers with A > 0 and B > 1, and let γ be an irrational number andM be a positive
integer. Take p/q as a convergent of the continued fraction of γ such that q > 6M . Set ε := ‖µq‖ −M ‖γq‖ > 0 where ‖·‖
denotes the distance from the nearest integer. Then there is no solution to the inequality

0 < |uγ − v + µ| < AB−w

in positive integers u, v and w with

u ≤M and w ≥
log Aq

ε

logB
.

3. Main result

Theorem 3.1. The only triples of nonnegative integers n,m, a with n ≥ m satisfying the Diophantine equation (1) are the
following:

(n,m, a) ∈ {(1, 0, 0), (2, 1, 0), (3, 2, 1), (5, 2, 3)}.

Proof. In the case that n = m, it is obvious that there exists no solution for the Diophantine equation (1). So we consider
the case that n > m in the rest of the paper.

By a simple computation, we observe that all triples (n,m, a) with 0 ≤ m < n ≤ 200 satisfying the equation (1) form the
set {(1, 0, 0), (2, 1, 0), (3, 2, 1), (5, 2, 3)}.

Assume that n > 200. From (1) and (3), we get

3a = Pn − Pm ≤ Pn ≤ αn−1 < 3n

and so a < n. When we replace Pn in the equation (1) with its closed form, we obtain

αn

2
√

2
− 3a =

βn

2
√

2
+ Pm.
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By taking the absolute value of both sides of the above relation and using the upper bound in relation (3), it is yielded that∣∣∣∣ αn2
√

2
− 3a

∣∣∣∣ ≤ |βn|2
√

2
+ Pm <

1

6
+ αm−1.

When we multiply both sides of the expression above by 2
√
2

αn to apply Matveev’s result in Theorem 2.1, we have

∣∣∣1− 3a · α−n · 2
√

2
∣∣∣ < 2

√
2

αn

(
1

6
+ αm−1

)
= 2
√

2αm−n
(

1

6
α−m +

1

α

)
< 2
√

2αm−n
(

1

6
+

1

2

)
=

4
√

2

3
αm−n

<
2

αn−m
. (4)

Let us take t := 3, (γ1, γ2, γ3) :=
(
3, α, 2

√
2
)

and (b1, b2, b3) := (a,−n, 1). We have D := 2 since each γi belongs to Q
(√

2
)
.

Note that 1− 3a · α−n · 2
√

2 is nonzero. Indeed, if it were zero, we could get

3a =
αn

2
√

2
⇒ αn = 3a · 2

√
2⇒ α2n = 8 · 32a,

and so α2n ∈ Z, which is a contradiction.
A1, A2, A3 and B can be chosen as follows:

A1 := 2.2 > 2.1972 ' 2 · log 3 = D · h (γ1) ,

A2 := 0.9 > 0.8813 ' logα = D · h (γ2) ,

A3 := 2.1 > 2.079 ' 2 · log
(

2
√

2
)

= D · h (γ3) ,

B := n.

From Theorem 2.1, we obtain that∣∣∣1− 3a · α−n · 2
√

2
∣∣∣ > exp (−C1 · (1 + log n) · 2.2 · 0.9 · 2.1)

2

αn−m
> exp (−C1 · (1 + log n) · 2.2 · 0.9 · 2.1) from (4)

where C1 = 1.4 · 306 · 34.5 · 22 · (1 + log 2). Proceeding to appropriate operations, we have

2

αn−m
> exp (−C1 · (1 + log n) · 2.2 · 0.9 · 2.1)

(n−m) logα− log 2 < C1 · (1 + log n) · 2.2 · 0.9 · 2.1.

Since C1 < 9.7 · 1011 and 1 + log n < 2 log n for n ≥ 3, we get

(n−m) logα− log 2 < 9.7 · 1011 · (1 + log n) · 2.2 · 0.9 · 2.1

(n−m) logα < 8.2 · 1012 · log n (5)

To find an upper bound on n, let’s rewrite the equation (1) as a second linear form in logarithms and perform some opera-
tions as follows:

αn

2
√

2
− αm

2
√

2
− 3a =

βn

2
√

2
− βm

2
√

2

and taking the absolute value of both sides, we have∣∣∣∣ αn2
√

2
− αm

2
√

2
− 3a

∣∣∣∣ =

∣∣∣∣ βn2
√

2
− βm

2
√

2

∣∣∣∣ .
It follows from the triangle inequality that∣∣∣∣ αn2

√
2

(
1− αm−n

)
− 3a

∣∣∣∣ ≤ |β|n + |β|m

2
√

2
.
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Dividing both sides by αn

2
√
2

(1− αm−n), we obtain

∣∣∣1− 3aα−n2
√

2
(
1− αm−n

)−1∣∣∣ ≤ |β|n + |β|m

αn(1− αm−n)
.

It follows from the fact that |β|
n+|β|m

(1−αm−n) < 0.59 for n ≥ 3 and m ≥ 1, that∣∣∣1− 3aα−n2
√

2
(
1− αm−n

)−1∣∣∣ < 0.59

αn
. (6)

Let us apply the result of Matveev once more. We take t := 3, (γ1, γ2, γ3) :=
(

3, α, 2
√

2 (1− αm−n)
−1
)

and (b1, b2, b3) :=

(a,−n, 1). We have D := 2 since each γi belongs to Q
(√

2
)
. Note that 1− 3a ·α−n · 2

√
2 · (1− αm−n)

−1 is nonzero. Indeed, if
it were zero, we could get

3a · 2
√

2 = αn
(
1− αm−n

)
3a · 2

√
2 = αn − αm

−3a · 2
√

2 = βn − βm conjugating both sides in Q
(√

2
)

and the last two equations would imply that

αn < αn + αm = |βn − βm| ≤ |β|n + |β|m < 1,

which contradicts that αn > 1 for positive integer n.
A1, A2 and B can be chosen as follows:

A1 := 2.2 > 2.1972 ' 2 · log 3 = D · h (γ1) ,

A2 := 0.9 > 0.8813 ' logα = D · h (γ2) ,

B := n.

Now, let’s find an appropriate value for A3:

h (γ3) = h

(
2
√

2

1− αm−n

)
≤ h

(
2
√

2
)

+ h
(
1− αm−n

)
from Proposition 2.1(1)

≤ log
(

2
√

2
)

+ h (1) + h
(
αm−n

)
+ log 2 from Proposition 2.1(2)

= log
(

4
√

2
)

+ |m− n| · h (α) from Proposition 2.1(3)

= log
(

4
√

2
)

+ (n−m)
logα

2

and so,
A3 := 3.47 + (n−m) · logα > log 32 + (n−m) · logα = max {2h (γ3) , |log γ3| , 0.16} .

Now Theorem 2.1 implies that

0.59

αn
>
∣∣∣1− 3aα−n2

√
2
(
1− αm−n

)−1∣∣∣
> exp (−C2 · (1 + log n) · 2.2 · 0.9 · (3.47 + (n−m) logα))

= exp (−C2 · (1 + log n) · 1.98 · (3.47 + (n−m) logα))

where C2 := 1.4 · 306 · 34.5 · 22 · (1 + log 2) < 9.7 · 1011. Taking the logarithm of both sides in the last inequality, considering
that 1 + log n < 2 log n for n ≥ 3 and using the inequality (5), one can see that

log 0.59− n logα > −C2 · (1 + log n) · 1.98 · (3.47 + (n−m) logα)

n logα < log 0.59 + C2 · (1 + log n) · 1.98 · (3.47 + (n−m) logα)

n logα < 3.85 · 1012 · log n · (3.47 + (n−m) logα) (7)
n logα < 3.85 · 1012 · log n ·

(
3.47 + 8.2 · 1012 log n

)
.
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Thus, we obtain
n < 3.59 · 1025 log2 n

and so,
n < 1.63 · 1029. (8)

Now let’s improve the upper bound on n a little bit more. Set

z1 := a log 3− n logα+ log
(

2
√

2
)
.

The inequality (4) can be also written as
|1− ez1 | < 2

αn−m
.

By using (1) and (2), we get
αn

2
√

2
= Pn +

βn

2
√

2
> Pn > Pn − Pm = 3a.

Therefore, we have

z1 = log

(
3a2
√

2

αn

)
< 0.

It is easy to see that 2
αn−m < 0.829 for all n−m ≥ 1. Therefore we have e|z1| < 5.85. Then we get

0 < |z1| < e|z1| − 1 ≤ e|z1| |1− ez1 | < 12

αn−m

and so
0 <

∣∣∣a log 3− n logα+ log
(

2
√

2
)∣∣∣ < 12

αn−m
.

Thus we have

0 <

∣∣∣∣∣a log 3

logα
− n+

log
(
2
√

2
)

logα

∣∣∣∣∣ < 12

logα
· α−(n−m) (9)

by dividing both sides of the inequality above by logα. From Lemma 2.1, we have the irrational number γ = log 3
logα with

µ =
log
(
2
√

2
)

logα
,A =

12

logα
,B = α,w = n−m.

On the other hand, we recall that a < n < 1.63 · 1029. From Lemma 2.1, we can set M := 1.63 · 1029 and if we take the
denominator of the 58th convergent of γ, then we get q = 15.50 · 1029 > 6M . By using Mathematica Script Language, we
obtain ε = ‖µq‖ −M ‖γq‖ = 0.184766 > 0.

Applying Lemma 2.1 to the above parameters, we conclude that there is no solution to the inequality (9) for the values
n−m with

n−m ≥ log (Aq/ε)

logB
= 81.788.

Therefore, for the inequality (9) to be solvable, our upper limit for n −m must be at most 81. By substituting the upper
bound value for n − m in the inequality (7), we get n < 1.211 · 1016. Let us improve this upper bound value on n a little
more. Put

z2 := a log 3− n logα+ log
(

2
√

2
(
1− αm−n

)−1)
.

Therefore, (6) implies that
|1− ez2 | < 0.59

αn
.

It is easy to see that 0.59
αn < 1

2 . Suppose that z2 > 0. Then 0 < z2 < ez2 − 1 < 0.59
αn . If z2 < 0, then 1− ez2 < 0.59

αn < 1
2 and we

obtain 1
2 < ez2 so that again e|z2| < 2. Therefore, we have

0 < |z2| < e|z2| − 1 ≤ e|z2| · |1− ez2 | < 2 · 0.59

αn

and

0 <

∣∣∣∣∣∣a log 3

logα
− n+

log
(

2
√

2 (1− αm−n)
−1
)

logα

∣∣∣∣∣∣ < 1.18

logα
· α−n (10)
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by dividing both sides of the inequality above by logα. Now to apply Lemma 2.1 again, set

γ =
log 3

logα
, µ =

log
(

2
√

2 (1− αm−n)
−1
)

logα
, A =

1.18

logα
, B = α, w = n.

Firstly, we can choose M = 1.211 · 1016. Since 6M = 7.266 · 1016, in order to apply Lemma 2.1, we must choose q = 8.27 · 1018

which is the 33rd denominator of the continued fraction of γ. Therefore, with the aid of Mathematica, we get ε ≤ 0.49473

for n−m ∈ {1, . . . , 81}. From Lemma 2.1, there is no solution to the inequality (10) for

n ≥ log (Aq/ε)

logB
= 50.551.

Thus, n must be less than or equal to 50 for a solution which contradicts our assumption. This completes the proof.

4. Conclusion

We obtain all solutions of the Diophantine equation Pn − Pm = 3a. Linear forms in logarithms and Baker’s theory are the
main tools used in our proofs. The method used in this paper may be applied to other Diophantine equations.
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