Research Article

On a Diophantine equation related to the difference of two Pell numbers

Abdullah Çağman*, Kadirhan Polat
Department of Mathematics, Ağrı İbrahim Çeçen University, Ağrl, Turkey

(Received: 22 March 2021. Received in revised form: 7 April 2021. Accepted: 7 April 2021. Published online: 9 April 2021.)
(c) 2021 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

In this paper, the Diophantine equation $P_{n}-P_{m}=3^{a}$ is considered and all solutions for this equation are obtained. In the proof of the main theorem, lower bounds for the absolute value of linear combinations of logarithms and a version of the Baker-Davenport reduction method are used.

Keywords: Pell numbers; Diophantine equation; Baker's theory.
2020 Mathematics Subject Classification: 11D61, 11J86, 11B37, 11B39.

1. Introduction

In recent years, many researchers investigated the solutions of Diophantine equations of the form

$$
u_{n} \pm u_{m}=p^{a}
$$

where $\left(u_{n}\right)$ is a fixed linear recurrence sequence and p is a prime. For example, Bravo and Luca [3,4] solved the equation $u_{n}+u_{m}=2^{a}$ for the cases when (u_{n}) is the Fibonacci sequence and when (u_{n}) is the Lucas sequence. Also, Bitim and Keskin [1] found all the solutions of the equation $u_{n}-u_{m}=3^{a}$ for the case when (u_{n}) is the Fibonacci sequence. Also, many other researches on this topic, such as [6], have been carried out.

In this paper, we search all the solutions of the Diophantine equation

$$
\begin{equation*}
P_{n}-P_{m}=3^{a} \tag{1}
\end{equation*}
$$

where P_{n} is the Pell sequence and n, m and a are nonnegative integers such that $n \geq m$. The main argument used for the solution of such problems is Baker's theory (lower bound for the absolute value of linear combinations of logarithms of algebraic numbers) and a version of the Baker-Davenport reduction method.

2. Preliminaries

A linear recurrence sequence of order k is a sequence whose general term is $\left(a_{n}\right)=L\left(a_{n-1}, a_{n-2}, \ldots, a_{n-k}\right)$ where k is a fixed positive integer and L is a linear function. A linear recurrence sequence of order 2 is known as a binary recurrence sequence. Pell sequence, one of the most familiar binary recurrence sequence, is defined by $P_{0}=0, P_{1}=1$ and $P_{n}=2 P_{n-1}+P_{n-2}$. Some of the terms of the Pell sequence are given by $0,1,2,5,12,29,70, \ldots$ Its characteristic polynomial is of the form $x^{2}-2 x-1=0$ whose roots are $\alpha=1+\sqrt{2}$ and $\beta=1-\sqrt{2}$. Binet's formula enables us to rewrite the Pell sequence by using the roots α and β as

$$
\begin{equation*}
P_{n}=\frac{\alpha^{n}-\beta^{n}}{2 \sqrt{2}} \tag{2}
\end{equation*}
$$

Also, it is known that

$$
\begin{equation*}
\alpha^{n-2} \leq P_{n} \leq \alpha^{n-1} \tag{3}
\end{equation*}
$$

We give the definition of the logarithmic height of an algebraic number and some of its properties.
Definition 2.1. Let ξ be an algebraic number of degree d with minimal polynomial

$$
a_{0} x^{d}+a_{1} x^{d-1}+\cdots+a_{d}=a_{0} \cdot \prod_{i=1}^{d}\left(x-\xi_{i}\right)
$$

[^0]where the a_{i} 's are relatively prime integers with $a_{0}>0$ and the ξ_{i} 's are conjugates of ξ. Then
$$
h(\xi)=\frac{1}{d}\left(\log a_{0}+\sum_{i=1}^{d} \log \left(\max \left\{\left|\xi_{i}\right|, 1\right\}\right)\right)
$$
is called the logarithmic height of ξ.
Proposition 2.1. Let $\xi, \xi_{1}, \xi_{2}, \ldots, \xi_{t}$ be elements of an algebraic closure of \mathbb{Q} and $m \in \mathbb{Z}$. Then

1. $h\left(\xi_{1} \cdots \xi_{t}\right) \leq \sum_{i=1}^{t} h\left(\xi_{i}\right)$,
2. $h\left(\xi_{1}+\cdots+\xi_{t}\right) \leq(t-1) \log 2+\sum_{i=1}^{t} h\left(\xi_{i}\right)$,
3. $h\left(\xi^{m}\right)=|m| h(\xi)$.

We will use the following theorem (see [8] or Theorem 9.4 in [5]) and lemma (see [2] which is a variation of the result due to [7]) for proving our results.

Theorem 2.1 (Matveev's theorem). Let $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{t}$ be positive elements of a number field \mathbb{L} of degree D, and $b_{1}, b_{2}, \ldots, b_{t}$ be rational integers. Set

$$
B:=\max \left\{\left|b_{1}\right|, \ldots,\left|b_{t}\right|\right\}
$$

and

$$
\Lambda:=\gamma_{1}^{b_{1}} \ldots \gamma_{t}^{b_{t}}-1
$$

If Λ is nonzero, then

$$
\log |\Lambda|>-3 \cdot 30^{t+4} \cdot(t+1)^{5.5} \cdot D^{2} \cdot(1+\log D) \cdot(1+\log (t B)) \cdot A_{1} \cdots A_{t}
$$

where

$$
A_{i} \geq \max \left\{D \cdot h\left(\gamma_{i}\right),\left|\log \gamma_{i}\right|, 0.16\right\}
$$

for all $1 \leq i \leq t$. If $\mathbb{L} \subset \mathbb{R}$, then

$$
\log |\Lambda|>-1.4 \cdot 30^{t+3} \cdot t^{4.5} \cdot D^{2} \cdot(1+\log D) \cdot(1+\log B) \cdot A_{1} \cdots A_{t}
$$

Lemma 2.1. Let A, B, μ be some real numbers with $A>0$ and $B>1$, and let γ be an irrational number and M be a positive integer. Take p / q as a convergent of the continued fraction of γ such that $q>6 M$. Set $\varepsilon:=\|\mu q\|-M\|\gamma q\|>0$ where $\|\cdot\|$ denotes the distance from the nearest integer. Then there is no solution to the inequality

$$
0<|u \gamma-v+\mu|<A B^{-w}
$$

in positive integers u, v and w with

$$
u \leq M \quad \text { and } \quad w \geq \frac{\log \frac{A q}{\varepsilon}}{\log B}
$$

3. Main result

Theorem 3.1. The only triples of nonnegative integers n, m, a with $n \geq m$ satisfying the Diophantine equation (1) are the following:

$$
(n, m, a) \in\{(1,0,0),(2,1,0),(3,2,1),(5,2,3)\}
$$

Proof. In the case that $n=m$, it is obvious that there exists no solution for the Diophantine equation (1). So we consider the case that $n>m$ in the rest of the paper.

By a simple computation, we observe that all triples (n, m, a) with $0 \leq m<n \leq 200$ satisfying the equation (1) form the set $\{(1,0,0),(2,1,0),(3,2,1),(5,2,3)\}$.

Assume that $n>200$. From (1) and (3), we get

$$
3^{a}=P_{n}-P_{m} \leq P_{n} \leq \alpha^{n-1}<3^{n}
$$

and so $a<n$. When we replace P_{n} in the equation (1) with its closed form, we obtain

$$
\frac{\alpha^{n}}{2 \sqrt{2}}-3^{a}=\frac{\beta^{n}}{2 \sqrt{2}}+P_{m}
$$

By taking the absolute value of both sides of the above relation and using the upper bound in relation (3), it is yielded that

$$
\left|\frac{\alpha^{n}}{2 \sqrt{2}}-3^{a}\right| \leq \frac{\left|\beta^{n}\right|}{2 \sqrt{2}}+P_{m}<\frac{1}{6}+\alpha^{m-1}
$$

When we multiply both sides of the expression above by $\frac{2 \sqrt{2}}{\alpha^{n}}$ to apply Matveev's result in Theorem 2.1, we have

$$
\begin{align*}
\left|1-3^{a} \cdot \alpha^{-n} \cdot 2 \sqrt{2}\right| & <\frac{2 \sqrt{2}}{\alpha^{n}}\left(\frac{1}{6}+\alpha^{m-1}\right) \\
& =2 \sqrt{2} \alpha^{m-n}\left(\frac{1}{6} \alpha^{-m}+\frac{1}{\alpha}\right) \\
& <2 \sqrt{2} \alpha^{m-n}\left(\frac{1}{6}+\frac{1}{2}\right) \\
& =\frac{4 \sqrt{2}}{3} \alpha^{m-n} \\
& <\frac{2}{\alpha^{n-m}} \tag{4}
\end{align*}
$$

Let us take $t:=3,\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right):=(3, \alpha, 2 \sqrt{2})$ and $\left(b_{1}, b_{2}, b_{3}\right):=(a,-n, 1)$. We have $D:=2$ since each γ_{i} belongs to $\mathbb{Q}(\sqrt{2})$. Note that $1-3^{a} \cdot \alpha^{-n} \cdot 2 \sqrt{2}$ is nonzero. Indeed, if it were zero, we could get

$$
3^{a}=\frac{\alpha^{n}}{2 \sqrt{2}} \Rightarrow \alpha^{n}=3^{a} \cdot 2 \sqrt{2} \Rightarrow \alpha^{2 n}=8 \cdot 3^{2 a}
$$

and so $\alpha^{2 n} \in \mathbb{Z}$, which is a contradiction.
A_{1}, A_{2}, A_{3} and B can be chosen as follows:

$$
\begin{aligned}
A_{1} & :=2.2>2.1972 \simeq 2 \cdot \log 3=D \cdot h\left(\gamma_{1}\right) \\
A_{2} & :=0.9>0.8813 \simeq \log \alpha=D \cdot h\left(\gamma_{2}\right) \\
A_{3} & :=2.1>2.079 \simeq 2 \cdot \log (2 \sqrt{2})=D \cdot h\left(\gamma_{3}\right), \\
B & :=n .
\end{aligned}
$$

From Theorem 2.1, we obtain that

$$
\begin{align*}
&\left|1-3^{a} \cdot \alpha^{-n} \cdot 2 \sqrt{2}\right|>\exp \left(-C_{1} \cdot(1+\log n) \cdot 2.2 \cdot 0.9 \cdot 2.1\right) \\
& \frac{2}{\alpha^{n-m}}>\exp \left(-C_{1} \cdot(1+\log n) \cdot 2.2 \cdot 0.9 \cdot 2.1\right) \tag{4}
\end{align*}
$$

where $C_{1}=1.4 \cdot 30^{6} \cdot 3^{4.5} \cdot 2^{2} \cdot(1+\log 2)$. Proceeding to appropriate operations, we have

$$
\begin{aligned}
\frac{2}{\alpha^{n-m}} & >\exp \left(-C_{1} \cdot(1+\log n) \cdot 2.2 \cdot 0.9 \cdot 2.1\right) \\
(n-m) \log \alpha-\log 2 & <C_{1} \cdot(1+\log n) \cdot 2.2 \cdot 0.9 \cdot 2.1
\end{aligned}
$$

Since $C_{1}<9.7 \cdot 10^{11}$ and $1+\log n<2 \log n$ for $n \geq 3$, we get

$$
\begin{gather*}
(n-m) \log \alpha-\log 2<9.7 \cdot 10^{11} \cdot(1+\log n) \cdot 2.2 \cdot 0.9 \cdot 2.1 \\
\quad(n-m) \log \alpha<8.2 \cdot 10^{12} \cdot \log n \tag{5}
\end{gather*}
$$

To find an upper bound on n, let's rewrite the equation (1) as a second linear form in logarithms and perform some operations as follows:

$$
\frac{\alpha^{n}}{2 \sqrt{2}}-\frac{\alpha^{m}}{2 \sqrt{2}}-3^{a}=\frac{\beta^{n}}{2 \sqrt{2}}-\frac{\beta^{m}}{2 \sqrt{2}}
$$

and taking the absolute value of both sides, we have

$$
\left|\frac{\alpha^{n}}{2 \sqrt{2}}-\frac{\alpha^{m}}{2 \sqrt{2}}-3^{a}\right|=\left|\frac{\beta^{n}}{2 \sqrt{2}}-\frac{\beta^{m}}{2 \sqrt{2}}\right|
$$

It follows from the triangle inequality that

$$
\left|\frac{\alpha^{n}}{2 \sqrt{2}}\left(1-\alpha^{m-n}\right)-3^{a}\right| \leq \frac{|\beta|^{n}+|\beta|^{m}}{2 \sqrt{2}}
$$

Dividing both sides by $\frac{\alpha^{n}}{2 \sqrt{2}}\left(1-\alpha^{m-n}\right)$, we obtain

$$
\left|1-3^{a} \alpha^{-n} 2 \sqrt{2}\left(1-\alpha^{m-n}\right)^{-1}\right| \leq \frac{|\beta|^{n}+|\beta|^{m}}{\alpha^{n}\left(1-\alpha^{m-n}\right)}
$$

It follows from the fact that $\frac{|\beta|^{n}+|\beta|^{m}}{\left(1-\alpha^{m-n}\right)}<0.59$ for $n \geq 3$ and $m \geq 1$, that

$$
\begin{equation*}
\left|1-3^{a} \alpha^{-n} 2 \sqrt{2}\left(1-\alpha^{m-n}\right)^{-1}\right|<\frac{0.59}{\alpha^{n}} \tag{6}
\end{equation*}
$$

Let us apply the result of Matveev once more. We take $t:=3,\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right):=\left(3, \alpha, 2 \sqrt{2}\left(1-\alpha^{m-n}\right)^{-1}\right)$ and $\left(b_{1}, b_{2}, b_{3}\right):=$ $(a,-n, 1)$. We have $D:=2$ since each γ_{i} belongs to $\mathbb{Q}(\sqrt{2})$. Note that $1-3^{a} \cdot \alpha^{-n} \cdot 2 \sqrt{2} \cdot\left(1-\alpha^{m-n}\right)^{-1}$ is nonzero. Indeed, if it were zero, we could get

$$
\begin{aligned}
& 3^{a} \cdot 2 \sqrt{2}=\alpha^{n}\left(1-\alpha^{m-n}\right) \\
& 3^{a} \cdot 2 \sqrt{2}=\alpha^{n}-\alpha^{m}
\end{aligned}
$$

$$
-3^{a} \cdot 2 \sqrt{2}=\beta^{n}-\beta^{m} \quad \text { conjugating both sides in } \mathbb{Q}(\sqrt{2})
$$

and the last two equations would imply that

$$
\alpha^{n}<\alpha^{n}+\alpha^{m}=\left|\beta^{n}-\beta^{m}\right| \leq|\beta|^{n}+|\beta|^{m}<1
$$

which contradicts that $\alpha^{n}>1$ for positive integer n.
A_{1}, A_{2} and B can be chosen as follows:

$$
\begin{aligned}
A_{1} & :=2.2>2.1972 \simeq 2 \cdot \log 3=D \cdot h\left(\gamma_{1}\right) \\
A_{2} & :=0.9>0.8813 \simeq \log \alpha=D \cdot h\left(\gamma_{2}\right) \\
B & :=n
\end{aligned}
$$

Now, let's find an appropriate value for A_{3} :

$$
\begin{aligned}
h\left(\gamma_{3}\right) & =h\left(\frac{2 \sqrt{2}}{1-\alpha^{m-n}}\right) \\
& \leq h(2 \sqrt{2})+h\left(1-\alpha^{m-n}\right) \\
& \leq \log (2 \sqrt{2})+h(1)+h\left(\alpha^{m-}\right. \\
& =\log (4 \sqrt{2})+|m-n| \cdot h(\alpha) \\
& =\log (4 \sqrt{2})+(n-m) \frac{\log \alpha}{2}
\end{aligned}
$$

$$
\leq h(2 \sqrt{2})+h\left(1-\alpha^{m-n}\right) \quad \text { from Proposition 2.1(1) }
$$

$$
\leq \log (2 \sqrt{2})+h(1)+h\left(\alpha^{m-n}\right)+\log 2 \quad \text { from Proposition 2.1(2) }
$$

$$
=\log (4 \sqrt{2})+|m-n| \cdot h(\alpha) \quad \text { from Proposition 2.1(3) }
$$

and so,

$$
A_{3}:=3.47+(n-m) \cdot \log \alpha>\log 32+(n-m) \cdot \log \alpha=\max \left\{2 h\left(\gamma_{3}\right),\left|\log \gamma_{3}\right|, 0.16\right\}
$$

Now Theorem 2.1 implies that

$$
\begin{aligned}
\frac{0.59}{\alpha^{n}} & >\left|1-3^{a} \alpha^{-n} 2 \sqrt{2}\left(1-\alpha^{m-n}\right)^{-1}\right| \\
& >\exp \left(-C_{2} \cdot(1+\log n) \cdot 2.2 \cdot 0.9 \cdot(3.47+(n-m) \log \alpha)\right) \\
& =\exp \left(-C_{2} \cdot(1+\log n) \cdot 1.98 \cdot(3.47+(n-m) \log \alpha)\right)
\end{aligned}
$$

where $C_{2}:=1.4 \cdot 30^{6} \cdot 3^{4.5} \cdot 2^{2} \cdot(1+\log 2)<9.7 \cdot 10^{11}$. Taking the logarithm of both sides in the last inequality, considering that $1+\log n<2 \log n$ for $n \geq 3$ and using the inequality (5), one can see that

$$
\begin{align*}
\log 0.59- & n \log \alpha>-C_{2} \cdot(1+\log n) \cdot 1.98 \cdot(3.47+(n-m) \log \alpha) \\
& n \log \alpha<\log 0.59+C_{2} \cdot(1+\log n) \cdot 1.98 \cdot(3.47+(n-m) \log \alpha) \\
& n \log \alpha<3.85 \cdot 10^{12} \cdot \log n \cdot(3.47+(n-m) \log \alpha) \tag{7}\\
& n \log \alpha<3.85 \cdot 10^{12} \cdot \log n \cdot\left(3.47+8.2 \cdot 10^{12} \log n\right) .
\end{align*}
$$

Thus, we obtain

$$
n<3.59 \cdot 10^{25} \log ^{2} n
$$

and so,

$$
\begin{equation*}
n<1.63 \cdot 10^{29} \tag{8}
\end{equation*}
$$

Now let's improve the upper bound on n a little bit more. Set

$$
z_{1}:=a \log 3-n \log \alpha+\log (2 \sqrt{2})
$$

The inequality (4) can be also written as

$$
\left|1-e^{z_{1}}\right|<\frac{2}{\alpha^{n-m}}
$$

By using (1) and (2), we get

$$
\frac{\alpha^{n}}{2 \sqrt{2}}=P_{n}+\frac{\beta^{n}}{2 \sqrt{2}}>P_{n}>P_{n}-P_{m}=3^{a}
$$

Therefore, we have

$$
z_{1}=\log \left(\frac{3^{a} 2 \sqrt{2}}{\alpha^{n}}\right)<0
$$

It is easy to see that $\frac{2}{\alpha^{n-m}}<0.829$ for all $n-m \geq 1$. Therefore we have $e^{\left|z_{1}\right|}<5.85$. Then we get

$$
0<\left|z_{1}\right|<e^{\left|z_{1}\right|}-1 \leq e^{\left|z_{1}\right|}\left|1-e^{z_{1}}\right|<\frac{12}{\alpha^{n-m}}
$$

and so

$$
0<|a \log 3-n \log \alpha+\log (2 \sqrt{2})|<\frac{12}{\alpha^{n-m}}
$$

Thus we have

$$
\begin{equation*}
0<\left|a \frac{\log 3}{\log \alpha}-n+\frac{\log (2 \sqrt{2})}{\log \alpha}\right|<\frac{12}{\log \alpha} \cdot \alpha^{-(n-m)} \tag{9}
\end{equation*}
$$

by dividing both sides of the inequality above by $\log \alpha$. From Lemma 2.1, we have the irrational number $\gamma=\frac{\log 3}{\log \alpha}$ with

$$
\mu=\frac{\log (2 \sqrt{2})}{\log \alpha}, A=\frac{12}{\log \alpha}, B=\alpha, w=n-m
$$

On the other hand, we recall that $a<n<1.63 \cdot 10^{29}$. From Lemma 2.1, we can set $M:=1.63 \cdot 10^{29}$ and if we take the denominator of the 58th convergent of γ, then we get $q=15.50 \cdot 10^{29}>6 M$. By using Mathematica Script Language, we obtain $\varepsilon=\|\mu q\|-M\|\gamma q\|=0.184766>0$.

Applying Lemma 2.1 to the above parameters, we conclude that there is no solution to the inequality (9) for the values $n-m$ with

$$
n-m \geq \frac{\log (A q / \varepsilon)}{\log B}=81.788
$$

Therefore, for the inequality (9) to be solvable, our upper limit for $n-m$ must be at most 81 . By substituting the upper bound value for $n-m$ in the inequality (7), we get $n<1.211 \cdot 10^{16}$. Let us improve this upper bound value on n a little more. Put

$$
z_{2}:=a \log 3-n \log \alpha+\log \left(2 \sqrt{2}\left(1-\alpha^{m-n}\right)^{-1}\right)
$$

Therefore, (6) implies that

$$
\left|1-e^{z_{2}}\right|<\frac{0.59}{\alpha^{n}}
$$

It is easy to see that $\frac{0.59}{\alpha^{n}}<\frac{1}{2}$. Suppose that $z_{2}>0$. Then $0<z_{2}<e^{z_{2}}-1<\frac{0.59}{\alpha^{n}}$. If $z_{2}<0$, then $1-e^{z_{2}}<\frac{0.59}{\alpha^{n}}<\frac{1}{2}$ and we obtain $\frac{1}{2}<e^{z_{2}}$ so that again $e^{\left|z_{2}\right|}<2$. Therefore, we have

$$
0<\left|z_{2}\right|<e^{\left|z_{2}\right|}-1 \leq e^{\left|z_{2}\right|} \cdot\left|1-e^{z_{2}}\right|<2 \cdot \frac{0.59}{\alpha^{n}}
$$

and

$$
\begin{equation*}
0<\left|a \frac{\log 3}{\log \alpha}-n+\frac{\log \left(2 \sqrt{2}\left(1-\alpha^{m-n}\right)^{-1}\right)}{\log \alpha}\right|<\frac{1.18}{\log \alpha} \cdot \alpha^{-n} \tag{10}
\end{equation*}
$$

by dividing both sides of the inequality above by $\log \alpha$. Now to apply Lemma 2.1 again, set

$$
\gamma=\frac{\log 3}{\log \alpha}, \quad \mu=\frac{\log \left(2 \sqrt{2}\left(1-\alpha^{m-n}\right)^{-1}\right)}{\log \alpha}, \quad A=\frac{1.18}{\log \alpha}, \quad B=\alpha, \quad w=n
$$

Firstly, we can choose $M=1.211 \cdot 10^{16}$. Since $6 M=7.266 \cdot 10^{16}$, in order to apply Lemma 2.1, we must choose $q=8.27 \cdot 10^{18}$ which is the 33 rd denominator of the continued fraction of γ. Therefore, with the aid of Mathematica, we get $\varepsilon \leq 0.49473$ for $n-m \in\{1, \ldots, 81\}$. From Lemma 2.1, there is no solution to the inequality (10) for

$$
n \geq \frac{\log (A q / \varepsilon)}{\log B}=50.551
$$

Thus, n must be less than or equal to 50 for a solution which contradicts our assumption. This completes the proof.

4. Conclusion

We obtain all solutions of the Diophantine equation $P_{n}-P_{m}=3^{a}$. Linear forms in logarithms and Baker's theory are the main tools used in our proofs. The method used in this paper may be applied to other Diophantine equations.

References

[1] B. D. Bitim, R. Keskin, On solutions of the Diophantine equation $F_{n}-F_{m}=3^{a}$, Proc. Indian Acad. Sci. Math. Sci. 129 (2019) Art\# 81.
[2] J. J. Bravo, F. Luca, On a conjecture about repdigits in k-generalized Fibonacci sequences, Publ. Math. Debrecen 82 (2013) $623-639$.
[3] J. J. Bravo, F. Luca, Powers of two as sums of two Lucas numbers, J. Integer Seq. 17 (2014) Art\# 14.8.3.
[4] J. J. Bravo, F. Luca, On the Diophantine equation $F_{n}+F_{m}=2^{a}$, Quaest. Math. 39 (2016) 391-400.
[5] Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. Math. 163 (2006) 969-1018.
[6] A. Çağman, An approach to Pillai's problem with the Pell sequence and the powers of 3, Miskolc Math. Notes, In press.
[7] A. Dujella, A. Petho, A generalization of a theorem of Baker and Davenport, Quart. J. Math. 49 (1998) 291-306.
[8] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II, Izv. Math. 64 (2000) 1217-1269.

[^0]: *Corresponding author (acagman@agri.edu.tr).

