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Abstract
Giving necessary and sufficient conditions for the existence of solutions of truncated and full classical Markov moment
problems in terms of the given (or measured) moments, in Lp,µ (S) (1 ≤ p <∞) spaces setting, is the first aim of this work.
Reduced (truncated) moment problems arise in real-world situations, where only a finite number of samples are available.
We obtain solutions as nonnegative functions in a Lq,µ (S) space, where S ⊂ Rn is a closed subset, µ is a regular Borel
probability measure on S and q is the conjugate of p ∈ [1,∞) . Applying polynomial approximation on Cartesian products of
closed unbounded intervals in solving full Markov moment problems on [0,∞)n, when the uniqueness of the solution follows
too, is the second purpose of the paper. A construction of a solution for the truncated one-dimensional moment problem is
proposed. Influence of perturbations of the moments on the corresponding solutions in L2,µ (S) is also briefly discussed; this
is the third aim of the paper.

Keywords: truncated moment problem; full moment problem; existence of a solution; uniqueness; construction; perturba-
tions.
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1. Introduction

The truncated moment problem is important in mathematics as well as in mathematical applications, because it involves
only a finite number of moments (of limited order), which are assumed to be known (or given, or measurable). This
corresponds to real-life problems, where only a finite number of samples are available. Moreover, in the case of one-
dimensional truncated moment problem, sometimes the solution can be found as a polynomial function, whose coefficients
are determined by solving a Cramer (linear) system. We restrict ourselves to the scalar real classical moment problem
on a closed bounded or unbounded subset S of Rn, where n ≥ 1 is an integer. The following standard notations will be
used: N = {1, 2, . . . }; N0 = {0, 1, 2, . . . }; k = (k1, . . . , kn) is an arbitrary element of Nn0 = N0 × · · · × N0 ; kl is a nonnegative
integer for each l = 1, . . . , n and |k| = k1 + · · ·+ kn and k! = k1! · · · kn! ; pk (t) = tk = tk11 · · · tknn where t = (t1, . . . , tn) ∈ S and
k = (k1, . . . , kn) ∈ Nn0 . We denote by Rd [t1, . . . tn] the real vector subspace of all polynomial functions of n real variables,
with real coefficients, generated by tk = tk11 · · · tknn , ki ∈ {0, 1, . . . , d} , i = 1, . . . , n, where d ≥ 1 is a fixed integer. The
dimension of this subspace is clearly equal to (d+ 1)

n. Given a finite set

{mk : 0 ≤ ki ≤ d; i = 1, . . . , n}

of real numbers, and a probability Borel measure µ on S with finite absolute moments of all orders ≤ d (i.e.,
∫
S
|t|kdµ <∞

for all k = (k1, . . . , kn) ∈ Nn0 with ki ≤ d and i = 1, . . . , n), existence and eventually construction or approximation of a
Lebesgue measurable real nonnegative function h ∈ Lq,µ(S), satisfying the moment conditions∫

S

tkh (t) dµ = mk, ki ≤ d, i = 1, . . . , n, (1)

and
0 ≤ h (t) for almost all t ∈ S, ||h||q,µ ≤ 1 (2)

are under consideration, where q is the conjugate of a given number p ∈ [1,∞). Here ‖·‖q,µ is the usual norm on the space
Lq,µ (S) . By its formulation, the moment problem is an inverse problem, since h is unknown; it is going to be approximated,
starting from its given moments mk, defined by (1). If we require (1) for all k ∈ Nn0 (that is, if we have to solve the full
moment problem), then sometimes h is unique with the properties (1) and (2), and can be determined as the sum of a
Fourier series whose coefficients are known in terms of the moments mk, k ∈ Nn0 . The direct problem could be: given
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h ∈ Lq,µ (S) , find its moments defined by (1). The latter problem is a computational one. On the other hand, the condition
“µ is a probability Borel measure” may be weakened assuming that µ is an arbitrary positive Borel measure on S, with
finite absolute moments of all orders, accompanied by appropriate modifications in the conclusions of the results. If n ≥ 2,
then the moment problem (1)-(2) is called multidimensional, while when n = 1, we have a one-dimensional Markov moment
problem. This is not a usual moment problem, (which requires only h ≥ 0), since it involves also the last inequality (2).
The function h ∈ Lq,µ (S) satisfying (1) and (2) will be called a solution of this moment problem. The solution h appears
as the representing function from Lq,µ (S) for a positive linear functional T on Lp,µ (S) , p ∈ [1,∞) , 1/p+ 1/q = 1, ‖T‖ ≤ 1.
The numbers mk, ki ≤ d, i = 1, . . . , n, are called the classical moments with respect to the positive measure hdµ, and this
measure is called a representing measure for the extension of the linear functional

f : M := Rd [t1, . . . tn]→ R, f

∑
ki≤d

αkpk

 =
∑
ki≤d

αkmk, pk (t) = tk, αk ∈ R, ki ≤ d, i = 1, . . . , n. (3)

The linear functional (3) should be extended to the entire space Lp,µ (S) , 1 ≤ p < ∞, preserving linearity, positivity,
continuity and eventually controlling the norm of the extension of f (see Section 2). A first step is to point out a necessary
and sufficient condition for the existence of such an extension T : Lp,µ (S) → R. This is called a truncated moment
problem, since the degree of the involved polynomials in each real variable ti is bounded above. Obviously, a solution T of
a truncated moment problem cannot be unique. In the case of full moment problem, (1) must hold for all k in Nn0 . In this
case, the problem of the uniqueness of the solution makes sense and is related to the notion of a M -determinate (moment-
determinate) measure µ. Recall that the measure µ is called M -determinate (or simply determinate) if it is uniquely
determinate by its moments mk =

∫
S
tkdµ, k ∈ Nn0 , or, equivalently, by its values on the vector space P of all polynomials.

For results on the moment problem see [1,11,24]. See some chapters of [6,16,23] for the background on measure theory,
analysis and functional analysis. The present work is based on the results published in the papers [9, 12, 17–21, 25] and
is indirectly related to the articles [2–5, 7, 8, 10, 13–15, 22, 26]. Some of the references lead to connections of the moment
problem with other fields (such as fixed point theory, operator theory, convex functions, complex functions, etc.). The rest
of the paper is organized as follows. Section 2 concerns the existence of positive linear solutions for which the norm can be
evaluated, formulated in measure theory setting. In some cases, uniqueness and conditions involving quadratic forms are
emphasized. For the one-dimensional truncated moment problem, the construction of a solution is sketched. In Section 3,
influence of perturbations of the exact moments (determined in the training stage or given), on the corresponding solution
is discussed. Section 4 concludes the paper.

2. Existence, uniqueness and construction of some solutions

As we have already seen, under the hypothesis of Section 1, the question on the existence of a solution for the problem
defined by (1) and (2) is an extension problem of a linear (bounded) positive functional from the subspace Rd [t1, . . . , tn]

to the space Lp,µ (S) , p ∈ [1,∞). The norm of this linear positive extension will be determinate as well. Usually, such
problems are solved via Hahn-Banach theorem. To obtain a positive linear extension, the next result will be partially
applied in the sequel.

Theorem 2.1. LetE be an ordered vector space, F be an order complete vector space,M ⊂ E be a vector subspace, T1 : M → F

be a linear operator, Ψ : E → F be a convex operator. The following statements are equivalent:

(a) There exists a positive linear extension T : E → F of T1 such that T ≤ Ψ on E.

(b) The inequality T1(y) ≤ Ψ(x) holds for all (y, x) ∈M × E such that y ≤ x.

Remark 2.1. If we apply Theorem 2.1 to the particular case when E+ = {0}, we obtain Hahn-Banach theorem.

Theorem 2.1 was published firstly in [17], being derived from the general constrained extension result ( [17], Theorem
1); details and completions can be found in [18]. Then, an equivalent form of Theorem 2.1, formulated in terms of the
moment problem, was published in ( [19], Theorem 1). All these old statements require a lattice structure on F , which is
assumed to be an order complete vector lattice. Recently, a sharp direct proof of Theorem 2.1, which does not require a
lattice structure on F , was published in ( [20], Theorems 5 and 6). This latter form is exactly Theorem 2.1. The next result
is a direct application of Theorem 2.1. Using the above notations, we obtain the next result.
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Theorem 2.2. Assume that all absolute moments ∫
S

|t|kdµ <∞

for k = (k1, . . . , kn) with ki ≤ d, i = 1, . . . , n, are finite. Let {mk : ki ≤ d, i = 1, . . . , n} be a given (finite) sequence of real
numbers. The following statements are equivalent:

(a) There exists h ∈ L∞,µ (S) such that 0 ≤ h (t) ≤ 1, a.e.,∫
S

tkh (t) dµ = mk,

where ki ≤ d and i = 1, . . . , n.

(b) For any family of scalar {ak : ki ≤ d, i = 1, . . . , n}, the inequality∑
ki≤d; i=1,...,n

akpk ≤ ϕ ∈ L1,µ (S)

implies ∑
ki≤d; i=1,...,n

akmk ≤
∫
S

|ϕ (t)|dµ = ‖ϕ‖1,µ .

Proof. The implication (a) implies (b) is obvious. Indeed, according to (a), we have:

∑
ki≤d; i=1,...,n

akmk =

∫
S

 ∑
ki≤d; i=1,...,n

akt
k

h (t) dµ ≤
∫
S

|ϕ (t)|h (t) dµ ≤
∫
S

|ϕ (t)|dµ.

The converse implication is the basic one; it will be proved in the sequel. Let E = L1,µ (S), M be the subspace of E
generated by the monomials pk, pk (t) = tk, ki ≤ d, i = 1, . . . , n, and Ψ : E → F=R be defined by

Ψ (ϕ) :=

∫
S

|ϕ (t)|dµ, ϕ ∈ E.

Let f : M → R be the linear functional defined such that the interpolation conditions f (pk) = mk, ki ≤ d, i = 1, . . . , n are
verified (f is defined by (3)). Then (b) says that

∑
ki≤d; i=1,...,n

akpk ≤ ϕ =⇒ f

 ∑
ki≤d

akpk

 ≤ Ψ (ϕ) =

∫
S

|ϕ (t)|dµ

for all y =
∑
ki≤d; i=1,...,n akpk ∈M, ϕ ∈ E. According to Theorem 2.1 (where T1 stands for f), there exists a positive linear

extension T of f to the entire space L1,µ (S) such that

T (ϕ) ≤ Ψ (ϕ) =

∫
S

|ϕ (t)| dµ = ‖ϕ‖1,µ

for all ϕ ∈ L1,µ (S). Writing this for −ϕ, we infer that

−T (ϕ) = T (−ϕ) ≤ ‖−ϕ‖1,µ = ‖ϕ‖1,µ, ϕ ∈ L1,µ (S) .

Thus, it holds that |T (ϕ)| ≤ ‖ϕ‖1,µ and ϕ ∈ L1,µ (S), so that ‖T‖ ≤ 1. According to measure theory reasons [23], there
exists h ∈ L∞,µ (S) , 0 ≤ h ≤ 1, such that

T (ϕ) =

∫
S

hϕdµ, ϕ ∈ L1,µ (S) ,

for all ϕ ∈ L1,µ (S) . Obviously,
∫
S
hpkdµ = T (pk) = f (pk) = mk, (ki ≤ d, i = 1, . . . , n). This concludes the proof.

Similar arguments, not involving measure theory appearing in the end of the above proof, lead to the next result, which
is not requiring the norm and the order relation are compatible.

Theorem 2.3. LetE be a normed vector space endowed with a linear order relation,M ⊂ E be a vector subspace, T1 : M → R
be a linear functional. The following assertions are equivalent:
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(a) There exists a positive linear extension T : E → R of T1 such that ‖T‖ ≤ 1.

(b) The inequality T1 (y) ≤ ‖x‖ holds for all (y, x) ∈M × E such that y ≤ x.

Proof. Apply Theorem 2.1 to F = R, Ψ (ϕ) = ‖ϕ‖ , ϕ ∈ E.

Most of concrete function spaces are Banach lattices. However, there exist important ordered Banach spaces which are
not lattices (see [15]). Many concrete Banach spaces are ordered Banach spaces (the order relation is compatible with the
norm). On the other hand, applying Theorem 2.1 once more, and using the notations and hypothesis on the finite absolute
moments of the measure µ, the following result holds:

Theorem 2.4. Let p ∈ (1,∞) , E = Lp,µ (S) , {mk : ki ≤ d, i = 1, . . . , n} be a given (finite) sequence of real numbers, and q
be the conjugate of p. The following statements are equivalent:

(a) There exists h ∈ Lq,µ (S) such that 0 ≤ h (t) , a.e., ‖h‖q,µ ≤ 1 and∫
S

tkh (t) dµ = mk

where ki ≤ d and i = 1, . . . , n.

(b) For any family of scalar {ak : ki ≤ d, i = 1, . . . , n}, the inequality∑
ki≤d, i=1,...,n

akpk ≤ ϕ ∈ Lp,µ (S)

implies ∑
ki≤d, i=1,...,n

akmk ≤ ‖ϕ‖p,µ.

Proof. (a) =⇒ (b). By using Hölder’s inequality, we obtain

∑
ki≤d, i=1,...,n

akmk =

∫
S

 ∑
ki≤d, i=1,...,n

aktk

h (t) dµ ≤
∫
S

ϕ (t)h (t)dµ ≤ ‖ϕ‖p,µ‖h‖q,µ ≤ ‖ϕ‖p,µ .

The implication(b) =⇒ (a) follows from the corresponding implication of Theorem 2.1, applied to M, f being defined by
(3), Ψ : E → R, Ψ (ϕ) = ‖ϕ‖p,µ (here M is the subspace defined in the proof of Theorem 2.2). The conclusion follows via
measure theory arguments.

Remark 2.2. For any positive measure µ on S ⊆ Rn, a positive linear functional T : L1,µ (S)→ R verifies the condition

T (ϕ) ≤
∫
S

ϕdµ , ∀ ϕ ∈ (L1,µ (S))+

if and only if ‖T‖ ≤ 1. Indeed, if T is dominated by the functional defined by the integral on the positive cone of L1,µ (S) ,

let ψ ∈ L1,µ (S) . The following inequalities hold:

|T (ψ)| ≤ T
(
ψ+
)

+ T
(
ψ−
)

= T (|ψ|) ≤
∫
S

|ψ| dµ = ‖ψ‖1,µ.

Hence ‖T‖ ≤ 1. The converse implication is obvious:

ϕ ∈ (L1,µ (S))+ =⇒ T (ϕ) ≤ |T (ϕ)| ≤ ‖T‖
∫
S

|ϕ| dµ ≤
∫
S

|ϕ| dµ =

∫
S

ϕdµ = T2 (ϕ) .

On the other hand, it is straightforward that the norm of the functional T2 : L1,µ (S)→ R, T2 (ϕ) =
∫
S
ϕdµ is equal to 1, if µ

is a probability measure.

Remark 2.2 allows application of the results from [21]; namely, the following theorem holds.

Theorem 2.5. Let S ⊆ Rn be a closed unbounded subset, µ be a Borel regular M -determinate probability measure on S

with finite absolute moments of all orders, (mk)k∈Nn
0

be a given sequence of real numbers. The following statements are
equivalent:
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(a) There exists a unique h ∈ L∞,µ (S) such that 0 ≤ h ≤ 1 and∫
S

tkh (t) dµ = mk

for all k ∈ Nn0 .

(b) For any d ∈ N0 and for any family of scalar {ak : ki ≤ d, i = 1, . . . , n}, the inequality∑
ki≤d, i=1,...,n

akpk ≤ ϕ ∈ L1,µ (S)

implies ∑
ki≤d, i=1,...,n

akmk ≤
∫
S

|ϕ (t)|dµ = ‖ϕ‖1,µ.

(c) For any finite subset J0 ⊂ Nn0 , and for any {ak}k∈J0 ⊂ R, the following implication holds

∑
k∈J0

akpk ≥ 0 on S =⇒ 0 ≤
∑
k∈J0

akmk ≤
∑
k∈J0

ak

∫
S

tkdµ.

Proof. If there exists a function h ∈ L∞,µ (S) such that the moment conditions
∫
S
tkh (t) dµ = mk for all k ∈ Nn0 , then h is

unique in L∞,µ (S) with this property. Indeed, according to Lemma 3 of [21], the subspace P of all polynomial functions on
S is dense in L1,µ (S), since µ is M -determinate by hypothesis. It remains to prove the implications (b) =⇒ (a) , (c) =⇒ (a),
their converses (a) =⇒ (b) , (a) =⇒ (c) being obvious. To prove (b) =⇒ (a) , the corresponding implication of Theorem
2.1 is applied, where E stands for L1,µ (S) , M = P, T1

(∑
ki≤d αkpk

)
=
∑
ki≤d αkmk, Ψ = ‖·‖1,µ, F = R. The implica-

tion (c) =⇒ (a) is the implication (b) =⇒ (a) from Theorem 2 of [21], where yj stands for mj , j ∈ Nn0 , Y=R, T2 (ϕ) =∫
S
ϕdµ, ϕ ∈ L1,µ (S) . Then one uses Remark 2.2. This concludes the proof.

Next, we prove a variant of Theorem 2.5 for a special set S, endowed with a natural probability measure µ. Namely,
when S is a Cartesian product of closed unbounded intervals, a part of the necessary and sufficient conditions for the
existence of the solution can be expressed in terms of quadratic forms. In the one-dimensional case, if S = [0,∞) or
S = R, then the equivalent checkable condition for the existence of the (unique) solution is completely expressed in terms
of quadratic forms.

Theorem 2.6. Let S = [0,∞)
n
, n ∈ N, n ≥ 2, be endowed with the measure

dµ = exp

(
−

n∑
k=1

tk

)
dt1 · · · dtn,

and (mk)k∈Nn
0

a given sequence of real numbers. The following statements are equivalent:

(a) There exists a unique h ∈ L∞,µ (S) such that 0 ≤ h ≤ 1 and∫
S

tkh (t) dµ = mk

for all k ∈ Nn0 .

(b) For any finite subset J0 ⊂ Nn0 , and for any {ak}k∈J0 ⊂ R, the following implication holds:∑
k∈J0 akpk ≥ 0 on S =⇒

∑
k∈J0 akmk ≥ 0; for any finite subsets Jk ⊂ N0, k = 1, . . . , n, and for any {λjk}jk∈Jk , k =

1, . . . , n, the following relations hold

∑
i1,j1∈J1

· · ·
 ∑
in,jn∈Jn

λi1λj1 . . . λinλjnmi1+j1+l1,..,,in+jn+ln

 · · ·
 ≤

∑
i1,j1∈J1

· · ·
 ∑
in,jn∈Jn

λi1λj1 . . . λinλjn (i1 + j1 + l1)! · · · (in + jn + ln)!

 · · ·
 , (l1, . . . , ln) ∈ {0, 1}n.
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Proof. The measure dµ1 = exp (−t) dt is moment determinate on [0,∞) (see Theorem 2 in [25]). According to Lemma 4
of [21] and Theorem 5 in [21], where Y stands for R and

F2 (ϕ) =

∫
[0,∞)n

ϕdµ, ϕ ∈ L1,µ ([0,∞)
n
), µ = µ1 × · · · × µn, dµj = exp (−tj) dtj , j = 1, . . . , n,

the conclusion follows via standard measure theory arguments.

The case n = 1, S = [0,∞), is of special interest (it leads to the one-dimensional Stieltjes moment problem). Namely,
the following result holds, where only quadratic forms are involved. This formulation is possible due to the explicit form
of nonnegative polynomials on [0,∞) in terms of sums of squares.

Theorem 2.7. Let (mk)k∈N0
be a sequence of real numbers. The following statements are equivalent:

(a) There exists a unique h ∈ L∞,µ (S) such that 0 ≤ h ≤ 1 and∫
S

tkh (t) exp (−t) dt = mk

for all k ∈ Nn0 .

(b) For any finite subset J0 ⊂ N0 and any {λk}k∈J0 ⊂ R, the following inequalities hold:

0 ≤
∑
i,j∈J0

λiλjmi+j+l ≤
∑
i,j∈J0

λiλj (i+ j + l)! , l ∈ {0, 1} .

Proof. By using Theorem 2.6 and the explicit form of nonnegative polynomials p on [0,∞) ,we have: p (t) ≥ 0 for all t ∈ [0,∞)

if and only if p (t) = q2 (t) + tr2 (t) , t ≥ 0, for some q, r ∈ R[t] (see [1]); the conclusion follows.

In other words, conditions (b) of Theorem 2.7 say that

0 4 (mi+j)
d
i,j=0 4 ((i+ j)!)

d
i,j=0 and 0 4 (mi+j+1)

d
i,j=0 4 ((i+ j + 1)!)

d
i,j=0 (4)

for any natural number d ∈ N0.We recall that the natural order relation on the space of symmetric (d+ 1)×(d+ 1) matrices
with real coefficients, appearing in (4) is: A 4 B if and only if 〈Ax, x〉 ≤ 〈Bx, x〉 for all x ∈ Rd+1 (see also [15] for details
and related results).

We next consider the construction of the solution h for the truncated moment problem related to the Theorem 2.7, in
the space L2,µ ([0,∞)) , dµ = exp (−t) dt. The problem: find a function h ∈ L2,µ ([0,∞)) such that∫ ∞

0

tjh (t) exp (−t)dt = mj , j ∈ {0, 1, . . . , d} ,

seems to admit the simplest solution a polynomial function of degree d. We start by looking for a polynomial

h (t) =

d∑
j=0

λjt
j , λj ∈ R,

d∑
j=0

λ2j > 0,

such that

ml =

∫ ∞
0

tlh (t) exp (−t) dt =

d∑
j=0

λj (l + j)!, l ∈ {0, 1, . . . , d} . (5)

The linear system (5) in the unknowns λj , j = 0, 1, . . . , d has the square symmetric matrix A = ((l + j)!)
d
l,j=0. The latter

matrix is positive definite because

d∑
l,j=0

λlλj (l + j)! =

∫ ∞
0

 d∑
j=0

λjt
j

2

exp (−t)dt > 0

for all (λ0, . . . , λd) ∈ Rd+1\ {0} . In particular, A is invertible (and its inverse is positive definite); so the system (5) is a
Cramer system and from (5) it results its unique solution

(λ0, . . . , λd)
t

= A−1(m0, . . . ,md)
t
. (6)
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This method seems to work for any closed subset S ⊆ R, having nonempty interior, endowed with a measure dµ = wdt,

where w is positive and continuous on S and ∫
S

|t|kw (t) dt <∞, ∀ k ∈ N0.

Then, the system (5) becomes

ml =

∫ ∞
0

tlh (t)w (t) dt =

d∑
j=0

λj

∫
S

tj+lw (t) dt, l ∈ {0, 1, . . . , d} .

The matrix A =
(∫
S
tj+lw (t) dt

)d
j,l=0

is positive definite since

d∑
l,j=0

λlλj

∫
S

tl+jw (t) dt =

∫
S

 d∑
j=0

λjt
j

2

w (t) dt > 0

for all (λ0, . . . , λd) 6= 0. In particular, A is invertible and (6) holds.

3. Perturbations of moments and the corresponding perturbations of solutions

Assume now that the moments mk, where k = (k1, . . . , kn) ∈ Nn0 , 0 ≤ ki ≤ d, i ∈ {1, 2, . . . , n}, are exact and determined in
a training stage when no external influence can occur. Also, assume that the moments in real time stage, denoted by vk,
where ki ≤ d and i = 1, . . . , n, can be measured, but errors may occur due to external influences. The vector subspace of
polynomials involved this way has the dimension (d+ 1)

n
. Assume now that there exists h,w in L2,µ (S) such that∫

S

tkh (t) dµ = mk and
∫
S

tkw (t) dµ = vk

for all multi-index k ∈ Nn0 having all components 0 ≤ ki ≤ d, i = 1, . . . , n. Let {ek}0≤ki≤d be the orthogonal system of
polynomials having unit norms, obtained from the system {pk}0≤ki≤d via Gram-Schmidt process, in the space L2,µ (S). We
denote by

Pd : L2,µ (S)→ Span {ek; ki ∈ {0, . . . , d} , i = 1, . . . , n}

the orthogonal projection. The following evaluations hold:

ek =
∑
l≤k

cl,kpl,

where l ≤ k means li ≤ ki, i = 1, . . . , n, and the coefficients cl,k are known from Gram-Schmidt process. This yield:

〈Pd (h)− Pd(w) , ek〉 =
∑
l≤k

cl,k〈Pd (h)− Pd(w) , pl〉 =
∑
l≤k

cl,k (ml − vl) .

Hence,

‖Pd (w)− Pd (h)‖22,µ =
∑
ki≤d

〈Pd (h)− Pd(w) , ek〉2 =
∑
ki≤d

∑
l≤k

cl,k (ml − vl)

2

. (7)

Thus, one determines the integral mean of the square (Pd (w)− Pd (h))
2 in the left hand side of (7), in terms of the squares

of the errors |mk − vk| , (ki ≤ d for all i ∈ {1, . . . , n}).

4. Conclusion

Existence (and uniqueness) of the solutions for the classical (full) Markov moment problem are emphasized. Truncated
moment problems are also under attention. For the one-dimensional case, a polynomial solution of truncated moment
problem is sketched. Improving and completing this last result in the context of the multidimensional or/and full mo-
ment problem could be a subject for future work. In the last part of the paper, perturbation of the solution in terms of
perturbations of the moments is discussed.
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[18] O. Olteanu, Théorèmes de prolongement d’opérateurs linéaires (Theorems on extension of linear operators), Rev. Roum Math. Pures Appl. 28 (1983)

953–983.
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