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Abstract
This paper is concerned with a recently introduced graph invariant, namely the Sombor index. Some bounds on the Som-
bor index are derived, and then utilized to establish additional bounds by making use of the existing results. One of the
direct consequences of one of the obtained bounds is that the cycle graph Cn attains the minimum Sombor index among all
connected unicyclic graphs of a fixed order n ≥ 4. Graphs having the maximum Sombor index are also characterized from
the classes of all connected unicyclic, bicyclic, tricyclic, tetracyclic, and pentacyclic graphs of a fixed order, and a conjecture
concerning the maximum Sombor index of graphs of higher cyclicity is stated. A structural result is derived for graphs with
integer values of Sombor index. Several possible directions for future work are also indicated.
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1. Introduction

For a graph G, its edge set and vertex set are denoted by E(G) and V (G), respectively. If two vertices of G are adjacent,
we write uv. For a vertex u ∈ V (G), its degree and the set of all vertices adjacent to u are denoted by du(G) and NG(u),
respectively. DefineNG[u] = NG(u)∪{u}. A graph containing no cycle is known as an acyclic graph. The cyclomatic number
of a graph G is denoted by ν(G) and is defined as the minimum number of those edges of G whose removal makes G as
acyclic. From the notation du(G) and ν(G) we drop “(G)”, and from NG(u) and NG[u] we drop the subscript “G”, when there
is no confusion possible. A graph with the cyclomatic number ν is also known as the ν-cyclic graph. For ν = 1, 2, 3, 4, 5, the
ν-cyclic graph is also referred to as the unicyclic graph, bicyclic graph, tricyclic graph, tetracyclic graph, pentacyclic graph,
respectively. A vertex u ∈ V (G) of degree 1 is called a pendent vertex. The graph-theoretical terminology and notation
used in this paper but not described here, can be found in some standard graph-theoretical books, like [5,7,11].

A graph invariant of a graph is a numerical quantity that remains same under graph isomorphism. In chemical graph
theory, graph invariants are usually referred to as the topological indices. Recently, Gutman [14] devised a new topological
index under the name Sombor index. For a graph G, its Sombor index is defined as

SO(G) =
∑

uv∈E(G)

√
d2u + d2v .

The problem of finding graph attaining the maximum/minimum Sombor index from the class of all trees/graphs/connected
graphs of a fixed order was solved in [14]. In the present paper, we derive some bounds on the Sombor index. These bounds
can be utilized to establish additional bounds by making use of the existing results. One of the direct consequences of one
of the obtained bounds is that the cycle graph Cn attains the minimum Sombor index among all connected unicyclic graphs
of a fixed order n ≥ 4.

Also, for ν = 1, 2, 3, 4, 5, we prove that Hn,ν is the unique graph having the maximum Sombor index in the class of
all connected unicyclic, bicyclic, tricyclic, tetracyclic, pentacyclic, respectively, graphs of a fixed order n, where n ≥ 4 +

d(ν + 1)/2e and Hn,ν is the graph (see [3]) obtained from the star graph Sn by adding ν edge(s) between a fixed pendent
vertex and ν other pendent vertices. Moreover, it is conjectured that Hn,ν is the unique graph attaining the maximum
Sombor index among all connected ν-cyclic graphs of order n, where ν and n are fixed integers satisfying the inequality
6 ≤ ν ≤ n−2. Furthermore, a structural result is derived for graphs with integer values of Sombor index. Several possible
directions for future work are indicated in the last section.
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T. Réti, T. Došlić, and A. Ali / Contrib. Math. 3 (2021) 11–18 12

2. Bounds and extremal results

The Randić index, for a graph G, is defined [17,20] as

R(G) =
∑

uv∈E(G)

(du dv)
−1/2 .

For any graph G of size m, it holds (see [12,15]) that

R(G) ·RR(G) ≥ m2 (1)

with equality if and only if G is regular, where RR(G) is the reciprocal Randić index defined [12,15] as

RR(G) =
∑

uv∈E(G)

√
du dv .

Firstly, we give a lower bound on the Sombor index in terms of the reciprocal Randić index.

Proposition 2.1. For any graph G, it holds that

SO(G) ≥
√

2 ·RR(G)

where the equality sign holds if and only if every component of G is regular.

Proof. The desired result follows from the fact that the inequality (du − dv)
2 ≥ 0 holds for every edge uv ∈ E(G) with

equality if and only if du = dv.

By using Proposition 2.1 and (1), we have the following result.

Corollary 2.1. If G is a graph of size m then
R(G) · SO(G) ≥

√
2m2

with equality if and only if G is regular.

In literature, there exists many upper bounds on the Randić index (for example, see [17]) and hence one can obtain many
lower bounds on the Sombor index by using Corollary 2.1. For instance, let us derive one such bound. It is a well-known
fact (for example, see [6]) that if G is a graph without isolated vertices then

R(G) ≤ n

2
(2)

with equality if and only if every component of G is regular. The next result follows from Corollary 2.1 and (2).

Corollary 2.2. If G is a graph of order n, size m and minimum degree at least 1, then

SO(G) ≥ 2
√

2m2

n

with equality if and only if G is regular.

The next result is an obvious but significant consequence of Corollary 2.2.

Corollary 2.3. Among all connected unicyclic graphs of a fixed order n ≥ 4, cycle Cn is the unique graph with the minimum
Sombor index and this minimum value is 2

√
2n.

For a graph G, its forgotten topological index is defined [4,13] as

F (G) =
∑

u∈V (G)

d3u =
∑

uv∈E(G)

(d2u + d2v).

Now, we give an upper bound on the Sombor index of a graph G in terms of the forgotten topological index and size of G.

Proposition 2.2. For any graph G of size m ≥ 1, it holds that

SO(G) ≤
√
m · F (G)

where the equality sign holds if and only if there exist a constant λ such that the equation d2u + d2v = λ holds for every pair
of adjacent vertices u, v ∈ V (G).
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Proof. By Cauchy-Bunyakovsky-Schwarz’s inequality, it holds that ∑
uv∈E(G)

√
d2u + d2v

2

≤
∑

uv∈E(G)

(1)
∑

uv∈E(G)

(d2u + d2v)

with equality if and only if there exist a real number λ′ such that
√
d2u + d2v = λ′ for every pair of adjacent vertices u, v ∈

V (G).

The next corollary follows from Proposition 2.2 and from the fact: If T is a tree of order n then F (T ) ≤ (n−1)[(n−1)2+1]

with equality if and only if T is the star graph Sn (see [18]).

Corollary 2.4. [14] Among all trees of a fixed order n ≥ 4, star Sn is the unique graph with the maximum Sombor index
and this maximum value is (n− 1)

√
(n− 1)2 + 1.

Next, in order to characterize graphs attaining the maximum Sombor index in the classes of all connected unicyclic,
bicyclic, tricyclic, tetracyclic, and pentacyclic graphs of a fixed order, we need some results first.

Lemma 2.1. Let f(x, y) =
√
x2 + y2 where x > 0 and y > 0. The functions f and fx are strictly increasing in x on the

interval [1,∞), where fx denotes the partial derivative function of f with respect to x.

Lemma 2.2. [2] Let ν and n be fixed integers satisfying the inequality 0 ≤ ν ≤ n− 2. Among all connected ν-cyclic graphs
of order n, let G be a graph having the maximum value of the graph invariant BID(G) =

∑
uv∈E(G) f(du, dv), where f is

a non-negative real-valued symmetric function defined on the set of positive real numbers. Also, let both the expressions
f(x0 + t, y0)− f(x0, y0)− (f(c, y0)− f(c− t, y0)) and f(x0 + t, c− t)− f(x0, c) be non-negative, for every choice of the numbers
x0, y0, c, t satisfying the inequalities x0 ≥ c > t ≥ 1, c ≥ 2 and y0 ≥ 1. If one of the following two conditions holds:

• The function f is increasing in both variables on the interval [1,∞) and at least one of the expressions f(x0 + t, y0) −
f(x0, y0) − (f(c, y0) − f(c − t, y0)) and f(x0 + t, c − t) − f(x0, c) is positive for every choice of the numbers x0, y0, c, t
satisfying the inequalities x0 ≥ c > t ≥ 1, c ≥ 2 and y0 ≥ 1.

• The function f is strictly increasing in both variables on the interval [1,∞).

Then, the maximum degree of G is n− 1.

The next result is a direct consequence of Lemma 2.2.

Corollary 2.5. Let ν and n be fixed integers satisfying the inequality 0 ≤ ν ≤ n− 2. If G is a graph having the maximum
Sombor index among all connected ν-cyclic graphs of order n then the maximum degree of G is n− 1.

Proof. Define f(x, y) =
√
x2 + y2 and let x0, y0, c, t be any fixed real numbers satisfying the inequalities x0 ≥ c > t ≥ 1,

c ≥ 2 and y0 ≥ 1. Clearly, the function f is strictly increasing in both variables on the interval [1,∞). Also, there exist
numbers c1, c2 satisfying c− t < c2 < c ≤ x0 < c1 < x0 + t such that

f(x0 + t, y0)− f(x0, y0)− (f(c, y0)− f(c− t, y0)) = t[fx(c1, y0)− fx(c2, y0)];

the right hand side of this equation is positive because of Lemma 2.1. Moreover, the inequality f(x0 + t, c− t)− f(x0, c) > 0

follows from the assumption x0 ≥ c > t ≥ 1. Thus, all the conditions mentioned in Lemma 2.2 are satisfied for f and hence
the maximum degree of G is n− 1.

As the star Sn is the unique graph having the maximum degree n− 1 among all trees of a fixed order n ≥ 4, Corollary
2.4 follows also from Corollary 2.5.

Lemma 2.3. For the fixed integers ν and n satisfying the inequality 2 ≤ ν ≤ n − 2, let G be a graph having the maximum
Sombor index among all connected ν-cyclic graphs of order n. If u, v ∈ V (G) are non-pendent vertices satisfying dv ≥ du

then N(u) ⊂ N [v].
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Proof. From the assumption dv ≥ du, it follows that N(u) 6= N [v]. We have to show that the set N(u)\N [v] is empty.
Contrarily, suppose that N(u)\N [v] is non-empty. Let N(u)\N [v] := {u1, u2, · · · , uk}. Corollary 2.5 guaranties that the
maximum degree ofG is n−1, which implies that the setN(u)∩N(v) must be non-empty. LetG′ be the graph deduced fromG

by deleting the edges u1u, u2u, · · · , uku and inserting the edges u1v, u2v, · · · , ukv. In what follows, we assumeN(w) = NG(w)

and dw = dw(G) for any vertex w ∈ V (G′) = V (G). Now, one has

SO(G)− SO(G′) =
∑

a∈N(u)∩N(v)

[f(du, da)− f(du − k, da) + f(dv, da)− f(dv + k, da)]

+
∑

b∈N(v)\N(u)

[f(dv, db)− f(dv + k, db)] +

k∑
i=1

[f(du, dui)− f(dv + k, dui)]

+ εuv [f(du, dv)− f(du − k, dv + k)] (3)

where the function f is defined in Lemma 2.1 and

εuv =

1 if u and v are adjacent,

0 otherwise.

It is clear that f(du, dv)− f(du− k, dv + k) < 0. Also, note that there exist numbers c1, c2 satisfying du− k < c1 < du ≤ dv <
c2 < dv + k such that

f(du, da)− f(du − k, da) + f(dv, da)− f(dv + k, da) = k[fx(c1, da)− fx(c2, da)]. (4)

Since c2 > c1, by Lemma 2.1 the right hand side of Equation (4) is negative, and hence by using Lemma 2.1 in (3), we get
SO(G)− SO(G′) < 0, which contradicts the definition of G.

Lemma 2.4. For the fixed integers ν and n satisfying the inequality 2 ≤ ν ≤ n − 2, let G be a graph having the maximum
Sombor index among all connected ν-cyclic graphs of order n. If V (G) = {v1, v2, . . . , vn} such that dv1 ≥ dv2 ≥ · · · ≥ dvn ,
then the vertex v2 is adjacent to all non-pendent vertices of G.

Proof. The proof is fully analogous to that of Lemma 6 of the paper [3].

For ν ≥ 1, denote by Hn,ν the graph deduced from the star Sn by adding ν edge(s) between a fixed pendent vertex and ν
other pendent vertices. Now, we are in position to characterize graphs attaining the maximum Sombor index in the classes
of all connected unicyclic, bicyclic, tricyclic, and tetracyclic graphs of a fixed order.

Theorem 2.1. If ν and n are fixed integers such that ν ∈ {1, 2, 3, 4} and n ≥ 3+d(ν+1)/2e then among all connected ν-cyclic
graphs of order n, only the graph Hn,ν has the maximum Sombor index and

SO(Hn,ν) = (n− ν − 2)
√

(n− 1)2 + 1 +
√

(n− 1)2 + (ν + 1)2 + ν
[√

(n− 1)2 + 4 +
√

(ν + 1)2 + 4
]
.

Proof. By Corollary 2.5 and Lemma 2.4, a graph having the maximum Sombor index among all connected ν-cyclic graphs
of order n must satisfy the following two conditions:

(I). The maximum degree is n− 1.

(II). If {v1, v2, . . . , vn} is the vertex set such that dv1 ≥ dv2 ≥ · · · ≥ dvn , then v2 is adjacent to all non-pendent vertices.

Clearly, if ν ∈ {1, 2} then Hn,ν is the unique graph satisfying both the conditions (I) and (II). For ν = 3, there are only two
graphs satisfying both the conditions (I) and (II): one is Hn,3 and the other one, say H ′n,3, is the graph deduced from Hn,2

by inserting an edge between the two vertices of degree 2. By elementary calculations, one has

SO(Hn,3) = (n− 5)
√

(n− 1)2 + 1 + 3
√

(n− 1)2 + 4 +
√

(n− 1)2 + 16 + 6
√

5

and
SO(H ′n,3) = (n− 4)

√
(n− 1)2 + 1 + 3

√
(n− 1)2 + 9 + 9

√
2.

If n ∈ {5, 6, · · · , 13} then it is directly verified that SO(Hn,3) > SO(H ′n,3). If n ≥ 14 then√
(n− 1)2 + 4 >

√
(n− 1)2 + 9− 1

5

14
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and hence
SO(Hn,3)− SO(H ′n,3) >

[√
(n− 1)2 + 16−

√
(n− 1)2 + 1

]
+

[
6
√

5− 9
√

2− 3

5

]
> 0.

Finally, we consider the case ν = 4. In this case, there are exactly 11 non-isomorphic connected ν-cyclic graphs of order
n ≥ 6 and maximum degree n − 1 (these 11 graphs are given in Figure 3 of [2]). However, from these 11 graphs, only two
graphs obey the condition (II); one is Hn,4 and the other one, say H ′n,4, is the graph deduced from Hn,3 by inserting an edge
between two vertices of degree 2. Here, one has

SO(Hn,4) = (n− 6)
√

(n− 1)2 + 1 + 4
√

(n− 1)2 + 4 +
√

(n− 1)2 + 25 + 4
√

29

and
SO(H ′n,4) = (n− 5)

√
(n− 1)2 + 1 +

√
(n− 1)2 + 4 + 2

√
(n− 1)2 + 9 +

√
(n− 1)2 + 16 + 2

√
5 + 3

√
2 + 10,

and hence

SO(Hn,4)− SO(H ′n,4) >
[√

(n− 1)2 + 9−
√

(n− 1)2 + 1
]

+
[√

(n− 1)2 + 25−
√

(n− 1)2 + 16
]

+

[
4
√

29− 3

2
− 2
√

5− 3
√

2− 10

]
, (5)

because
√

(n− 1)2 + 4 >
√

(n− 1)2 + 9 − 1
2 for every n ≥ 6. On the right hand side of (5), note that the whole expression

within every pair of square brackets “[...]” is positive for each n ≥ 6 and thereby SO(Hn,4) > SO(H ′n,4).

We end this section with the following natural conjecture arising from Theorem 2.1.

Conjecture 2.1. If ν and n are fixed integers satisfying the inequality 5 ≤ ν ≤ n − 2 then among all connected ν-cyclic
graphs of order n, only the graph Hn,ν has the maximum Sombor index.

Conjecture 2.1 can be easily verified for ν = 5 by using the way adopted in the proof of Theorem 2.1. In [1], all the
possible 26 non-isomorphic connected 5-cyclic (pentacyclic) graphs of a fixed order n ≥ 7 and having maximum degree n−1

are given. From these 26 graphs, only three graphs obey the condition (II) mentioned in the proof of Theorem 2.1. Among
these three graphs, one is Hn,5; one is the graph, say H ′n,5, deduced from Hn,4 by inserting an edge between two vertices
of degree 2; and the remaining one is the graph, say H ′′n,5, deduced from H ′n,4 by inserting an edge between a vertex of
degree 2 and a vertex of degree 3; where the graph H ′n,4 is defined in the proof of Theorem 2.1. We have verified that
SO(Hn,5) > SO(H ′n,5) and SO(Hn,5) > SO(H ′′n,5) for n ≥ 7.

3. Graphs with integer-valued Sombor indices

This section is motivated by remarks in [14] about the equality of degree-radii of two degree-points. Recall that the degree-
radius is, in fact, equal to the contribution ϕ(e) =

√
d2u + d2v of an edge e = uv between the vertices u and v with degrees

du and dv, respectively. For chemical graphs, i.e., for graphs whose maximum degree ∆ does not exceed 4, it immediately
leads to the following result.

Proposition 3.1. Let G be a (connected) chemical graphs without isolated vertices. Then SO(G) is an integer if and only if
G is a biregular bipartite graph with degrees δ = 3 and ∆ = 4. In that case, SO(G) = 5|E(G)|.

Proof. As all degrees are nonnegative integers, all contributions must be either integers or irrational numbers. If a con-
tribution ϕ(e) is an integer for e = uv, then (du, dv, ϕ(e)) must form a Pythagorean triple, and (3, 4, 5) is the only such triple
whose two smaller entries can be degrees of a chemical graph.

Let G = G(∆, δ) be a biregular bipartite graph. Graph G is called semiregular if no edge connects vertices of the same
degree. Hence, a biregular bipartite graph is not necessarily semiregular. Because the complete bipartite graphs are
semiregular, it follows that K3,4 is the smallest chemical graph with integer Sombor index. Another familiar example is
RD, the graph of rhombic dodecahedron - semiregular bipartite graph with 14 vertices (8 of degree 3 and 6 of degree 4),
24 edges and 12 faces, all of them congruent rhombi. It follows immediately from Proposition 3.1 that SO(K3,4) = 60 and
SO(RD) = 120. Another nice example of a semiregular bipartite graph is the rhombic triacontahedron with 32 vertices, 60
edges and 30 rhombic faces. However, its Sombor index is not integer, since its degrees, ∆ = 5 and δ = 3, do not form two
smaller elements in a Pythagorean triple. Yet, there are infinitely many (3, 4)-semiregular graphs for which the Sombor
index is integer and equal to 5|E(G)|. Construction of such semiregular graphs is outlined in ref. [22].

We observe that, being semiregular, all such graphs satisfy Proposition 2.2 with equality.
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Proposition 3.2. Let G be a (3,4)-semiregular graph with m edges. Then

SO(G) =
√
mF (G).

Some of these results can be extended to the case of unrestricted vertex degrees. We start with an auxiliary statement
and then formulate the structural result.

Lemma 3.1. Let G be a connected graph whose Sombor index has an integer value. Then the vertices of the same degree
form independent sets in G and the minimum degree of G is at least three.

Proof. Let e = uv be an edge between two vertices of the same degree du = dv = d. Then the contribution ϕ(e) is an
irrational number, ϕ(e) =

√
2d, contradiction with the assumed integrality of SO(G). The second claim follows from the

fact that 1 and 2 cannot appear in a Pythagorean triple.

Theorem 3.1. Let G be a connected graph and let SO(G) be an integer. Then G is a multipartite graph with the smallest
degree at least three.

We are inclined to believe that in that case G must be a bipartite graph, but proving it would bring us beyond the scope
of this contribution.

4. Further remarks

In this section we offer some concluding remarks and indicate some possible directions for further work. The most obvious
thing to do would be to go beyond the Euclidean norm used by Gutman in definition of SO(G), i.e., to consider the p−variant
SOp(G) defined as

SOp(G) =
∑

uv∈E(G)

(dpu + dpu)1/p.

We call SOp as the p-Sombor index, where p 6= 0. Clearly, SO1 is the first Zagreb index (see [13]) and SO2 is the original
Sombor index.

For a positive p, the edge contributions ϕp(e) = (dpu + dpu)1/p to SOp(G) are well known: they appear as the sums Sp(a)

related to p-means in the classical monograph [16] on inequalities. (Here a stands for the pair (du, dv) of degrees of the
end-vertices of e = uv.) The next result follows immediately from the monotonicity of Sp(a) (see [16], p. 28).

Proposition 4.1. Let G be a simple graph and 0 < p < q. Then

SOq(G) < SOp(G).

The following results is an easy consequence of the Fermat Last Theorem.

Proposition 4.2. Let G be a simple graph and p > 2 an integer. Then SOp(G) is not an integer.

Proof. According to the Fermat Last Theorem, no contribution ϕp(e) can be an integer for integer values of p > 2. Moreover,
all contributions must be irrational, since a p-th root of an integer is either integer, or irrational. As the number of
contributions is an integer, the claim follows.

An interesting thing, however, is that the p-Sombor index of any graph is an integer for p = ∞. This follows from the
fact that limp→∞Sp(a) = max(a), hence an integer, and the integrality of the number of contributions. SO∞(G) can be
neatly expressed in terms of the so-called M -polynomial of G.

Let G be a graph. Its M -polynomial is a bivariate polynomial defined as

M(G;x, y) =
∑
i≤j

mi,j(G)xiyj ,

where mi,j(G) is the number of edges of G whose end-vertices have degrees i and j. We refer the reader to [10] for more
information on M -polynomials.

Proposition 4.3. Let G be a graph. Then

SO∞(G) =
∂

∂y
M(G;x, y)

∣∣
(1,1) .
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For positive values of p between 0 and 1, the following interesting result is obtained for p = 1/2; it can be easily verified
by direct computation.

Proposition 4.4. If G is any graph then
SO1/2(G) = M1(G) + 2RR(G).

The limiting behavior of SOp(G) for p → 0 follows, again, directly from the behavior of Sp(a) at the lower end of the
range.

Proposition 4.5. If G is a graph without isolated vertices then

lim
p→0

SOp(G) =∞.

The p-Sombor indices are of interest also for negative values of p. For example, for p = −1, one obtains a known quantity,
the inverse sum indeg index:

SO−1(G) =
∑

e=uv∈E(G)

dudv
du + dv

= ISI(G).

(See [23] for more information on the inverse sum indeg index.) We leave the systematic exploration of p-Sombor indices
for negative values of p to the interested reader.

Another direction could be pursued by getting rid of the adjacency condition and by considering sums of contributions√
d2u + d2v (or (dpu + dpu)1/p) for all pairs of vertices u, v, whether adjacent or not. This would result in a quantity that could

be called the global or total Sombor index. Its comparison with the classical case would indicate how much information on√
d2u + d2v is captured by the adjacency structure. The difference between the total and the classical Sombor index would

correspond to the Sombor coindex, another potentially interesting object of study.
The last possibility we mention here is going out of plane, i.e., extending the basic idea to higher dimensions. For

an n-vertex graph G we could characterize each of its vertices by N ≥ 2 parameters and study the distribution of the
corresponding radii r(u) on the surface of one or more k-dimensional spheres. We outline here two possible approaches,
and leave further study to the interested reader.

Let fk(u), k = 1, 2, . . . , N , be topological parameters characterizing quantitatively vertex u of an n-vertex graph G. The
N -dimensional edge-based Sombor-like index is defined by

SOE(G) =
∑

uv∈E(G)

r(u, v),

where
r(u, v) =

√
[f1(u)− f1(v)]

2
+ . . .+ [fN (u)− fN (v)]

2
.

A vertex-based Sombor-like index could be constructed starting from the same fk(u), k = 1, 2, . . . , N , in the following
way. Denote by fk the average value of fk(u) over all vertices of G, defined as

fk =
1

n

∑
u∈V (G)

fk(u).

Now define
SOV (G) =

∑
u∈V (G)

r(u),

where
r(u) =

√[
f1(u)− f1

]2
+ . . .+

[
fN (u)− fN

]2
.

By using different parameters for fk(u) one can construct various vertex- and edge-based Sombor-like indices quantifying
various aspects of relationships between the chosen parameters.

We end this paper by pointing out the recent articles [8, 9, 19, 21] on the Sombor index, which came to our attention,
and most of which were published, after the submission of the present paper.
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