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Abstract

Over the past two decades, a significant part of the statistical literature has been devoted to offer distinct univariate dis-
tributions belonging to the Marshall-Olkin family of distributions. It is because this family enjoys attractive statistical
properties, providing consistently better fit than the other generalized distributions with the same parental models, as well
as wider applications. In this article, we provide a brief review of recent developments in Marshall-Olkin type distributions.
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1. Introduction

Introducing parameters in well-known families of distributions has become a topic of high importance in academic research
due to their compulsive properties. Indeed, in general, one-parameter families of distributions are not sufficient to handle
various real contexts, and this fact motivates the construction of new distributions with more than one parameter. So, new
parameters are introduced for expanding the classical distributions to obtain more flexible new families of distributions.
In addition, this parameter induction is helpful in improving the goodness-of-fit of the related statistical models.

Several authors have developed diverse parameter plug-in techniques, with applications in various factual contexts.
Among them, Marshall and Olkin [37] introduced a general method for obtaining more flexible distributions by adding a
new parameter to an existing family of distributions. The obtained family is named as the Marshall-Olkin (MO) family
of distributions. Several researchers showed that distributions obtained from the MO scheme are enough to analyze
data presenting high or moderate skewness. Moreover, the basic motivations for using the MO family in practice are the
following:

• To make the kurtosis more flexible compared to the parental distribution.

• To acquire a pliant skewness for symmetrical parental distributions.

• To construct heavy-tailed distributions.

• To develop distributions with symmetric, left-skewed, right-skewed or reversed-J shape.

• To specify special distributions with all types of hazard rate function (HRF).

• To furnish better fits than other extended models under the same parental model, with at least an equal number of
parameters.

As previously mentioned, in comparison to the parental distribution, the MO family of distributions includes one more
parameter denoted by η. More technical details are now presented. Let us consider a parental continuous distribution with
a cumulative density function (CDF) denoted by F (x) and survival function (SF) denoted by F̄ (x), and a tuning parameter
η > 0. Then, we can obtain a new family of CDFs based on the MO scheme, called univariate MO family of distributions,
and its CDF is given by the following formula:

G(x; η) =
F (x)

η + (1− η)F (x)
; x ∈ R
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or equivalently:
G(x; η) =

F (x)

1− (1− η)F̄ (x)
; x ∈ R

and the corresponding SF is obtained as

Ḡ(x; η) =
ηF̄ (x)

1− (1− η)F̄ (x)
; x ∈ R (1)

If η = 1 then the parental CDF appears; we have G(x; η) = F (x). Otherwise, the following dominance results hold: for
η ∈ (0, 1), we have F (x) ≤ G(x; η), and the reverse ineqality holds for η ≥ 1.

Globally, owing to η, G(x; η) has more flexible capabilities to the parental distribution. This aspect is also reflected in
the definitions of the corresponding probability density function (PDF) and HRF. By denoting f(x) and r(x) the PDF and
HRF of the parental distribution, respectively, the PDF of the MO family of distributions is given by

g(x; η) =
ηf(x)

(η + (1− η)F (x))2
; x ∈ R

and its corresponding HRF is given by
r(x; η) =

r(x)

η + (1− η)F (x)
; x ∈ R.

In particular, we see that r(x) ≤ r(x; η) for η ∈ (0, 1), and the reverse inequality holds for η ≥ 1. In addition, the quantile
function (QF) of the MO family is quite manageable; it is defined by

Q(y; η) = QF

(
ηy

1− (1− η)y

)
; y ∈ (0, 1),

where QF (y) denotes the QF of the parental distribution.
The MO family is based on the following theory. LetX1, X2, . . . be a sequence of independent and identically distributed

random variables with SF F̄ (x) and T be a geometric random variable independent of X1, X2, . . . with probability mass
function (PMF) P (T = t) = η(1 − η)t−1, t = 1, 2, . . . , η ∈ (0, 1), then UT = min(X1, . . . , XT ) has the SF Ḡ(x; η) in Equation
(1). Also, if η > 1 and if T follows the geometric distribution with PMF

P (T = t) = η−1(1− η−1)t−1,

then WT = max(X1, . . . , XT ) has the SF Ḡ(x; η) in Equation (1).
The bivariate version of the MO family of distributions is also popular. In this case, if (X,Y ) is a random vector with joint
CDF denoted by F (x, y) and joint SF denoted by F̄ (x, y), then the joint CDF is given by

G(x, y; η) =
F (x, y)

η + (1− η)F (x, y)
; (x, y) ∈ R2

or equivalently:
G(x, y; η) =

F (x, y)

1− (1− η)F̄ (x, y)
; (x, y) ∈ R2

constitutes the MO bivariate family of distributions. Here again, the new parameter η results in added flexibility of the
parental distribution and influences the reliability properties. Similarly to the univariate case, the corresponding SF is
obtained as

Ḡ(x, y; η) =
ηF̄ (x, y)

1− (1− η)F̄ (x, y)
; (x, y) ∈ R2.

The corresponding PDF and HRF can be expressed in a similar manner.
Since the introduction of the MO family, an extensive work has been done including different interpretations, gener-

alizations, inferential methods, discrete cases and extensions to bivariate and multivariate cases; details can be found
in [49,50,52]. In this paper, we give a short review on the recent developments of the MO family of distributions.

The organization of the rest of the paper is as follows: Section 2 deals with different generalizations of the MO family
of distributions. Section 3 describes the MO types distributions including some of their relevant properties. Finally,
concluding remarks are given in Section 4.
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2. A survey of generalizations of the MO family of distribution

The literature on the MO family is dispersed across many different scientific journals. In this section, we focus only on
the latest works. Recently, several new flexible distributions based on the MO family have been introduced in the lit-
erature. We mention some of them: MO family of heavy-tailed distributions [20], MO additive Weibull distribution [2],
MO Kumaraswamy distribution [21], MO generalized Erlang-truncated exponential distribution [40], MO inverted Ku-
maraswamy distribution [51], MO alpha power family of distributions [39], MO logistic-exponential distribution [35], MO
power inverse exponential distribution [11], MO kappa distribution [27], MO power Lomax distribution [22], MO length-
biased exponential distribution [53] and Weibull MO Lindley distribution [3]. In addition to this, some new discrete models
have been appeared in the literature from existing continuous MO distributions. For instance, we refer the papers [45], [28]
and [29], where the discrete generalized MO versions of uniform, exponential and Weibull distributions, respectively, are
investigated. Moreover, a new discrete MO family of distributions is introduced in [23].

Recently, various properties of the MO family have been discussed by a number of authors. The prediction problem
of the MO exponential distribution based on the Bayesian framework under progressive Type-II censoring was studied
in [15]. A new class of defective distributions based on the MO family has been introduced in [44]. In [13], it was proved
that the MO family characteristics are preserved under marginalization. Constant-partially accelerated life tests for the
MO exponential series system with dependent masked data are described in [19]. The authors of [10] introduced the
Type-I progressive interval censoring schemes of the MO bivariate Weibull (MOBW) distribution and they suggested the
confidence intervals depending on percentile bootstrap of the unknown parameters. A dependent competing risks model
using the MOBW model was developed in [10].

The problem of acceptance sampling based on truncated life tests is another area of research. In this regard, the authors
of [7] proposed acceptance sampling plans from truncated life tests using MO Esscher transformed Laplace. The Bayesian
techniques to examine visualization of prognosis of women with breast cancer using three distributions, namely the MO
exponential distribution, MO exponentiated exponential distribution and MO with exponentiated extension distribution,
has been discussed in [1].

In addition, several attempts have been made to define generalizations of the MO family which give great flexibility in
modelling data in practice. Some contributed works on generalized MO family of distributions are enlisted in Table 1.

3. A survey of latest developments of the MO type distributions

This section provides some very recent discussions on the MO type distributions. The multivariate distribution has become
one of the important classical tools to specify the variety of dependence structures. The MO distributions are widely
used in high-dimensional models. In particular, the MO scheme seems to be one of the best schemes to analyze various
dependence structures. The basic properties of the MO bivariate exponential distribution and its correlation structure
have been studied in [34]. The MOBW distribution is an important distribution of MO type distributions, which consists
of singular and absolute continuous parts. The MOBW distribution also has a correlation control parameter, which may
be used to express the relationship of dependent competing risks. Ozkut and Bayramoglu [41] discussed the problem
of the MO type distributions with effect of shock magnitude. Feizjavadian and Hashemi [18] analyzed the problem of
dependent competing risks in the presence of the progressive hybrid censoring by using the MOBW distribution, and gave
two illustrative examples based on the practical data sets.

Stability of systems is an important issue in the field of natural sciences. In stochastic system, stability represents
insensitivity or low sensitivity of their output characteristics to the shapes of some input distributions. Some articles have
been devoted to these issues. For example, the reliability function of the two-component reliability system with MO failure
model for its elements was discussed in [33]. The MO type shock model in coherent systems was considered in [16]. The
reliability, mean residual life and inactivity time of a coherent system subjected to the MO type shocks were discussed
in [12]. Moreover, run shock and MO models were discussed in [42].

4. Conclusion

The MO family of distributions has a nice physical interpretation, so it can be used as an alternative to well-known dis-
tributions in the literature. Induction of the new parameter increases the flexibility of the parental model. This scheme
is found to be useful for modelling distinct practical contexts in recent years. In addition, the MO family can be applied
in different areas, like reliability theory, hydrology, medicine, meteorology, survival analysis, acceptance sampling, record
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Table 1: Various generalized MO families of distributions

Family SF Some sub-families Derived by

Harris extended family Ḡ(x; η, γ) =
[

ηF̄ (x)γ

1−(1−η)F̄ (x)γ

]1/γ
; MO family (γ=1) using the Harris distribution

[8] x ∈ R, η, γ > 0 in [26]

Truncated negative binomial Ḡ(x; η, λ) = MO family (λ = 1) using the negative-binomial
[38] ηλ

1−ηλ

{
[F (x) + ηF̄ (x)]−λ − 1

}
; distribution

x ∈ R, η, λ > 0

Kumaraswamy MO family Ḡ(x; η, a, b) = 1. MO family (a=1 and b=1) using the Kumaraswamy
[6]

{
1−

[
F (x)

1−(1−η)F̄ (x)

]a}b
; 2. Exponentiated MO family generalized family by

x ∈ R, η, a, b, > 0 3. Kumaraswamy family [14]
4. Proportional reversed hazard
rate model (a = 1 and η = 0)
in [24]
5. Proportional hazard rate
(b = 1 and η = 0)
in [25]

Beta MO family Ḡ(x; η, a, b) = 1. Generalized family (η=1)
[5] 1− I[ F (x)

η+(1−η)F (x)

](a, b); in [17]

x ∈ R, η, a, b > 0 2. Exponentiated MO (a = 1) using the T-X family
3. MO family (a = 1 and b = 1) in [9]
4. Proportional reversed hazard
rate model (a = 1 and η = 0)
5. proportional hazard rate
(b = 1 and η = 0)

Truncated discrete Mittag-Leffler Ḡ(x; c, p) =
1−F (x)p

1+cF (x)p
; MO family (c = 1−η

η and p = 1) using the truncated discrete
[46] x ∈ R, c, p > 0 Mittag-Leffler scheme

Exponentiated MO family Ḡ(x; η, γ) =
[

ηF̄ (x)

1−(1−η)F̄ (x)

]γ
; MO family (γ = 1) using the Lehmann alternative 1

[30] x ∈ R, η, γ > 0 approach

MO generalized family Ḡ(x; η, a) = 1− 1−[F̄ (x)]a

1−(1−η)[F̄ (x)]a
; MO family (a = 1) applying the generalizing

[54] x ∈ R, η, a > 0 method in [25]

Truncated discrete Linnik Ḡ(x; p, v, c) = 1. Truncated discrete Mittag-Leffler using the truncated discrete
[30] (1+c)v−[1+cF (x)p]v

[1+cF (x)p]v [(1+c)v−1]
; (v = 1 and p 6= 1) Mittag-Leffler scheme

x ∈ R, p > 0, v > 0, c > 0 2. MO family (p = 1 and v = 1)

Weibull MO family Ḡ(x; η, β) = 1. MO family (β = 1) using the T-X family
[31] exp

(
−
{
− log

[
ηF̄ (x)

1−(1−η)F̄ (x)

]}β)
; 2. Weibull-X family (η = 1)

in [9]
x ∈ R, η, β > 0

MO generalized Poisson family Ḡ(x; η, α, λ) = 1− (1− e−λ)−1× 1. MO family (λ→ 0 and α = 1) using the Poisson
[32]

[
1− exp

{
−λ
[
1− ηF̄ (x)α

1−(1−η)F̄ (x)α

]}]
; 2. Poisson generalized family compounding scheme

(η = 1 and α = 1)
in [43]

x ∈ R, η, α, λ > 0

MO exponentiated Ḡ(x; η, a, b) = 1. MO family (a = 1 and b = 1) using the Kumaraswamy
generalized family 1− [1−F̄ (x)a]b

η+(1−η)[1−F̄ (x)a]b
; 2. Kumaraswamy generalized generalized family

[55] family (η = 1)
x ∈ R, η, a, b > 0

MO transmuted extended family Ḡ(x; η, θ) = using the transmuted generalized
[4] 1− F (x)[1+θ−θF (x)]

η+(1−η)F (x)[1+θ−θF (x)]
; 1. MO family (θ = 1) family

x ∈ R, η > 0, |θ| ≤ 1 2. Transmuted generalized family
(η = 1) in [47]

value theory, time series modelling and engineering. The recent developments of the MO distributions are discussed in
this paper.
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