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Abstract

A set S of vertices in a nontrivial connected graph G is a total dominating set if every vertex of G is adjacent to some
vertex of S. The minimum cardinality of a total dominating set for G is the total domination number of G. A function
h : V (G) → {0, 1} is a total dominating function of a graph G if σh(v) =

∑
u∈N(v) h(u) ≥ 1 for every vertex v of G. A total

dominating function h of a nontrivial graph G is irregular if σh(u) 6= σh(v) for every two vertices u and v of G. While no
graph possesses an irregular total dominating function, a graph G has an antiregular total dominating function h if there
are exactly two vertices u and v of G such that σh(u) = σh(v). It is shown that for every integer n ≥ 3, there are exactly two
non-isomorphic graphs of order n having an antiregular total dominating function. If h is a total dominating function of a
graph G such that σh(v) is the same constant k for every vertex v of G, then h is a k-regular total dominating function of G.
We present some results dealing with properties of regular total dominating functions of graphs. In particular, regular total
dominating functions of trees are investigated. The only possible regular total dominating functions for a nontrivial tree
are 1-regular total dominating functions. We characterize those trees having a 1-regular total dominating function. We also
investigate k-regular total dominating functions of several well-known classes of regular graphs for various values of k.

Keywords: domination; total domination; total dominating function; irregular, antiregular, and regular total dominating
functions.

2020 Mathematics Subject Classification: 05C05, 05C69, 05C75.

1. Introduction

Domination in graphs has become one of the most popular areas of graph theory, no doubt due to its many fascinating
problems and applications to modern society, as well as the sheer mathematical beauty of the subject. While this area
evidently began with work by the French mathematician Claude Berge [3] in 1958 and the Norwegian-American mathe-
matician Oystein Ore [15] in 1962, domination did not become an active area of research until 1977 with the appearance of
the survey paper by Ernest Cockayne and Stephen Hedetniemi [7]. Since then a large number of variations of domination
have surfaced and provided numerous applications to different areas of science and real-life problems (see [5, 12, 13]). In
1987, Hedetniemi introduced the concept of dominating functions which (a) provided an analytic method of studying this
discrete concept, (b) built a connection between domination and graph labelings and colorings, and (c) gave rise to new
dominating function parameters (see [4,11]). In 2019, Gary Chartrand introduced several variations of dominating func-
tions in connection with some of the best-known concepts in graphs, including irregularity, regularity and chromaticity in
graphs (see [1,2,5,8–10]).

A vertex u is said to dominate a vertex v in a graph if either u = v or v is a neighbor of u. One of the many variations
of domination is total domination, introduced by Cockayne, Dawes, and Hedetniemi [6]. In this variation, a vertex u

dominates a vertex v only if v is a neighbor of u, that is, a vertex does not dominate itself.
A set S of vertices in a graph G is a total dominating set for G if every vertex of G is adjacent to some vertex of S. In

particular, every vertex of S must be adjacent to another vertex of S. Therefore, a graphG has a total dominating set if and
only if G contains no isolated vertices. Furthermore, if S is a total dominating set of G, then the subgraph G[S] induced by
S contains no isolated vertices. The minimum cardinality of a total dominating set for G is the total domination number
γt(G) of G.

There is another way to look at total domination and the total domination number of a graphGwithout isolated vertices.
Let h : V (G)→ {0, 1} be a function. Then h gives rise to another function σh : V (G)→ N ∪ {0} defined by

σh(v) =
∑

u∈N(v)

h(u),
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where N is the set of positive integers and N(v) is the neighborhood of v. Thus, 0 ≤ σh(v) ≤ deg v ≤ ∆(G) for every vertex
v of G. If σh(v) ≥ 1 for every vertex v of G, then h is called a total dominating function of G. If h is a total dominating
function of G, then the set Ih = {v ∈ V (G) : h(v) = 1} is a total dominating set of G. On the other hand, if S is a total
dominating set in G, then the function h that assigns 1 to each vertex of S and 0 to each vertex in S = V (G)− S is a total
dominating function of G with Ih = S. This is illustrated in Figure 1 where a total dominating function of a graph G is
obtained from a total dominating set in G.

Figure 1: A total dominating function in a graph.

Observation 1.1. Let G be a nontrivial connected graph and let h : V (G) → {0, 1} be a total dominating function of G.
Then ∑

v∈V (G)

σh(v) =
∑

v∈V (G)

deg v · h(v) =
∑
x∈Ih

deg x.

2. Irregular and antiregular total dominating functions

Let G be a connected graph with no isolated vertices. If h is a total dominating function of G such that σh(u) 6= σh(v) for
every two vertices u and v of G, then h is called an irregular total dominating function of G. However, no graph possesses
an irregular total dominating function.

Observation 2.1. No nontrivial connected graph possesses an irregular total dominating function.

A nontrivial graph G is antiregular if exactly two vertices of G have the same degree. Furthermore, for every integer
n ≥ 2, there are exactly two non-isomorphic antiregular graphs of order n, one of which is connected (see [1,2]). We denote
the connected antiregular graph of order n by Gn and its complement by Gn. Since the disconnected antiregular graph Gn

of order n ≥ 2 contains an isolated vertex, it follows that Gn does not have a total dominating function.
A total dominating function h : V (G) → {0, 1} of a nontrivial connected graph G of order n is called antiregular if

|{σh(v) : v ∈ V (G)}| = n − 1, that is, if there are exactly two vertices x and y of G such that σh(x) = σh(y). Consequently,
if h is an antiregular total dominating function of G, then {σh(v) : v ∈ V (G)} = [n− 1] = {1, 2, . . . , n− 1}. Every connected
antiregular graph has an antiregular total dominating function.

Proposition 2.1. Every connected antiregular graph has an antiregular total dominating function.

Proof. For the unique connected antiregular graph Gn of order n ≥ 2, define the total dominating function f : V (Gn) →
{0, 1} by f(v) = 1 for every vertex v of Gn. Thus, σf (v) = deg v ≥ 1 for each v ∈ V (Gn). Since Gn is antiregular, f is an
antiregular total dominating function of Gn.

There are also non-antiregular graphs having an antiregular total dominating function. For example, the three graphs
of Figure 2 are not antiregular but have an antiregular total dominating function, also shown in Figure 2.

Figure 2: Non-antiregular graphs with an antiregular total dominating function.

These examples give rise to the following question.

Which non-antiregular graphs of order 3 or more have an antiregular total dominating function?
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Each of the three graphs of order n ∈ {3, 4, 5} in Figure 2 has maximum degree n− 1 and minimum degree 2. As we show
next, this is true for all non-antiregular graphs of order 3 or more having an antiregular total dominating function.

Proposition 2.2. If a non-antiregular graph G of order n ≥ 3 has an antiregular total dominating function, then ∆(G) =

n− 1 and δ(G) = 2.

Proof. Let G be a non-antiregular graph of order n ≥ 3 and let h : V (G) → {0, 1} be an antiregular total dominating
function of G. Then Sh = {σh(x) : x ∈ V (G)} = [n − 1]. Assume, to the contrary, that either ∆(G) ≤ n − 2 or δ(G) 6= 2.
First, suppose that ∆(G) ≤ n− 2. Since 1 ≤ σh(v) ≤ ∆(G) ≤ n− 2 for every vertex v of G, it follows that Sh ⊆ [n− 2], which
is a contradiction. Consequently, ∆(G) = n− 1.

Next, suppose that δ(G) 6= 2. We consider two cases, according to whether δ(G) = 1 or δ(G) ≥ 3.
Case 1. δ(G) = 1. Let u be an end-vertex of G and let v ∈ V (G) such that σh(v) = n− 1. Then deg v = n− 1 and h(x) = 1

for each x ∈ N(v) = V (G) − {v}. On the other hand, the end-vertex u is adjacent only to v and so h(v) = 1. Therefore,
h(x) = 1 for every vertex x ofG and so σh(x) = deg x for every vertex x of G. However then, {deg x : x ∈ V (G)} = Sh = [n−1].
This implies that G is an antiregular graph, which is a contradiction.

Case 2. δ(G) ≥ 3. Again, let v ∈ V (G) such that σh(v) = n − 1. Then deg v = n − 1 and h(x) = 1 for each x ∈ N(v) =

V (G) − {v}. Since deg x ≥ 3 for each vertex x of G and h(x) ∈ {0, 1}, it follows that σh(x) ≥ 2 for every vertex x of G.
Consequently, Sh ⊆ {2, 3, . . . , n− 1}, which is a contradiction.

Therefore, ∆(G) = n− 1 and δ(G) = 2, as claimed.

By Proposition 2.2, if G is a non-antiregular graph of order n ≥ 3 such that ∆(G) ≤ n− 2 or δ(G) 6= 2, then G does not
have an antiregular total dominating function. We next show that for every integer n ≥ 3, there are exactly two graphs of
order n possessing an antiregular total dominating function, one of which is the connected antiregular graphGn of order n.
In order to state and verify this result, we first introduce an additional definition. The joinG = F ∨H of two vertex-disjoint
graphs F and H has vertex set V (G) = V (F ) ∪ V (H) and edge set E(G) = E(F ) ∪ E(H ∪ {uv : u ∈ V (F ), v ∈ V (H)}. In
particular, the graph F ∨K1 is constructed by adding a new vertex to F and joining this vertex to every vertex of F .

Theorem 2.1. For each integer n ≥ 3, there are exactly two graphs of order nwith an antiregular total dominating function,
one of which is Gn and the other is Gn−1 ∨K1.

Proof. It is readily seen that G3 = P3 and K3 = G2 ∨ K1 = P2 ∨ K1 (shown in Figure 2) are the only graphs of order 3

having an antiregular total dominating function. Let H be a graph of order n ≥ 4 having an antiregular total dominating
function h. Then Sh = {σh(v) : v ∈ V (H)} = [n− 1]. Let u ∈ V (H) such that σh(u) = n− 1. Then deg u = n− 1 and h(x) = 1

for each x ∈ N(u) = V (H)− {u}. Since h(u) ∈ {0, 1}, there are two possibilities.
Case 1. h(u) = 1. Therefore, h(x) = 1 for every vertex x of H and so σh(x) = deg x for every vertex x of H. Since

{deg x : x ∈ V (H)} = Sh = [n− 1], it follows that H = Gn is the connected antiregular graph of order n.
Case 2. h(u) = 0. Therefore, u is the only vertex ofH whose h-value is 0. This implies that 1 ≤ σh(x) = degH x−1 ≤ n−2

for every vertex x of V (H)− {u}. Thus, u is the only vertex of H whose σh-value is n− 1 and so

{σh(x) : x ∈ V (H)− {u}} = {degH x− 1 : x ∈ V (H)− {u}} = [n− 2].

Then H ′ = H − u is a connected subgraph of H and degH′ x = degH x − 1 for each vertex x of H ′. Since the order of H ′
is n − 1 and {degH′ x : x ∈ V (H ′)} = [n − 2], it follows that H ′ is the connected antiregular graph Gn−1 of order n − 1.
Therefore, H = H ′ ∨K1 = Gn−1 ∨K1.

Therefore, the two graphs of order n ≥ 3 with an antiregular total dominating function are Gn and Gn−1 ∨K1.

If n = 4, then G4 and G3 ∨K1 = P3 ∨K1 (which is also shown in Figure 2) are the only connected graphs of order 4 that
have an antiregular total dominating function. If n = 5, then G5 and G4∨K1 (which is also shown in Figure 2) are the only
connected graphs of order 5 that have an antiregular total dominating function. These four graphs are shown in Figure 3
together with an antiregular total dominating function for each of these four graphs.

By Theorem 2.1, for each integer n ≥ 3, there is a graph G of order n having a total dominating function h such that
{σh(v) : v ∈ V (G)} = [n− 1]. This gives rise to the following question.

For a given nonempty set S of positive integers, does there exist a graph G with a total dominating function h

such that {σh(v) : v ∈ V (G)} = S?
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Figure 3: The four graphs of order 4 or 5 having an antiregular total dominating function.

It turns out that this question has an affirmative answer. In 1977, Kapoor, Polimeni, and Wall [14] proved that every set
of positive integers is the degree set of some graph.

Theorem 2.2. For every set S = {a1, a2, . . . , ak} of positive integers with a1 < a2 < · · · < ak, there exists a graph G whose
degree set is S. Furthermore, the minimum order of such a graph G is ak + 1.

As an immediate consequence of Theorem 2.2, every nonempty set of positive integers is realizable as the set of σh-values
of a total dominating function h of some graph.

Corollary 2.1. For every set S = {a1, a2, . . . , ak} of positive integers with a1 < a2 < · · · < ak, there exists a graph G of
order ak + 1 having a total dominating function h such that

{σh(v) : v ∈ V (G)} = S.

Proof. Let S = {a1, a2, . . . , ak} be any set of positive integers with a1 < a2 < · · · < ak. By Theorem 2.2, there exists a
graph G of order ak + 1 whose degree set is S. Let h : V (G) → {0, 1} be defined by h(v) = 1 for every vertex v of G. Since
σh(v) = deg(v) ≥ 1 for every v ∈ V (G), it follows that h is a total dominating function of G and {σh(v) : v ∈ V (G)} = S.

3. Regular total dominating functions

If h is a total dominating function of a graph G and σh(v) is the same constant k for every vertex v of G, then h is called a
regular total dominating function (or k-regular total dominating function) of G. Not every graph without isolated vertices
has a k-regular total dominating function for some k. For example, the graph G of Figure 4 has no k-regular total dom-
inating function for any positive integer k. To see this, assume, to the contrary, that G has a k-regular total dominating
function h : V (G) → {0, 1} for some positive integer k. Since u is only dominated by v and x is only dominated by w, it
follows that h(v) = h(w) = 1. Since σh(u) = σh(x) = 1, it follows that k = 1. On the other hand, σh(y) = h(v) + h(w) = 2,
which is impossible.

Figure 4: A graph G with no regular total dominating function.

The primary question here is that of determining which graphs (especially those belonging to well-known classes of
graphs) have a k-regular total dominating function for some k ∈ N and which do not. We first answer this question for
complete multipartite graphs.

Proposition 3.1. For an integer ` ≥ 2, every complete `-partite graph has a k-regular total dominating function for each
integer k with 1 ≤ k ≤ `−1. In particular, every complete graphKn of order n ≥ 2 has a k-regular total dominating function
for each integer k with 1 ≤ k ≤ n− 1.

Proof. Let G be a complete `-partite graph where ` ≥ 2. For each integer k with 1 ≤ k ≤ `, let Hk be the complete subgraph
of order k in G. Then a (k − 1)-regular total dominating function hk : V (G) → {0, 1} of G can be defined by hk(v) = 1 if
v ∈ V (Hk) and hk(v) = 0 if v ∈ V (G)− V (Hk).
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We begin by presenting some preliminary results dealing with regular total dominating functions of graphs.

Observation 3.1. Let G be a nontrivial connected graph.

(1) If G is an r-regular graph for some positive integer r, then the function h defined by h(x) = 1 for each vertex x of G is
an r-regular total dominating function of G.

(2) If G has a k-regular total dominating function, then 1 ≤ k ≤ δ(G).

(3) Let H be a graph with a regular total dominating function h and let v be a vertex of H with h(v) = 0. If G is the graph
obtained by replacing v by an arbitrary graph F where each vertex of F is joined to the neighbors of v, then h can be
extended to a regular total dominating function of G by defining h(x) = 0 for each x ∈ V (F ).

Proposition 3.2. For a positive integer k, a graph G has a k-regular total dominating function if and only if either G is
k-regular or G consists of two induced vertex-disjoint subgraphs F and H such that F is k-regular and each vertex of H is
adjacent to exactly k vertices in F .

Proof. First, suppose that G has a k-regular total dominating function h : V (G) → {0, 1} for some positive integer k. To
simplify the notation, we let

Ih = {v ∈ V (G) : h(v) = 1} and Ih = V (G)− Ih = {v ∈ V (G) : h(v) = 0}.

Next, let F = G[Ih] and H = G[Ih] (if Ih 6= ∅). Since σh(v) = k for each v ∈ V (G), it follows that every vertex in F is
adjacent to exactly k vertices in F and so F is k-regular and every vertex in H is adjacent to exactly k vertices in F .

Next, we verify the converse. Since the statement is true ifG is k-regular, we may assume thatG is constructed from two
induced vertex-disjoint subgraphs F and H such that F is k-regular and each vertex of H is adjacent to exactly k vertices
in F . Then a k-regular total dominating function of G can be defined by assigning 0 to each vertex of H and assigning 1 to
each vertex of F .

? If k = 1 in Proposition 3.2, then a nonempty graph G has a 1-regular total dominating function if and only if F is
1-regular (or E(F ) is a matching in G) and each vertex in H is adjacent to exactly one vertex of F .

? If k = 2 in Proposition 3.2, then G has a 2-regular dominating function if and only if F is 2-regular (or the subgraph
induced by E(F ) is a union of cycles) and each vertex in H is adjacent to exactly two vertices of F .

The following is a consequence of Observation 1.1.

Proposition 3.3. Let G be a nontrivial connected graph of order n, let h : V (G) → {0, 1} be a total dominating function
of G, and suppose that |Ih| = s ≥ 2.

(1) If G is an r-regular graph for some integer r ≥ 2, then∑
v∈V (G) σh(v) = rs.

(2) If h is a k-regular total dominating function for some integer k ≥ 1, then∑
v∈V (G) σh(v) = nk.

Proof. By Proposition 1.1, it follows that if G is an r-regular graph for some integer r ≥ 2, then∑
v∈V (G)

σh(v) =
∑
x∈Ih

deg x =
∑
x∈Ih

r = rs

and so (1) holds. Also, by Proposition 1.1, if h is a k-regular total dominating function of a graph G for some integer k ≥ 1,
then ∑

v∈V (G)

σh(v) =
∑

v∈V (G)

k = nk

and so (2) holds.

For two vertices u and v in a connected graph G, the distance d(u, v) between u and v is the length of a shortest u − v
path in G. For a vertex v in the graph G, the eccentricity e(v) of v is the distance between v and a vertex farthest from v in
G. The minimum eccentricity among the vertices of G is its radius and the maximum eccentricity is its diameter, which
are denoted by rad(G) and diam(G), respectively. A vertex v in G is a central vertex if e(v) = rad(G); while v is a peripheral
vertex of G if e(v) = diam(G).
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Observation 3.2. Let G be a connected graph having a 1-regular total dominating function h and let u be an end-vertex
of G.

? If v is a vertex of G that is adjacent to u, then h(v) = 1.

? If w is a vertex of G such that d(u,w) = 3, then h(w) = 0.

Proposition 3.4. If a connected graph G contains two end-vertices x and y such that d(x, y) = 4, then G does not have any
1-regular total dominating function.

Proof. Let (x, u, v, w, y) be an x− y path in G. By Observation 3.2, any 1-regular total dominating function h must assign 1
to u and w. However then, σh(v) ≥ 2, which is impossible.

4. Regular total dominating functions in trees

By Observation 3.1, if a connected graph G has a k-regular total dominating function, then 1 ≤ k ≤ δ(G). Hence, if T is a
nontrivial tree, then the only possible regular total dominating function for T is a 1-regular total dominating function. All
trees of diameter 3 or less have a 1-regular total dominating function.

Proposition 4.1. Every star and double star has a 1-regular total dominating function.

Only certain paths have a 1-regular dominating function, however.

Proposition 4.2. A path Pn of order n ≥ 2 has a 1-regular total dominating function if and only if n 6≡ 1 (mod 4).

Proof. Let Pn = (v1, v2, . . . , vn). First, suppose that n 6≡ 1 (mod 4). For n ≡ 0 (mod 4), define h : V (Pn)→ {0, 1} by

h(vi) =

{
0 if i ≡ 0, 1 (mod 4)
1 if i ≡ 2, 3 (mod 4).

For n ≡ 2, 3 (mod 4), define h : V (Pn)→ {0, 1} by

h(vi) =

{
0 if i ≡ 0, 3 (mod 4)
1 if i ≡ 1, 2 (mod 4).

In each case, h is a 1-regular total dominating function of Pn.
For the converse, assume, to the contrary, that there is an integer n ≥ 5 with n ≡ 1 (mod 4) such that Pn has a 1-regular

total dominating function h : V (Pn)→ {0, 1}. Since n is odd and∑
v∈V (G)

σh(v) =
∑
x∈Ih

deg x = n

by Propositions 1.1 and 3.3, it follows that exactly one of v1 and vn belongs to Ih, say v1 ∈ Ih and vn /∈ Ih. Since v1 ∈ Ih,
this forces

h(vi) =

{
1 if i ≡ 1, 2 (mod 4)
0 if i ≡ 3, 0 (mod 4)

and so vn ∈ Ih, which is a contradiction.

The following are consequences of Propositions 3.4 and 4.2, respectively.

Corollary 4.1. If a tree T contains two end-vertices x and y such that d(x, y) = 4, then T does not have any 1-regular total
dominating function. In particular, if diam(T ) = 4, then T does not have any 1-regular total dominating function.

Corollary 4.2. If G is a path with diam(G) ≡ 0 (mod 4), then G does not have a 1-regular total dominating function.

Corollary 4.2 gives rise to the following question.

If T is a tree with diameter d ≥ 1 where d 6≡ 0 (mod 4), does T have a 1-regular total dominating function?

The answer to this question depends on the structure of the tree in question, as we will soon see. However, every positive
integer d distinct from 4 can be realized as the diameter of a tree T having a 1-regular total dominating function.

Proposition 4.3. For every positive integer d distinct from 4, there exists a tree of diameter d having a 1-regular total
dominating function.

66



M. Talanda-Fisher and P. Zhang / Contrib. Math. 2 (2020) 61–70 67

Figure 5: A tree of diameter 8 having a 1-regular total dominating function.

Proof. If d is a positive integer such that d 6≡ 0 (mod 4), then the path Pd+1 of diameter d has a 1-regular total dominating
function by Proposition 4.2. Thus, we may assume that d ≡ 0 (mod 4) and d ≥ 8. Then d = 4q for some integer q ≥ 2. We
show that there is a tree Tq of diameter 4q that has a 1-regular total dominating function hq. Figure 5 shows the tree T2 of
diameter 8 having a 1-regular total dominating function h2. Thus, the statement is true for q = 2.

For an integer q ≥ 3, let Tq be the tree obtained from the tree T2 of Figure 5 and the path P4q−8 = (v1, v2, . . . , v4q−8)

of order 4q − 8 by adding the edge vv1 where v is an end-vertex with h2(v) = 1. Then diam(Tq) = 8 + (4q − 8) = 4q. The
function hq : V (Tq)→ {0, 1} of Tq defined by hq(x) = h2(x) if x ∈ V (T2) and

hq(vi) =

{
0 if i ≡ 1, 2 (mod 4)

1 if i ≡ 0, 3 (mod 4)

is a 1-regular total dominating function of Tq. This is illustrated in Figure 6 for the tree T3 of diameter 12 together with
1-regular total dominating function h3.

Figure 6: A tree of diameter 12 having a 1-regular total dominating function.

In fact, if T is a tree with a 1-regular total dominating function h and v is a vertex of T with h(v) = 1, then the tree T ′
obtained from T by adding a new vertex u and joining u to the vertex v also has a 1-regular total dominating function.
For example, a 1-regular total dominating function h′ of T ′ can be defined by h′(x) = h(x) if x ∈ V (T ) and h′(u) = 0.
Consequently, for every positive integer d ≥ 2 distinct from 4, there exist infinitely many trees of diameter d having a
1-regular total dominating function.

Next, we characterize those trees having a 1-regular total dominating function. To do this, we first introduce additional
terminology. A tree T is called totally 1-sequential if the tree T with a 1-regular total dominating function h : V (T )→ {0, 1}
can be constructed by means of the following algorithm.

Algorithm 4.1. Constructing a totally 1-sequential tree T .

1. We begin with T0 = K2 whose two vertices are labeled 1.

2. Once a tree Tj , j ≥ 0, has been constructed with a 1-regular total dominating function h, a tree Tj+1 with an extended
1-regular total dominating function h is constructed by performing one of the following steps:

(2.1) A vertex v is added to Tj where v is joined to a vertex labeled 1 in Tj and h(v) is defined to be 0.

(2.2) A path (x, y, z) of order 3 is added to Tj where x is joined to a vertex labeled 0 in Tj , h(x) is defined to be 0, and
h(y) and h(z) are defined to be 1.

3. Either repeat Step 2 or stop, resulting in a tree T = Tk for some nonnegative integer k.

Once Algorithm 4.1 stops, a sequence of labeled trees T0, T1, T2, . . . , Tk is constructed, resulting in Tk ∼= T . Such a tree T is
therefore totally 1-sequential. Our interest in totally 1-sequential trees is due to the following result.

Theorem 4.1. A tree T has a 1-regular total dominating function if and only if T is totally 1-sequential.
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Proof. First, if T is a totally 1-sequential tree, then from the manner in which T is constructed, we see that the defined
function h is a 1-regular total dominating function of T . For the converse, assume, to the contrary, that there are trees
possessing a 1-regular total dominating function that are not totally 1-sequential. Among all such trees, let T be one of
minimum order n. Since it is clear that all trees of order 6 or less that possess a 1-regular total dominating function are
totally 1-sequential, it follows that n ≥ 7. Let h be a 1-regular total dominating function of T .

First, suppose that T contains an end-vertex u such that h(u) = 0. Suppose that u is adjacent to the vertex v in T .
Necessarily, h(v) = 1. The restriction of the 1-regular dominating function h to the tree T − u of order n− 1 is a 1-regular
total dominating function of T − u. Thus, T − u is totally 1-sequential. Adding the vertex u to T − u, joining u to v, and
defining h(u) = 0 shows that T is totally 1-sequential, producing a contradiction. Hence, we may assume that h(w) = 1 for
every end-vertex w of T .

Let z be a peripheral vertex of T . Since z is an end-vertex of T , it follows that h(z) = 1. Let y be the neighbor of z in T .
Thus, h(y) = 1. If y is adjacent to an end-vertex v distinct from z, then h(v) = 0, contrary to our assumption. Thus, z
is the only end-vertex adjacent to y. Since z is a peripheral vertex of T , it follows that degT y = 2. Let (x, y, z) be a path
in T . Then h(x) = 0. Since σh(x) = 1 and h(y) = 1, it follows that every neighbor of x distinct from y must be labeled 0
by h. We claim that degT x = 2, for suppose that degT x ≥ 3. Let u and w be two neighbors of x distinct from y. Thus,
h(u) = h(w) = 0. Since σh(u) = σh(w) = 1, it follows that each of u and w has a neighbor u′ and w′, respectively, such
that h(u′) = h(w′) = 1. Since σh(u′) = σh(w′) = 1, it follows that each of u′ and w′ has a neighbor u′′ and w′′, respectively,
such that h(u′′) = h(w′′) = 1. This, however, contradicts the fact that z is a peripheral vertex of T . Therefore, as claimed,
degT x = 2. Let u be the neighbor of x distinct from y. We saw that h(u) = 0. Then T ′ = T − {x, y, z} is a tree of order n− 3

and the restriction of the 1-regular total dominating function h of T to T ′ is a 1-regular total dominating function of T ′.
Hence, T ′ is totally 1-sequential. Adding the path (x, y, z) to T ′, joining x to u, and defining h(x) = 0 and h(y) = h(z) = 1

shows that T is totally 1-sequential, producing a contradiction.

5. Regular total dominating functions in regular graphs

Let G be a nontrivial connected graph and let h : V (G) → {0, 1} be a total dominating function of G. The complementary
function h : V (G)→ {0, 1} is defined by

h(v) = 1− h(v) for every vertex v of G.

Proposition 5.1. Let G be a nontrivial connected graph. If h : V (G) → {0, 1} is a total dominating function of G, then
σh(v) + σh(v) = deg v for each vertex v of G.

Proof. Let v ∈ V (G) where h(v) = i ∈ {0, 1} and σh(v) = k. Then h(v) = 1− i. Since σh(v) = k, it follows that v is adjacent
to k vertices labeled 1 by h and so v is adjacent to deg v − k vertices labeled 0 by h. Thus, v is adjacent to deg v − k vertices
labeled 1 by h. Hence, σh(v) = deg v − k. Consequently, σh(v) + σh(v) = deg v.

The following two corollaries are consequences of Proposition 5.1.

Corollary 5.1. Let G be a nontrivial connected graph. If h : V (G) → {0, 1} is a total dominating function of G such that
σh(v) ≤ deg v − 1 for each vertex v of G, then its complementary function h is also a total dominating function of G.

Corollary 5.2. Let G be a nontrivial connected graph. Suppose that h is a total dominating function of G such that h
is also a total dominating function of G. Then h and h are both regular if and only if G is regular. Furthermore, if G is
an r-regular graph and h is a k-regular total dominating function of G where 1 ≤ k ≤ r, then h is an (r − k)-regular total
dominating function of G.

By Corollary 5.2, we have the following corollary.

Corollary 5.3. For a nontrivial connected r-regular graph G for some integer r ≥ 2, a function h : V (G) → {0, 1} is a
1-regular total dominating function of G if and only if h : V (G)→ {0, 1} is an (r−1)-regular total dominating function of G.

For each integer n ≥ 3, every cycle Cn of order n is 2-regular and so has a 2-regular total dominating function. Next,
we determine those n-cycles having a 1-regular total dominating function.

Proposition 5.2. For an integer n ≥ 3, the n-cycleCn has a 1-regular total dominating function if and only if n ≡ 0 (mod 4).
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Proof. First, suppose that Cn has a 1-regular total dominating function h. Let Ih = {v ∈ V (G) : h(v) = 1}. Since the edge
set of G[Ih] is a matching, it follows that |Ih| = s is even. Since Cn is a 2-regular graph of order n and s is even, it follows
by Observation 3.3 that

n =
∑

v∈V (G)

σh(v) = 2s ≡ 0 (mod 4).

For the converse, suppose that n ≡ 0 (mod 4) and let Cn = (v1, v2, . . . , vn, v1). A 1-regular total dominating function
f : V (Cn)→ {0, 1} of G can be defined by f(vi) = 1 if i ≡ 0, 1 (mod 4) and f(vi) = 0 if i ≡ 2, 3 (mod 4).

We now turn our attention from connected 2-regular graphs (cycles) to connected 3-regular (cubic) graphs. While every
connected cubic graph has a 3-regular total dominating function, there is no guarantee that a cubic graph has a k-regular
total dominating function for k ∈ {1, 2}. We first present a necessary condition on the order of a cubic graph to possess a
k-regular total dominating function for k ∈ {1, 2}.

Lemma 5.1. If G is a connected cubic graph of order n having a k-regular total dominating function where k ∈ {1, 2}, then
n ≡ 0 (mod 6).

Proof. Suppose that G has a k-regular total dominating function h, where k ∈ {1, 2}. Let |{v ∈ V (G) : h(v) = 1}| = s.
Since G is a 3-regular graph of order n, it follows by Observation 3.3 that

nk =
∑

v∈V (G)

σh(v) = 3s.

If k = 1, then n = 3s, while if k = 2, then 2n = 3s. In either case, n ≡ 0 (mod 3). Since n is even, it follows that n ≡ 0

(mod 6).

As a consequence of Lemma 5.1, no cubic graph of order 10 has a 1-regular total dominating function or a 2-regular total
dominating function. In particular, the Petersen graph has neither a 1-regular total dominating function nor a 2-regular
total dominating function.

Corollary 5.4. The Petersen graph has a k-regular total dominating function if and only if k = 3.

The Cartesian product G �H of two graphs G and H has vertex set V (G �H) = V (G)×V (H) and two distinct vertices
(u, v) and (x, y) of G � H are adjacent if either (1) u = x and vy ∈ E(H) or (2) v = y and ux ∈ E(G). One of the best known
classes of cubic graphs is that of the prisms Cn � K2.

Proposition 5.3. Let n ≥ 3 and k ∈ {1, 2}. Then Cn � K2 has a k-regular total dominating function if and only if n ≡ 0

(mod 3).

Proof. Let G = Cn � K2, where n ≥ 3. First, suppose that G has a k-regular total dominating function h, where k ∈ {1, 2}.
Since G is a 3-regular graph of order 2n, it follows by Lemma 5.1 that 2n ≡ 0 (mod 3) and so n ≡ 0 (mod 3).

For the converse, suppose that n ≡ 0 (mod 3). Let G be constructed from two copies (u1, u2, . . ., un, u1) and (v1, v2, . . .,
vn, v1) of the n-cycle by adding the edges uivi+1 for 1 ≤ i ≤ n. The function h1 : V (G)→ {0, 1} of G defined by

h1(w) =

{
1 if w = ui or w = vi where i ≡ 1 (mod 3)
0 otherwise

is a 1-regular total dominating function of G and h1 is a 2-regular total dominating function of G by Corollary 5.2.

A class of graphs related to the prisms Cn � K2 are the graphs Pn � K2, sometimes referred to as ladders.

Proposition 5.4. For each positive integer n, the ladder graph Pn � K2 has a 1-regular total dominating function.

Proof. Let G = Pn � K2 be constructed from the two copies (u1, u2, . . ., un) and (v1, v2, . . ., vn) of the path Pn of order n by
adding the edges uivi for 1 ≤ i ≤ n. If n ≡ 1 (mod 3), then the function h : V (G)→ {0, 1} defined by

h(w) =

{
1 if w = ui or w = vi where i ≡ 1 (mod 3)
0 otherwise

is a 1-regular total dominating function of G. If n 6≡ 1 (mod 3), then the function h : V (G)→ {0, 1} defined by

h(w) =

{
1 if w = ui or w = vi where i ≡ 2 (mod 3)
0 otherwise

is a 1-regular total dominating function of G.
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Proposition 5.5. For a positive integer n, the ladder graph Pn � K2 has a 2-regular total dominating function if and only
if n ≡ 2 (mod 3).

Proof. Let G = Pn � K2 be constructed from the two copies (u1, u2, . . ., un) and (v1, v2, . . ., vn) of the path Pn of order n by
adding the edges uivi for 1 ≤ i ≤ n. If n ≡ 2 (mod 3), then the function h : V (G)→ {0, 1} defined by

h(w) =

{
0 if w = ui or w = vi where i ≡ 0 (mod 3)
1 otherwise

is a 2-regular total dominating function of G.
For the converse, assume, to the contrary, that there is a positive integer n such that n 6≡ 2 (mod 3) and G = Pn � K2

has a 2-regular total dominating function h. Because P1 � K2 = K2 does not have a 2-regular total dominating function,
it follows that n ≥ 3. Since deg u1 = deg v1 = 2 and σh(u1) = σh(v1) = 2, it follows that h(x) = 1 for each x ∈ N(u1) ∪
N(v1) = {u1, u2, v1, v2}. Because σh(u2) = σh(v2) = 2, we have h(u3) = h(v3) = 0. If n = 3, then σh(u3) = σh(v3) = 1,
a contradiction. Thus, n ≥ 4 and h(u4) = h(v4) = 1. If n = 4, then σh(u4) = σh(v4) = 1, a contradiction. Thus, n ≥ 6

and h(u5) = h(v5) = h(u6) = h(v6) = 1. Continuing in this fashion, we see that h(ui) = h(vi) = 0 if i ≡ 0 (mod 3) and
h(ui) = h(vi) = 1 if i 6≡ 0 (mod 3). If n ≡ 0 (mod 3), then N(vn) = {un, vn−1} and h(un) = 0, which implies that σh(vn) = 1;
while if n ≡ 1 (mod 3), thenN(vn) = {un, vn−1} and h(vn−1) = 0, which implies that σh(vn) = 1. A contradiction is produced
in either case. Therefore, if n 6≡ 2 (mod 3), then Pn � K2 does not have a 2-regular total dominating function.

We conclude with the following question.

Problem 5.1. Under what conditions do both the graphs G and G � K2 have a k-regular total dominating function for
some positive integer k?
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