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Abstract

In this paper, the author introduces the generalized fractional Hilfer integral and derivative of order µ, which are natural
extensions of some recently defined fractional operators.
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1. Introduction

Fractional calculus, a branch of mathematics, is focused on the study and applications of the differential and integral
operators of non-integer order. Although the fractional calculus is as old as the classical calculus, it has become one of the
most developed areas of mathematics only in the last 40 years, not only because of the exponential growth of the number
of publications in this area, but also due to its different applications and its overlapping with other areas of mathematics.
This area has been developed intensively in recent years and it has found multiple applications in various fields. The clas-
sical results were basically extended in two fundamental directions: Riemann–Liouville fractional derivative and Caputo
fractional derivative.

As a result of the progress made in this area, numerous fractional (global) and generalized (local) operators have been
appeared. These new operators give researchers the possibility to choose the one that suits best with the problem they in-
vestigate. Readers can consult the paper [2] where some reasons are given to justify the appearance of these new operators
and where the applications and theoretical developments of these operators are discussed. These operators, developed by
many mathematicians with a hardly specific formulation, include the Riemann–Liouville (RL), Weyl, Erdelyi-Kober and
Hadamard integrals, and the fractional operators of Liouville and Katugampola. Many authors have even introduced new
fractional operators generated from the general local differential operators. In this direction, a generalized local deriva-
tive was defined in [19], which generalizes both the conformable and non-conformable derivatives and that is the basis for
the generalized integral operator proposed in [7], which contains as a particular case the fractional integral of Riemann–
Liouville (see [31]). In fact, these new operators require a classification as they can cause confusion in researchers. Baleanu
and Fernandez [3] gave a fairly complete classification of these fractional and generalized operators together with abun-
dant information and references. For a more complete review, the readers are referred to Chapter 1 of [1], where a history
of differential operators (both local and global) from Newton to Caputo is presented and where the qualitative differences
between the operators are shown. Section 1.4 of [1] contains some conclusions that we want to highlight: “Therefore, we
can conclude that the Riemann–Liouville and Caputo operators are not derivatives and, therefore, they are not fractional
derivatives, but fractional operators. We agree with the result [27] that the local fractional operator is not a fractional
derivative” (see p.24 in [1]).

In this work, we present a new definition of the k-generalized fractional derivative of the Hilfer type, and we study its
fundamental properties. We also present a particular case with a kernel defined in terms of the sigmoid function.

The gamma function Γ (see [21,24,28,29]) and k-generalized gamma function Γk (see [6]) are defined as:

Γ(z) =

∫ ∞
0

tz−1e−t dt, <(z) > 0,

Γk(z) =

∫ ∞
0

tz−1e−t
k/k dt, k > 0.
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It is clear that Γk(z) = (k)
z
k−1

Γ
(
z
k

)
, Γk(z + k) = zΓk(z) and if k → 1 then Γk(z)→ Γ(z).

Next, we present several definitions of the fractional operators, with their properties and notation which we use later
(further details can be found in [15]).

Let −∞ < a < b < +∞. Denote by C[a, b], AC[a, b] and Cn[a, b] the spaces of continuous, absolutely continuous and
n times continuously differentiable functions on [a, b], respectively. For p ≥ 1, denote by Lp[a, b] the spaces of Lebesgue
integrable functions on [a, b]. Let us first define the classic Riemann–Liouville fractional integrals.

Definition 1.1. Let f ∈ L1[a, b]. Then the Riemann–Liouville fractional integrals (right and left respectively) of order µ ∈ C,
<(µ) > 0, are defined by

µJa+f(x) =
1

Γ(µ)

∫ x

a

(x− t)µ−1f(t) dt, x > a

µJb−f(x) =
1

Γ(µ)

∫ b

x

(t− x)µ−1f(t) dt, x < b.

Definition 1.2. Let µ be a real number satisfying the inequality m− 1 < µ ≤ m where m is a positive integer. The left and
right fractional Riemann–Liouville derivatives of order µ are defined as

Dµ
+f(x) =

dm

dxm
[
m−µJa+f(t)

]
, m− 1 < µ ≤ m,

Dµ
−f(x) =

dm

dxm
[
m−µJb−f(t)

]
, m− 1 < µ ≤ m.

The above equation regarding Dµ
+f(x) is equivalent to

Dµ
+f(x) =


dm

dxm

[
1

Γ(µ)

∫ x

a

f(t)dt

(x− t)1+µ−m

]
, m− 1 < µ ≤ m,

dmf(x)

dxm
, µ = m,

and similarly one can write an alternative expression for Dµ
−f(x).

Remark 1.1. Another way to define these fractional derivatives is to consider them as the left (and right) inverse of the
k-generalized fractional Riemann–Liouville integral with general kernel of order µ, that is

Dµ
+

[
m−µJa+

]
= Id,

Dµ
−
[
m−µJb−

]
= Id,

with m− 1 < µ ≤ m.

Remark 1.2. The Riemann–Liouville integral can also be expressed as µJa+f(x) = (f ∗ Kµ)(x), with Kµ(x) = xµ−1

Γ(µ) the
kernel of convolution product.

In 1967, Michele Caputo gave a new definition of fractional derivative in [5] with an interesting property: when solving
differential equations using Caputo’s definition, it is not necessary to define the fractional order initial conditions. This
derivative has been used in the study of many applied problems (see [4]).

Definition 1.3. The Caputo derivative of a differentiable function f of order µ, 0 < µ < 1, is defined as

CDµf(t) =
1

Γ(1− µ)

∫ t

0

f ′(s)

(t− s)µ
ds.

Remark 1.3. Keeping in mind Definition 1.2, we mention here one of the advantages of the Riemann–Liouville (RL) deriva-
tive over the Caputo (C) derivative. It is an obvious fact that to calculate the RL derivative of order µ with µ ∈ (0, 1), it is not
necessary for the function to have an ordinary first derivative, a requirement that the C derivative does have (see Definition
1.3). Thus, there are functions that do not have first-order derivatives but they can have fractional derivatives of all orders
less than one in the Riemann–Liouville sense.

Next, we present the definition of the Riemann–Liouville fractional derivative with respect to another function ψ, which
is directly related to the Riemann–Liouville fractional derivative (see [15]).
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Definition 1.4. Let ψ(u) > 0 be an increasing function on (a, b] and ψ′(u) > 0 be continuous on (a, b), and µ > 0, where
a, b ∈ R. The ψ-fractional integrals (left-sided and right-sided) of order µ are defined by

Dµ;ψ
a+ f(x) =

[
1

ψ′(x)

d

dx

]n
In−µ;ψ
a+ f(x) =

1

Γ(n− µ)

[
1

ψ′(x)

d

dx

]n ∫ x

a

ψ′(t)f(t)dt

(ψ(x)− ψ(t))
µ+1−n

Dµ;ψ
b− f(x) =

[
− 1

ψ′(x)

d

dx

]n
In−µ;ψ
b− f(x) =

1

Γ(n− µ)

[
− 1

ψ′(x)

d

dx

]n ∫ x

a

ψ′(t)f(t)dt

(ψ(t)− ψ(x))
µ+1−n

with n = [µ] + 1.

Typically, fractional derivatives are presented through a combination of integer derivatives, derivatives, and fractional
integrals. Hilfer (see [10–12]) gives a definition that is an “intermediate” point of the classical fractional derivatives:
Riemann–Liouville and Caputo.

Definition 1.5. The Hilfer fractional derivative of order µ, 0 < µ < 1, and type β, 0 ≤ β ≤ 1, with respect to x is defined by

Dµ,β
a+ f(x) =

(
1−µJ

β

a+

d

dx

(
1−µJ

1−β
a+ f

))
(x),

for the functions for which the expression on the right hand side exists.

Remark 1.4. In Definition 1.5, if we take β = 0 then we have the Riemann–Liouville derivative (see Definition 1.1) and the
choice β = 1 gives us the Caputo derivative (see Definition 1.3).

In order to obtain a more general derivative than the one proposed by Hilfer, Hilfer et al. [13] proposed the following
generalized Riemann–Liouville fractional derivative, which is associated with the Riemann–Liouville fractional integral.

Definition 1.6. For n ∈ N, let µ, β ∈ R be the numbers satisfying the inequalities n− 1 < µ ≤ n and 0 ≤ β ≤ 1. The Hilfer
fractional derivative of order µ and type β with respect to x is defined by

nDµ,β
a+ f(x) =

(
n−µJ

β

a+

d

dx

(
n−µJ

1−β
a+ f

))
(x),

for the functions for which the expression on the right hand side exists.

Below is a generalization of the Hilfer derivative specified in Definition 1.5. We call this generalization as the ψ-
fractional integral and derivative.

Definition 1.7. Let ψ(u) > 0 be an increasing function on (a, b] and ψ′(u) > 0 be a continuous function on (a, b), and take
µ > 0, where a, b ∈ R. The ψ-fractional integrals (left-sided and right-sided) of order µ of a function f defined as follows

HDµ,β;ψ
a+ f(x) = I

β(n−µ);ψ
a+

[
1

ψ′(x)

d

dx

]n
I

(1−β)(n−µ);ψ
a+ f(x),

HDµ,β;ψ
b− f(x) = I

β(n−µ);ψ
b−

[
− 1

ψ′(x)

d

dx

]n
I

(1−β)(n−µ);ψ
b− f(x),

with n = [µ] + 1.

The above derivatives can be written in the following form:

HDµ,β;ψ
a+ f(x) = Iµ−µ;ψ

a+ Dµ;ψ
a+ f(x),

HDµ,β;ψ
b− f(x) = Iµ−µ;ψ

b− Dµ;ψ
b− f(x),

with µ = µ+ β(n− µ) and

Iµ;ψ
a+ f(x) =

1

Γ(µ)

∫ x

a

ψ′(t)f(t)dt

(ψ(x)− ψ(t))
1−µ ,

Iµ;ψ
b− f(x) =

1

Γ(µ)

∫ b

x

ψ′(t)f(t)dt

(ψ(x)− ψ(t))
1−µ .
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2. On the k-generalized ψ-Hilfer integral

We are now able to define the k-generalized ψ-Hilfer integral as follows.

Definition 2.1. Let ψ(u) > 0 be an increasing function on (a, b] and ψ′(u) > 0 be continuous on (a, b) and µ > 0, where
a, b ∈ R. The generalized ψ-fractional integrals (left-sided and right-sided) of order µ are defined by

Iµ,k;ψ
G,a+ f(x) =

1

kΓk(µ)

∫ x

a

ψ′(t)f(t)dt

G
(
ψ(x)− ψ(t), µk

) ,
Iµ,k;ψ
G,b− f(x) =

1

kΓk(µ)

∫ b

x

ψ′(t)f(t)dt

G
(
ψ(t)− ψ(x), µk

) ,
with k > 0, and G(z, µ) ∈ AC[a1, a2].

We can also define generalized derivatives as follows.

Definition 2.2. Let ψ(u) > 0 be an increasing function on (a, b], with a, b ∈ R, and ψ′(u) > 0 be continuous on (a, b), and take
µ > 0 and G(z, µ) ∈ AC[a1, a2]. The generalized ψ-fractional derivative (left-sided and right-sided) of order µ are defined by

HDµ,β;ψ
G,a+ f(x) = I

β(n−µ);ψ
G,a+

[
1

ψ′(x)

d

dx

]n
I

(1−β)(n−µ);ψ
G,a+ f(x),

HDµ,β;ψ
G,b− f(x) = I

β(n−µ);ψ
G,b−

[
− 1

ψ′(x)

d

dx

]n
I

(1−β)(n−µ);ψ
G,b− f(x),

with n = [µ] + 1.

Remark 2.1. Several existing integral operators are particular cases of Definition 2.1.

1. In Definition 2.1, if we make k = 1, G(z, µ) = z1−µ and ψ′(t) = 1 then we obtain the fractional Riemann–Liouville.

2. Under the above conditions, if k 6= 1 then from Definition 2.1, the k-fractionals operators proposed in [18] are obtained.

3. If ψ′(t) = 1
t , k = 1 and G(z, µ) = z1−µ then the Hadamard fractional operator (see [25]) is reproduced.

4. If ψ′(t) = 1
tρ , G(z, µ) = z1−µ and k = 1, then we obtain the Katugampola’s fractional operator defined in [14].

5. By choosing k = 1, G(z, µ) = z1−µ, we get the integral operator proposed in [15].

6. By taking ψ′(t) = 1, k = 1 andG (x− t, µ) = λµexp
[
−λ−1

λ (x− t)
]

(x− t)1−µ, we obtain the integral operator introduced
in [20].

7. By choosing k = 1 and G (ψ(x)− ψ(t), µ) = λµ(ψ(x)−ψ(t))1−µ

exp[λ−1
λ (ψ(x)−ψ(t))]

, we obtain the integral operator proposed in [22].

Next, we study some of the important properties of the operators specified in Definition 2.1. One of the basic questions
that need to be answer for any newly defined integral operator is concerned about the boundedness.

Theorem 2.1. Let h : [a1, a2] → R be an integrable function, and take µ > 0 and k > 0. Then Iµ,k;ψ
G,a1+h(x) exists for all

x ∈ [a1, a2].

Proof. Let D = [a1, a2]× [a1, a2] and define C : D → R as

C(x, t) =


ψ′(t)

G
(
ψ(x)− ψ(t), µk

) , a1 ≤ t ≤ x ≤ a2,

0, a1 ≤ x ≤ t ≤ a2.

Taking into account that C(x, t) is measurable on D (the functions ψ′(t) ∈ AC[a1, a2] and G(z, µ) ∈ AC[a1, a2], on the
compact D), we have

Iµ,k;ψ
G,a1+h(b) = Iµ,k;ψ

G,a1+h(x) + Iµ,k;ψ
G,a2−h(x) =

∫ a2

a1

C(x, s)h(s)ds = B(x).

If we take
B = sup

[a1,a2]

B(x),
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then by using the the Tonelli’s theorem for iterated integrals (see [8]), we have∫ a2

a1

[∫ a2

a1

C(t, x) |h(t)| dt
]
dx =

∫ a2

a1

|h(t)|
[∫ a2

a1

C(t, x)dt

]
dx

≤ B‖h‖L1[a1,a2]

< +∞.

Therefore, the function E : D → R, defined by E(x, t) = C(x, t)h(x) is integrable over D.
Now using the Fubini’s theorem, it follows that

∫ a2
a1
C(t, x)h(t)dt, as a function of x ∈ [a1, a2], is integrable on [a1, a2].

This implies that Iµ,k;ψ
G,a1+h(x) is integrable on [a1, a2].

Given the generality of the operator presented, what we can say is that if the function G is additive with respect to the
second variable, then it satisfies the Law of Semigroups.

Remark 2.2. Obviously, it can be thought that the additive property of the function G is very restrictive. However, we draw
our attention to the fact that all the operators presented above satisfy this certain property, but the generality of G in our
definition makes possible the existence of the functions that do not satisfy it.

Next, we give a result about the continuity of the operator given in Definition 2.1.

Theorem 2.2. Let k > 0 and h ∈ L1[a, b]. Then Iµ,k;ψ
G,a1+h ∈ C[a, b].

Proof. Let x, ξ ∈ [a, b], x ≤ ξ and x→ ξ. Then, we have∣∣∣Iµ,k;ψ
G,a1+h(x)− Iµ,k;ψ

G,a1+h(ξ)
∣∣∣

=
1

kΓk(µ)

∣∣∣∣∣
∫ x

a1

ψ′(t)

G
(
ψ(x)− ψ(t), µk

)h(t)dt−
∫ ξ

a1

ψ′(t)

G
(
ψ(ξ)− ψ(t), µk

)h(t)dt

∣∣∣∣∣
=

1

kΓk(µ)

∣∣∣∣∣
∫ x

a1

ψ′(t)

G
(
ψ(x)− ψ(t), µk

)h(t)dt−
∫ x

a1

ψ′(t)

G
(
ψ(ξ)− ψ(t), µk

)h(t)dt−
∫ ξ

x

ψ′(t)

G
(
ψ(ξ)− ψ(t), µk

)h(t)dt

∣∣∣∣∣
=

1

kΓk(µ)

∣∣∣∣∣
∫ x

a1

ψ′(t)

(
1

G
(
ψ(x)− ψ(t), µk

) − 1

G
(
ψ(ξ)− ψ(t), µk

))h(t)dt−
∫ ξ

x

ψ′(t)

G
(
ψ(ξ)− ψ(t), µk

)h(t)dt

∣∣∣∣∣
≤ 1

kΓk(µ)

∫ x

a1

|ψ′(t)h(t)|

∣∣∣∣∣ 1

G
(
ψ(x)− ψ(t), µk

) − 1

G
(
ψ(ξ)− ψ(t), µk

) ∣∣∣∣∣ dt
+

1

kΓk(µ)

∫ ξ

x

|ψ′(t)h(t)|

∣∣∣∣∣ 1

G
(
ψ(ξ)− ψ(t), µk

) ∣∣∣∣∣ dt.
Therefore, by dominated convergence theorem, we obtain∣∣∣Iµ,k;ψ

G,a1+h(x)− Iµ,k;ψ
G,a1+h(ξ)

∣∣∣→ 0

as x→ ξ, that is,
Iµ,k;ψ
G,a1+h ∈ C[a, b].

3. A particular case

Many natural processes, growth and learning curves of complex systems, show a temporal progression from low levels at the
beginning, approach a climax after a certain time; the transition occurs in a region characterized by strong intermediate
acceleration. The sigmoid function, a continuous non-linear function, allows us to describe this evolution. Sometimes
the sigmoid function is called logistic function (see [9, 17, 26, 30]). The sigmoid function is defined as σ(x) = 1

1+e−x , and
its derivative is σ′(x) = σ(x)(1 − σ(x)). By taking k = 1, G(z, µ) = z1−µ and ψ(u) = σ(u) in Definition 2.1, we obtain
(see [16,23]):

Iµ;σ
a+ f(x) =

∫ x

a

σ(t)(1− σ(t))f(t)

(σ(x)− σ(t))
1−µ dt
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and
HDµ,β

a+ f(x) = I
β(n−µ);σ
a+

(
1

σ′(x)

d

dx

)n
I

(1−β)(n−µ);σ
a+ f(x).

These operators have been proven useful in various practical problems (from the population growth to the shallow water
wave and reaction-diffusion process). We end this paper by defining the following generalized sigmoid function (which may
open a new line of research):

σ(x) =
1

1 + e−g(x)
,

where g(x) is a smooth function.
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