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Abstract
In this paper, the convolution integrals

∫ t
0
(t − s)λ−1b(s)ds with hyper-singular kernels are considered, where λ ≤ 0 and

either b is a smooth function or b belongs to L1(R+). For such λ, these integrals diverge classically even for smooth b. These
convolution integrals are defined in this paper for negative non-integer values of λ. Integral equations and inequalities are
considered with the hyper-singular kernels (t − s)λ−1

+ for λ ≤ 0, where tλ+ := 0 for t < 0. In particular, one is interested
in the value λ = − 1

4
because it is important for the Navier-Stokes problem (NSP). Integral equations of the type b(t) =

b0(t) +
∫ t
0
(t − s)λ−1b(s)ds, λ ≤ 0, are also studied. The solution of these equations is investigated, and the existence and

uniqueness of the solution is proved for λ = − 1
4
. The obtained results are applied to the analysis of the NSP in the space R3

without boundaries. It is proved that the NSP is contradictory in the following sense: even if one assumes that v(x, 0) > 0,
one proves that the solution v(x, t) to the NSP has the property v(x, 0) = 0, in general. This paradox shows that the NSP is
not a correct description of the fluid mechanics problem and it proves that the NSP does not have a solution, in general.
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1. Introduction

In this paper, the new definition of the convolution
∫ t

0
(t− s)λ−1b(s)ds with hyper-singular functions is given. We compare

this definition with the one, based on the distribution theory [2]. The function b(s) is assumed to be a locally integrable
function on R+ := [0,∞). This assumption is satisfied in the Navier-Stokes problem (NSP), see Chapter 5 in [11], where
the integral equations of the type b(t) = b0(t) +

∫ t
0
(t − s)λ−1b(s)ds with λ = − 1

4 are of interest. Classically these integral
equations do not make sense because the integrals diverge if λ ≤ 0. In Sections 1–4 of this paper, a new definition of such
integrals is given and the solution to the integral equation with hyper-singular kernel is investigated. These results are
used in Section 5, where the basic results concerning the NSP are obtained.

We analyze the NSP and prove that the NSP is physically not a correct description of the fluid mechanics problem and
that the NSP does not have a solution, in general.

For future use, we define Φλ(t) := tλ−1

Γ(λ) and the convolution Φλ ? b :=
∫ t

0
Φλ(t− s)b(s)ds. Also, we define t := t+, that is,

t = 0 if t < 0 and t = t if t ≥ 0.
Let us give the standard definition of the singular integral used in the distribution theory. Let

J :=

∫ ∞
0

tλ−1φ(t)dt, (1)

where the test function φ(t) ∈ C∞0 (R).
Integral (1) diverges classically (that is, in the classical sense) if λ ≤ 0. It is defined in distribution theory (for example,

in [2]) as follows:
J =

∫ 1

0

tλ−1φ(t)dt+

∫ ∞
1

tλ−1φ(t)dt := j1 + j2. (2)

The integral j2 converges classically for any complex λ ∈ C and is analytic with respect to λ. The integral j1 for λ > 0

converges classically and can be written as

j1 =

∫ 1

0

tλ−1(φ(t)− φ(0))dt+ φ(0)
tλ|10
λ

=

∫ 1

0

tλ−1(φ(t)− φ(0))dt+ φ(0)/λ. (3)

The right side of (3) admits analytic continuation with respect to λ from Reλ > 0 to the region Reλ > −1. Thus, formulas
(2) and (3) together define integral (1) for Reλ > −1. The singular integral J has a simple pole at λ = 0, diverges classically
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for −1 < λ < 0, but is defined in this region by formulas (2) and (3), by analytic continuation with respect to λ. This
procedure can be continued and J can be defined for an arbitrary large fixed negative λ, λ 6= 0,−1,−2, ....

Let us define the convolution
I(t) := Φλ ? b :=

∫ t

0

Φλ(t− s)b(s)ds.

We assume that b(t) ∈ L1(R+) and the Laplace transform of b is defined for Rep ≥ 0 by the formula

L(b) :=

∫ ∞
0

e−ptb(t)dt.

Let us define L(tλ−1) not using the distribution theory. For λ > 0, one has:

L(tλ−1) =

∫ ∞
0

e−pttλ−1dt =

∫ ∞
0

e−ssλ−1dsp−λ =
Γ(λ)

pλ
. (4)

It follows from (4) and from the definition of Φλ = tλ−1

Γ(λ) that

L(Φλ) = p−λ. (5)

The gamma function Γ(λ) is analytic in λ ∈ C, except for the simple poles at λ = −n, with the residue at λ = −n equal to
(−1)n

n! , where n = 0, 1, 2, · · · . It is known that

Γ(z + 1) = zΓ(z), Γ(z)Γ(1− z) =
π

sin(πz)
, 22z−1Γ(z)Γ(z +

1

2
) = π1/2Γ(2z).

The function 1
Γ(λ) is an entire function of λ. These properties of Γ(z) can be found, for example, in [4].

The right side of (4) is analytic with respect to λ ∈ C except for λ = 0,−1,−2, · · · , and therefore, defines L(tλ−1) for all
these λ by analytic continuation with respect to λ without using the distribution theory.

Let us define the convolution I(t) using its Laplace transform

L(I(t)) = L(Φλ)L(b) =
L(b)

pλ
(6)

and its inverse:
I(t) = L−1

(
L(b)p−λ

)
, (7)

where L−1 is the inverse of the Laplace transform. Since the null-space of L is trivial, that is, the zero element, the inverse
L−1 is well defined on the range of L.

For −1 < λ < 0, in particular for λ = − 1
4 , formula (7), can be interpreted as a generalized Fourier integral. The value

λ = − 1
4 is very important in NSP, see Chapter 5 of the monograph [11] and Section 5 of this paper. We return to this

question later, when we discuss the integral equations with hyper-singular integrals.
Let us now prove the following result that will be used later.

Theorem 1.1. One has
Φλ ? Φµ = Φλ+µ. (8)

for any λ, µ ∈ C. If λ+ µ = 0 then
Φ0(t) = δ(t), (9)

where δ(t) is the Dirac distribution.

Proof. By formulas (5) and (6) with b(t) = Φµ(t), one gets

L(Φλ ? Φµ) =
1

pλ+µ
.

By formula (5), one has
L−1

( 1

pλ+µ

)
= Φλ+µ.

This proves formula (8). If λ+ µ = 0 then
p−(λ+µ) = 1, L−11 = δ(t).

This proves formula (9) and completes the proof of Theorem 1.1.
�

48



A. G. Ramm / Contrib. Math. 2 (2020) 47–54 49

Remark 1.1. Let us give an alternative proof of formula (8). For Reλ > 0, Reµ > 0 one has

Φλ ? Φµ =
1

Γ(λ)Γ(µ)

∫ t

0

(t− s)λ−1sµ−1ds =
tλ+µ−1
+

Γ(λ)Γ(µ)

∫ 1

0

(1− u)λ−1uµ−1du =
tλ+µ−1
+

Γ(λ+ µ)
, (10)

where the right side of (10) is equal to Φλ+µ and we have used the known formula for the beta function:

B(λ, µ) :=

∫ 1

0

uλ−1(1− u)µ−1du =
Γ(λ)Γ(µ)

Γ(λ+ µ)
.

Analytic properties of beta function follow from those of the gamma function.

Remark 1.2. Theorem 1.1 is proved in [2], pp.150–151. Our proof differs from the proof in [2]. It is not clear how the proof
in [2] is related to the definition of regularized hyper-singular integrals used in [2].

2. Preparation for investigation of integral equations with hyper-singular kernels

In this section, we start an investigation of equations of the following type

b(t) = b0(t) + c

∫ t

0

(t− s)λ−1b(s)ds, (11)

where b0 is a smooth function rapidly decaying with all its derivatives as t → ∞ and b0(t) = 0 if t < 0. We are especially
interested in the value λ = − 1

4 , because of its importance for the Navier-Stokes theory, see [5,10] and Chapter 5 in [11].
The integral in (11) diverges in the classical sense for λ ≤ 0. Our aim is to define this hyper-singular integral.
There is a regularization method to define singular integrals J :=

∫
R t

λ−1
+ φ(t)dt, λ ≤ 0, in the distribution theory, see

the Introduction section. The integral in (11) is a convolution, which is defined in [2], p.135, as a direct product of two
distributions. This definition is not suitable for our purposes because tλ−1

+ for any λ ≤ 0, λ 6= 0,−1,−2, · · · , is a distribution
on the space K := C∞0 (R+) of the test functions, but it is not a distribution in the space of the test functions K := C∞0 (R)

used in [2]. Indeed, one can find φ ∈ K such that limn→∞ φn = φ inK, but limn→∞
∫
R t

λ−1
+ φn(t)dt =∞ for λ ≤ 0, so that tλ−1

+

is not a linear bounded functional in K, i.e., not a distribution. For example, the integral
∫∞

0
tλ−1φ(t)dt is not a bounded

linear functional on K: take a φ which is vanishing for t > 1, positive near t = 0 and non-negative on [0, 1]. Then this
integral diverges at such φ and is not a bounded linear functional on K.

On the other hand, one can check that tλ−1
+ for any λ ∈ R is a distribution (a bounded linear functional) in the space

K = C∞0 (R+) with the convergence φn → φ in K defined by the following requirements:

a) the supports of all φn belong to an interval [a, b], 0 < a ≤ b <∞,

b) φ(j)
n → φ(j) in C([a, b]) for all j = 0, 1, 2, · · · .

Indeed, the functional
∫∞

0
tλ+φ(t)dt is linear and bounded in K:∣∣∣∣∫ ∞

0

tλ+φn(t)dt

∣∣∣∣ ≤ (aλ + bλ)

∫ b

a

|φn(t)| dt.

A similar estimate holds for all the derivatives of φn.
Although t−

5
4

+ is a distribution in K, the convolution

h :=

∫ t

0

(t− s)− 5
4 b(s)ds := t

− 5
4

+ ? b

cannot be defined similarly to the definition in the book [2] because the function
∫∞

0
φ(u+s)b(s)ds does not, in general, belong

to K even if φ ∈ K.
Let us define the convolution h using the Laplace transform (4). Laplace transform of distributions is studied in [1].

There one finds a definition of the Laplace transform of distributions, the Laplace transform of convolutions, tables of the
Laplace transforms of distributions, in particular, formula (4) and other information. One has

L(t
− 5

4
+ ? b) = L(t

− 5
4

+ )L(b).

To define L(tλ−1) for λ ≤ 0, note that for Reλ > 0 the classical definition (4) holds. The right side of (4) admits analytic
continuation to the complex plane of λ, λ 6= 0,−1,−2, ..... This allows one to define integral (4) for any λ 6= 0,−1,−2, .... It
is known that Γ(z + 1) = zΓ(z), so

Γ(−1

4
) = −4Γ(3/4) := −c1, c1 > 0.
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Therefore, we define h by the formula h = L−1(Lh) and define L(h) as follows:

L(h) = −c1p
1
4L(b), (12)

where formula (4) with λ = − 1
4 is used and we assume that b is such that L(b) can be defined. That L(b) is well defined in

the Navier-Stokes theory, which follows from the priori estimates proved in Chapter 5 of the book [11] and in Section 5 of
this paper. From (12), one gets

L(b) = −c−1
1 p−

1
4L(h).

3. Integral equation

Equation (11) can be rewritten as
b(t) = b0(t)− cc1Φλ ? b, (13)

where
c1 =

∣∣∣∣Γ(−1

4

)∣∣∣∣ and λ = −1

4
.

Theorem 3.1. Equation (13) has a unique solution in C(0, T ) for any T > 0 if b0 is sufficiently smooth and rapidly decaying
as t grows. This solution can be obtained by iterations:

bn+1 = −(cc1)−1Φ1/4 ? bn + (cc1)−1Φ1/4 ? b0, bn=0 = (cc1)−1Φ1/4 ? b0, b = lim
n→∞

bn.

Proof. Applying to Equation (13) the operator Φ1/4? and using Equation (9), one gets a Volterra-type equation

Φ1/4 ? b = Φ1/4 ? b0 − cc1b,

or
b = −(cc1)−1Φ1/4 ? b+ (cc1)−1Φ1/4 ? b0. (14)

The operator Φλ? with λ > 0 is a Volterra-type operator. Therefore, Equation (14) can be solved for b by iterations, see
Lemma 3.1 in this section and Lemmas 5.10 and 5.11 in [11].

If b0 ≥ 0 and cc1 is sufficiently large, then the solution to (13) is non-negative and b ≥ 0; see Remark 3.1 below.
�

For convenience of the reader let us prove the result about solving Equation (14) by iterations, mentioned above.

Lemma 3.1. The operator Af :=
∫ t

0
(t− s)pf(s)ds in the spaceX := C(0, T ) for any fixed T ∈ [0,∞) and p > −1, has spectral

radius r(A) equal to zero. The equation f = Af + g is uniquely solvable in X. Its solution can be obtained by iterations

fn+1 = Afn + g, f0 = g; lim
n→∞

fn = f, (15)

for any g ∈ X and the convergence holds in X.

Proof. The spectral radius of a linear operator A is defined by the formula

r(A) = lim
n→∞

‖An‖1/n.

By induction, one proves that
|Anf | ≤ tn(p+1) Γn(p+ 1)

Γ(n(p+ 1) + 1)
‖f‖X , n ≥ 1.

From this formula and the known asymptotic of the gamma function, the conclusion r(A) = 0 follows. The convergence
result (15) is analogous to the well known statement for the assumption ‖A‖ < 1. A more detailed argument can be found
in [11], p.53.

�

Remark 3.1. If c > 0 is sufficiently large, then the norm of the operator B := (cc1)−1Φ1/4? in C(0, T ) is less than one:
‖B‖ < 1. In this case, (I −B)−1 =

∑∞
j=0B

j is a positive operator.

Let us now give another approach to solving integral Equation (13) with λ = − 1
4 .

Theorem 3.2. The solution to Equation (13) with λ = − 1
4 does exist, is unique, and belongs to C(R+) provided that

b0(t) ∈ C(R+) and |b0(t)|+ |b′(t)| ≤ c(1 + t)−2.
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Proof. Take the Laplace transform of Equation (13) with λ = − 1
4 and use formula (5) to get

L(b) = L(b0)− cc1p1/4L(b).

Thus,
L(b) =

L(b0)

1 + cc1p1/4

Therefore,
b(t) = L−1

( L(b0)

1 + cc1p1/4

)
.

Let us check that
max
t≥0
|b(t)| ≤ c.

From our assumptions about b0(t), it follows that |L(b0)| ≤ c(1+|p|)−1, Rep ≥ 0. Let p = iw. Since b(t) = (2π)−1
∫∞
−∞ eiwtL(b)dw,

one gets
|b(t)| ≤ c

2π

∫ ∞
−∞

(1 + |w|)−1|1 + cc1(iw)1/4|−1 < c2,

where c2 > 0 is some constant. Here we have used the inequality

inf
w∈R
|1 + cc1(iw)1/4|−1 ≤ c. (16)

Recall that by c > 0 various constants are denoted.
Let us check (16) for w ≥ 0. For w < 0, the argument is similar. One has (iw)1/4 = eiπ/8w1/4,

J :=
1

|1 + C cos(π/8) + iC sin(π/8)|
,

where C := cc1w
1/4 > 0. Therefore,

J−2 = [1 + C cos(π/8)]2 + C2 sin2(π/8) = 1 + C2 + 2C cos(π/8) > c > 0.

Consequently, inequality (16) is checked.
�

Remark 3.2. It follows from (14) that b(0) = 0 because limt→0 Φ 1
4
? b0 = 0 and limt→0 Φ 1

4
? b = 0 holds if b is a locally

integrable bounded function on R+.

4. Integral inequality

Consider the following inequality
q(t) ≤ b0(t) + ctλ−1

+ ? q = b0(t)− cc1Φ− 1
4
q, (17)

where c1 = −Γ(− 1
4 ) for λ = − 1

4 . Let f = f(t) ∈ L1(R+) be some function. If q ≤ f then Φ1/4 ? q ≤ Φ1/4 ? f. Therefore,
inequality (17) with λ = − 1

4 , after applying to both sides the operator Φ1/4?, implies

q ≤ −(cc1)−1Φ1/4 ? q + (cc1)−1Φ1/4 ? b0. (18)

Inequality (18) for sufficiently large c > 0 can be solved by iterations with the initial term (cc1)−1Φ1/4 ? b0, see Remark 3.1.
This yields

q(t) ≤ b(t), (19)

where b solves the integral equation (13). This follows from Theorem 4.1 (given below).

Theorem 4.1. Assume that b solves (13), c > 0 is sufficiently large, b0(t) satisfies conditions stated in Theorem 3.2 and q ≥ 0

solves inequality (17). Then inequality (19) holds.

Proof. Denote z := b− q, where
b = −(cc1)−1Φ1/4 ? q + (cc1)−1Φ1/4 ? b0.

Then
0 ≤ z + (cc1)−1Φ 1

4
? z.

Solving this inequality by iterations and using Remark 3.1, one obtains (19). If c > 0 is arbitrary, then this argument
yields (19) for sufficiently small t > 0 because the norm of the operator (cc1)−1Φ1/4? tends to zero when t→ 0.

�

Papers [6,8,9] also deal with hyper-singular integrals.
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5. Application to the Navier-Stokes problem

In this section, we apply the results of Sections 1–4 to the Navier-Stokes problem. Especially the results of Sections 3 and
4 will be used.

The Navier-Stokes problem (NSP) in R3 is discussed in many books and papers (see Chapter 5 in [11] and references
therein). The uniqueness of a solution in R3 is proved in [3, 5, 11] in different norms. The existence of the solution to the
NSP is discussed in [11].

The goal of this section is to prove that the statement of the NSP is contradictory. Therefore, the NSP is not a physically
correct statement of the problem of fluid mechanics. We prove that the solution to the NSP does not exist, in general.

What is a physically correct statement of problems of fluid mechanics remains an open problem.
We prove the paradox in the NSP. This paradox can be described as follows:
One can have initial velocity v(x, 0) > 0 in the NSP and, nevertheless, the solution v(x, t) to this NSP must have the zero

initial velocity: v(x, 0) = 0.
This paradox proves that the statement of the NSP is contradictory, that the NSP is not a physically correct statement

of the fluid mechanics problem and the solution to the NSP does not exist, in general.
The NSP in R3 consists of solving the equations

v′ + (v,∇)v = −∇p+ ν∆v + f, x ∈ R3, t ≥ 0, ∇ · v = 0, v(x, 0) = v0(x), (20)

see, for example, books [3,11]. Vector-functions velocity v = v(x, t) and the exterior force f = f(x, t) and the scalar function
p = p(x, t), the pressure, are assumed to decay as |x| → ∞ and t ∈ R+ := [0,∞). The derivative with respect to time is
denoted v′ := vt, ν = const > 0 is the viscosity coefficient, the velocity v = v(x, t) and the pressure p = p(x, t) are unknown,
v0 = v(x, 0) and f(x, t) are known. It is assumed that ∇ · v0 = 0. Equations (20) describe viscous incompressible fluid with
density ρ = 1. Let us assume for simplicity that f = 0. This do not change our arguments and our logic. The solution to
NSP (20) solves the integral equation:

v(x, t) = F −
∫ t

0

ds

∫
R3

G(x− y, t− s)(v,∇)vdy, (21)

where (v,∇)v = vjvp,j , over the repeated indices summation is assumed and vp,j :=
∂vp
∂xj

. Equation (21) implies an integral
inequality of the type studied in Sections 3 and 4 (see also [11], Chapter 5). Formula for the tensor G = G(x, t) = Gpm(x, t)

is derived in [11], p.41:
G(x, t) = (2π)−3

∫
R3

eiξ·x
(
δpm −

ξpξm
ξ2

)
e−νξ

2tdξ. (22)

The term F = F (x, t), in our case when f = 0, depends only on the data v0 (see formula (5.42) in [11]):

F (x, t) :=

∫
R3

g(x− y, t)v0(y)dy,

where

g(x, t) =
e−
|x|2
4νt

4νπt
, t > 0; g(x, t) = 0, t ≤ 0.

We assume throughout that v0 = v(x, 0) > 0 is such that F is bounded in all the norms we use. Let us use the Fourier
transform:

ṽ := ṽ(ξ, t) := (2π)−3

∫
R3

v(x, t)e−iξ·xdx.

Fourier transform equation (21) and get the integral equation:

ṽ(ξ, t) = F̃ (ξ, t)−
∫ t

0

dsG̃(ξ, t− s)ṽF(iξṽ), (23)

whereF denotes the convolution in R3. For brevity we omitted the tensorial indices: instead of G̃mpṽjF(iξj)ṽp, where one
sums up over the repeated indices, we wrote G̃ṽF(iξṽ). From formula (5.9) in [11], see formula (22), one gets:

G̃(ξ, t) = (2π)−3
(
δpm −

ξpξm
ξ2

)
e−νξ

2t.

One has |δpm − ξpξm
ξ2 | ≤ c. Therefore,

|G̃(ξ, t− s)| ≤ ce−ν(t−s)ξ2 .
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We denote by c > 0 various constants independent of t and ξ, by ‖ṽ‖ the norm in L2(R3) and by (v, w) the inner product in
L2(R3). Let us introduce the norm

‖v‖1 := ‖v‖+ ‖∇v‖.

One has
(2π)3/2‖ṽ‖ = ‖v‖, (2π)3‖|ξ|ṽ‖2 = ‖∇v‖2,

by the Parceval equality.

Assumption A. Assume that F (x, t) is a smooth function rapidly decaying together with all its derivatives. In particular,

sup
t≥0

(
(1 + tm)‖F (x, t)‖1

)
+ sup
t≥0,ξ∈R3

(
(1 + tm + |ξ|m)|F̃ (ξ, t)|

)
< c, m = 1, 2, 3.

Assumption A holds throughout this section and is not repeated. It is known that

sup
t≥0

(
‖v‖+

∫ t

0

‖∇v‖2ds
)
< c, sup

t≥0

∫ t

0

‖ṽ|ξ|‖2ds < c, (24)

sup
t≥0

(|ξ||ṽ(ξ, t)|) <∞, | ˜v(ξ, t)| ≤ c(1 + t1/2), sup
t≥0
‖∇v‖ <∞, (25)

see [11], p.52.

Theorem 5.1. Inequalities (24)–(25) hold.

Proof. Proof of this theorem can be found in [11]. Because of the importance of the third inequality in (25) and of its
novelty, we give its proof in detail. Let |ṽ(ξ, t)| := u, |F̃ | := µ(ξ, t) := µ. From Equation (23) one gets:

u ≤ µ+ c

∫ t

0

e−ν(t−s)ξ2‖u‖‖|ξ|u‖ds ≤ µ+ c

∫ t

0

e−ν(t−s)ξ2b(s)ds, b(s) := ‖|ξ|u‖, (26)

where the Parceval formula
(2π)3/2‖ṽ‖ = ‖v‖ < c

was used. By direct calculation, one derives the following inequality:

‖e−ν(t−s)ξ2 |ξ|‖ ≤ c(t− s)− 5
4 .

It follows from this inequality and from (26) by multiplying by |ξ| and taking the norm ‖ · ‖ of the resulting inequality that
the following integral inequality holds:

b(t) ≤ b0(t) + c

∫ t

0

(t− s)− 5
4 b(s)ds, (27)

where
b0(t) := ‖|ξ|µ(ξ, t)‖, b(s) := ‖|ξ|u‖.

The function b0(t) is smooth and rapidly decaying due to Assumption A. Let β solve the following equation:

β(t) = b0(t) + c

∫ t

0

(t− s)− 5
4 β(s)ds. (28)

Equation (28) can be written as
β(t) = b0(t)− cc1Φ− 1

4
? β, (29)

where ? denotes the convolution of two functions on R+ and c1 = |Γ(− 1
4 )|. The convolution on R+ was defined in the

Introduction. In Section 4, the relation between the solutions to integral equation (29) and integral inequality (27) was
studied and the inequality b(t) ≤ β(t) was proved. Taking the Laplace transform of Equation (28) and using Equation (4)
with λ = − 1

4 , we get
L(Φ− 1

4
? β) = L(Φ− 1

4
)L(β) = p1/4L(β),

so
L(β) = L(b0)− cc1p1/4L(β).

Therefore,
L(β) =

L(b0)

1 + cc1p1/4
, 0 ≤ b(t) ≤ β(t). (30)
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It follows from (30) that

b(t) ≤ β(t) =
1

2π

∫ ∞
−∞

eiτt
L(b0)

1 + cc1(iτ)1/4
dτ ≤ 1

π

∫ ∞
0

|L(b0)|
|1 + cc1eiπ/8τ1/4|

dτ ≤ c, (31)

where the argument p of the function L(b0) is equal to iτ , p = iτ , and we have used the decayO(|τ |−1) of |L(b0)| as a function
of p = iτ as |τ | → ∞. This decay follows from Assumption A and implies that the integrand in (31) belongs to L1(R) because
of the following inequality, proved at the end of Section 3:

inf
τ∈[0,∞)

|1 + cc1e
iπ/8τ1/4| > 0, cc1 > 0.

Thus, the third estimate of (25) is proved. �

Theorem 5.2. The NSP (20) does not have a solution, in general.

Proof. If v0(x) = v(x, 0) > 0, then b0(0) > 0. Apply to Equation (28) the operator Φ1/4? and use Theorem 1.1. This yields

Φ1/4 ? β = Φ1/4 ? b0 − cc1β(t), (32)

where formula (4) was used, c1 = −Γ(− 1
4 ) > 0 and Φ 1

4
? Φ− 1

4
= δ, where δ is the delta-function, see formulas (8)–(9).

We assume that b0(t) satisfies Assumption A, so it is smooth and rapidly decaying. Then Equation (32) can be solved by
iterations by Theorem 3.1 and the solution β is also smooth. Therefore,

lim
t→0

Φ1/4 ? β = 0, lim
t→0

Φ1/4 ? b0 = 0.

Consequently, it follows from (32) that β(0) = 0. Since 0 ≤ b(t) ≤ β(t), one concludes that

b(0) = 0.

This proves that the NSP problem does not have a solution, in general. Indeed, starting with an initial data which is
positive we prove that the corresponding solution to the NSP must have the initial data equal to zero. This is the NSP
paradox, see [7]. Of course, if the data v0(x) = v(x, 0) = 0 then the solution exists and is equal to zero by the uniqueness
theorem, see, for example [5,11]. Other paradoxes of the theory of fluid mechanics are mentioned in [3].

�
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