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Abstract

The variable sum exdeg index is a graph invariant introduced in 2011 for the purpose of predicting a particular physico-
chemical property, namely the octanol-water partition coefficient, of certain molecules. The variable sum exdeg coindex has
recently been devised by making some modifications in the definition of the variable sum exdeg index. The primary aim of
this note is to establish several mathematical inequalities involving the aforementioned two graph invariants for the case
of (chemical) trees.
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1. Introduction

In graph theory, an invariant is a numerical quantity of graphs that depends only on their abstract structure, not on
labeling of vertices or edges, or on the drawings of the graphs. In chemical graph theory, such quantities are usually
referred to as topological indices [7, 17, 18]. Many of them are defined as simple functions of the degrees of the vertices
of (chemical) graph. Most degree-based topological indices are viewed as the contributions of pairs of adjacent vertices.
But, equally important are the degree-based topological indices that are defined over non-adjacent pairs of vertices for
computing some topological properties of graphs, and such topological indices are named as coindices.

Let G be a graph with the vertex set V = {v1, v2, . . . , vn}, edge set E and with the vertex-degree sequence (d1, d2, · · · , dn)
satisfying ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0, where n ≥ 2, |E| = m and di is the degree of the vertex vi for i = 1, 2, · · · , n.
If vi and vj are adjacent in G, we write i ∼ j, otherwise we write i � j. Denote by G the complement of G and D =

diag(d1, d2, . . . , dn) the diagonal degree matrix of G. The cyclomatic number of G is the minimum number of edges whose
removal makes G as an acyclic graph (that is, a graph containing no cycle). Graphs having the cyclomatic numbers 0, 1, 2,
3, and 4 are known as the tree, unicyclic, bicyclic, tricyclic, and tetracyclic graphs, respectively.

One of the most popular and extensively studied topological indices is the first Zagreb index, appeared in the formula
that was derived within a study of molecular modeling [9]. For the graph G, the first Zagreb index is denoted by M1(G)

and is defined as
M1(G) =

n∑
i=1

d2
i =

∑
i∼j

(di + dj) .

The variable sum exdeg index is a degree-based topological index, introduced in [19] about a decade ago, for the purpose
of predicting the octanol-water partition coefficient of certain molecules. The variable sum exdeg index of the graph G is
denoted by SEIa(G) and is defined as

SEIa(G) =

n∑
i=1

dia
di =

∑
i∼j

(adi + adj ),

where ‘a’ is an arbitrary positive real number distinct from 1.
The primary motivation of analyzing the topological index SEIa was its very good chemical applicability [19]. Due

to its chemical applications, SEIa attained a considerable attention from researchers, especially from mathematicians.
The very first paper devoted to the mathematical aspects of SEIa is [20], where several extremal results regarding SEIa
were obtained. Yarahmadi and Ashrafi [21] proposed and analyzed the variable sum exdeg polynomial. For a > 1, graphs
attaining the extremum (maximum and minimum) values of SEIa among all tree/unicyclic graphs of a fixed order were
determined in [6]. For a > 1, graphs attaining the maximum values of SEIa among all bicyclic/tricyclic graphs of a fixed
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order were also found in [6]. Ali and Dimitrov [1] gave alternative proofs of some of the main results of [6], and also they
proved an extremal result regarding the variable sum exdeg index of tetracyclic graphs. For a > 1, the results of [1, 6]
were generalized by Damitov and Ali [3] by considering the graphs of a fixed order and cyclomatic number; in [3], the case
0 < a < 1 was also discussed but only the partial solutions to the considered problems for this certain case were obtained.
The problem of finding graphs having the extremum values of the variable sum exdeg index of the trees of a fixed order
and with the vertices having prescribed degrees was attacked in [12]. Further recent results about SEIa can be found in
the recent papers [2,5,10,16].

The concept of the topological indices defined over non-adjacent pairs of vertices was introduced in [4]. In this case,
the sum runs over the edges of the complement of G. By analogy with SEIa(G), we define the corresponding variable sum
exdeg coindex, SEIa(G), as

SEIa(G) =
∑
i�j

(adi + adj ) =

n∑
i=1

(n− 1− di)adi .

In the remaining part of this paper, we assume thatG ∼= T is a tree. In this note, we determine several sharp bounds on
the invariants SEIa(T ) and SEIa(T ). Also, some relations between these invariants are established. Most of the obtained
results are sharp also for the chemical trees.

2. Preliminaries

Let f be a convex function on the interval I ⊂ R, x = (x1, x2, . . . , xn) ∈ In, n ≥ 2, and p = (p1, p2, . . . , pn) be a positive
n-tuple. Then the following inequality holds [13]

n∑
i=1

pif(xi) ≥ Pnf

(∑n
i=1 pixi
Pn

)
, (1)

where Pn =
∑n

i=1 pi. If f is concave, the opposite inequality in (1) is valid. Equality sign in (1) holds if and only if
x1 = x2 = · · · = xn.

As a special case of (1) (see e.g. [13,14]) the following result is obtained.
Let p = (pi), i = 1, 2, . . . , n, be a sequence of non-negative real numbers, and let a = (ai), i = 1, 2, . . . , n, be a sequence of

positive real numbers. Then for any real number r satisfying r ≤ 0 or r ≥ 1, it holds that(
n∑

i=1

pi

)r−1 n∑
i=1

pia
r
i ≥

(
n∑

i=1

piai

)r

. (2)

When 0 ≤ r ≤ 1, the opposite inequality in (2) is valid. Equality sign in (2) holds if and only if r = 0, or r = 1, or
a1 = a2 = · · · = an, or p1 = p2 = · · · = pt = 0 and at+1 = · · · = an for some t satisfying the inequality 1 ≤ t ≤ n− 1.

Note that inequalities (1) and (2) are the generalizations of Jensen’s inequality, which was proven in [11].

3. Main results

Firstly, we establish a lower bound for SEIa(T ) in terms of detD, n and ∆, where T is a tree.

Theorem 3.1. Let T be a tree with n ≥ 4 vertices. Then for any a > 0, a 6= 1, it holds that

SEIa(T ) ≥ ∆a∆ + 2a+ (n− 3)a
2n−∆−4

n−3

(
detD

∆

) 1
n−3

, (3)

where the equality sign holds if and only if T ∼= Pn or T ∼= K1,n−1.

Proof. The arithmetic–geometric mean inequality, AM–GM (see e.g. [14]), can be considered as

n−2∑
i=2

ai ≥ (n− 3)

(
n−2∏
i=2

ai

) 1
n−3

.

Now, for ai := dia
di , i = 2, . . . , n− 2, a > 0, a 6= 1, the above inequality gives

n−2∑
i=2

dia
di ≥ (n− 3)

(
n−2∏
i=2

dia
di

) 1
n−3

= (n− 3)a
d2+···+dn−2

n−3

(
n−2∏
i=2

di

) 1
n−3

,
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that is
n∑

i=1

dia
di ≥ ∆a∆ + dn−1a

dn−1 + dna
dn + (n− 3)a

2m−∆−dn−1−dn
n−3

(
detD

∆dn−1dn

) 1
n−3

. (4)

Since T is a tree, it has at least two vertices of degree 1. Therefore dn = dn−1 = 1 and m = n − 1, and from (4) we obtain
(3).

Equality in (4) is attained if and only if ∆a∆ ≥ d2a
d2 = · · · = dn−2a

dn−2 ≥ a. If dn−2 6= 1, then T ∼= Pn, since Pn is the
only tree with exactly two vertices of degree 1. If d2 = · · · = dn−2 = 1, then ∆ = n− 1, i.e. T ∼= K1,n−1.

In the next theorem, we determine lower bound for SEIa(T ) in terms of M1(T ) and parameter n.

Theorem 3.2. Let T be a tree with n ≥ 3 vertices. Then for any a > 1, the following inequality holds

SEIa(T ) ≥ 2a+ 2(n− 2)a
M1(T )−2

2n−4 . (5)

Equality holds if and only if T ∼= Pn.

Proof. For a > 1 the function f(x) = ax is convex for x ≥ 0. Therefore, for pi = xi = di, i = 1, 2, . . . , n − 2, according to (1)
we have

n−2∑
i=1

dia
di ≥

(
n−2∑
i=1

di

)
a

d2
1+···+d2

n−2
d1+···+dn−2 ,

that is
n∑

i=1

dia
di − dn−1a

dn−1 − dnadn ≥ (2m− dn−1 − dn) a
M1(G)−d2

n−1−d2
n

2m−dn−1−dn . (6)

Since T is a tree, it has at least two vertices of degree 1, dn = dn−1 = 1. Since m = n− 1, from (6) we obtain

SEIa(T )− 2a ≥ 2(n− 2)a
M1(T )−2

2n−4 ,

from which we arrive at (5).
Equality in (6) is attained if and only if d1 = d2 = · · · = dn−2, therefore equality in (5) holds if and only if T ∼= Pn.

Corollary 3.1. If T is a tree with n ≥ 2 vertices then for any a > 1, it holds that

SEIa(T ) ≥ 2a+ 2(n− 2)a2. (7)

Equality holds if and only if T ∼= Pn.

Proof. In [8] it was proven
M1(T ) ≥ 4n− 6 = M1(Pn).

From the above and (5) we obtain (7).

The inequality (7) was proven in [20].
By a similar arguments as in Theorem 3.2 the following result can be proven.

Theorem 3.3. Let T be a tree with n ≥ 4 vertices. Then for any a > 1, it holds that

SEIa(T ) ≥ ∆a∆ + 2a+ (2n−∆− 4)a
M1(T )−∆2−2

2n−∆−4 .

Equality holds if and only if T ∼= Pn or T ∼= K1,n−1.

In the next theorem, we prove the Nordhaus–Gaddum type inequality [15] for the topological index SEIa(T ) and coindex
SEIa(T ).

Theorem 3.4. Let T be a tree with n ≥ 4 vertices. Then for any a > 0, a 6= 1, the following inequality holds

SEIa(T ) + SEIa(T ) ≥ (n− 1)
(
a∆ + 2a+ (n− 3)a

2n−4−∆
n−3

)
. (8)

Equality holds if and only if T ∼= Pn or T ∼= K1,n−1.
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Proof. Since

SEIa(T ) =

n∑
i=1

(n− 1− di)adi = (n− 1)

n∑
i=1

adi −
n∑

i=1

dia
di ,

we have that
SEIa(T ) + SEIa(T ) = (n− 1)

n∑
i=1

adi . (9)

On the other hand, by arithmetic–geometric mean inequality, we get

n−2∑
i=2

adi ≥ (n− 3)

(
n−2∏
i=2

adi

) 1
n−3

,

i.e.
n∑

i=1

adi ≥ ad1 + adn−1 + adn + (n− 3)a
2m−d1−dn−1−dn

n−3 .

For m = n− 1, d1 = ∆, dn−1 = dn = 1, the above inequality gives
n∑

i=1

adi ≥ a∆ + 2a+ (n− 3)a
2n−∆−4

n−3 . (10)

According to (10) and (9) we arrive at (8).
Equality in (10) holds if and only if ∆ = d1 ≥ d2 = · · · = dn−2 ≥ 1, therefore equality in (8) holds if and only if T ∼= Pn

or T ∼= K1,n−1 (see the proof for the equality case in (3)).

The proofs of the following theorems are analogous to that of Theorem 3.4, thus omitted.

Theorem 3.5. Let T be a tree with n ≥ 3 vertices. Then for any a > 0, a 6= 1, it holds that

SEIa(T ) + SEIa(T ) ≥ (n− 1)
(
2a+ (n− 2)a2

)
.

Equality holds if and only if T ∼= Pn.

Theorem 3.6. Let T be a tree with n ≥ 4 vertices. Then for any a > 0, a 6= 1, the following inequality holds

SEIa(T ) + SEIa(T ) ≥ (n− 1)an−1
(
a−∆ + 2a−1 + (n− 3)a

∆+4−2n
n−3

)
.

Equality holds if and only if T ∼= Pn or T ∼= K1,n−1.

Theorem 3.7. Let T be a tree with n ≥ 3 vertices. Then for any a > 0, a 6= 1, it holds that

SEIa(T ) + SEIa(T ) ≥ (n− 1)an−3 (2a+ n− 2) .

Equality holds if and only if T ∼= Pn.

Theorem 3.8. Let T be a tree with n ≥ 3 vertices. Then for any a > 0, a 6= 1, it holds that

SEIa(T )SEIa(T ) ≥ an−1(n− 1)2(n− 2)2. (11)

Equality holds if and only if T ∼= K1,n−1.

Proof. For r = −1, pi := n− 1− di, ai := adi , i = 1, 2, . . . , n, the inequality (2) transforms into(
n∑

i=1

(n− 1− di)

)−2 n∑
i=1

(n− 1− di)a−di ≥

(
n∑

i=1

(n− 1− di)adi

)−1

,

that is
n∑

i=1

(n− 1− di)a−di ≥ (n(n− 1)− 2(n− 1))2

SEIa(T )
,

i.e.
an−1

n∑
i=1

(n− 1− di)a−di ≥ an−1(n− 1)2(n− 2)2

SEIa(T )
, (12)

from which (11) is obtained.
Equality in (12) is attained if and only if n− 1 = ∆ = d1 = · · · = dt > dt+1 = · · · = dn = δ = 1, therefore equality in (11)

holds if and only if t = 1, that is T ∼= K1,n−1.
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The proof of the next result is similar to that of Theorem 3.8, and hence we omit it.

Theorem 3.9. Let T be a tree with n ≥ 2 vertices. Then for any a > 0, a 6= 1, the following inequality holds

(SEIa(T )− 2a)(SEIa(T )− 2an−2) ≥ 4an−1(n− 2)2.

Equality holds if and only if T ∼= Pn.

Remark 3.1. Note that the path graph attains the equality sign in the inequalities, involving SEIa or SEIa, given in all
the results established in this section, except for Theorem 3.8. Thus, these results give sharp inequalities involving SEIa or
SEIa also for the chemical trees.
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