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Abstract

An extension method for linear functionals is given. The proposed method provides extensions of a linear functional T
defined on a subspace X of a vector space Y over a field K, by using a suitable isomorphism S : Y −→ Y that satisfies
S (X) = X and TS = T. The extension Text : Xext −→ K is linear, and it is defined over a vector space Xext that contains
X. Several illustrations are considered, including symmetric values, extension with respect to dilations, extended Cesàro
summability of series, and extended multidimensional point values.
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1. Introduction

It is many times convenient to assign a finite value to a divergent limit, such as the limits of partial sums of divergent series
or the limit of integrals over finite intervals as these intervals become infinite. Using divergent series and integrals to find
the answer to several problems, in particular the result of convergent processes, is a very old and fruitful practice as can be
seen in Hardy’s book [8] or in Bromwich’s book [1]. A great variety of summability methods have been employed throughout
the years. Distributional theory often employs other methods, regularization methods, as for instance Hadamard finite
part limits [7], of importance in the area of partial differential equations, since they provide fundamental solutions. Finite
part regularized values are also useful in number theory [3]. The study of divergent limits has a also close relationship
with pseudofunctions [9,16]. Paycha [12] explains the need to employ regularized values for divergent series and integrals
in other areas as noncommutative geometry and quantum mechanics.

In a recent article, Sasane [15] introduced an extension procedure to assign a point value to distributions that do not
have such value, and employed this to find extended values for divergent series. His method was motivated by a trick used
by Ramanujan to assign the value −1/12 to the divergent series

∑∞
n=1 n, a series that, interestingly, gives the Casimir

effect, the value of the attractive force between two parallel perfect conductor plates in vacuum. Sasane’s method has
several shortcomings, since in general it is not linear, nor is defined in a vector space. In fact, even though

∑∞
n=1 n

2 also
has an extended value, the series

∑∞
n=1

(
n+ n2

)
does not.

The purpose of this article is to give an extension method of which a general form of Sasane’s extension is the first
step. Our method provides extensions of a linear functional T defined on a subspace X of a vector space Y over a field K,
by using a suitable isomorphism S : Y −→ Y that satisfies S (X) = X and TS = T. The extension Text : Xext −→ K is
linear, and it is defined over a vector space Xext that contains X. We provide several illustrations by considering different
spaces and operators that satisfy our conditions, including symmetric values, extension with respect to dilations, extended
Cesàro summability of series, and extended multidimensional point values.

2. Preliminaries

We refer to the texts for the basic ideas about distributions [9,16]. Notions from the local analysis of distributions can be
found in [4, 6, 13, 14, 17]. Distributional point values were first defined by Łojasiewicz [10, 11], who defined the value of a
distribution f ∈ D′(Rn) at the point x0 as the limit

f(x0) = lim
ε→0

f(x0 + εx) ,
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if the limit exists in D′(Rn), that is, f(x0) = γ if

lim
ε→0
〈f(x0 + εx), φ(x)〉 = γ

∫
Rn
φ(x) dx ,

for all test functions φ ∈ D(Rn).

Distributional point values are already extended values since if a distribution is given by a continuous function in a
neighborhood of x0 then the distributional value at this point is the ordinary value. They are a sort of average value,
actually a Cesàro type average [4]. In one dimension they allow one to extend the Lebesgue integral to the distributional
integral [5].

References to summability methods are [1, 8] and, from a distributional approach, [4]. Ideas on Cesàro summability
of series can be seen in those references. Interestingly, point values of periodic distributions and the Cesàro sum of its
Fourier series are very closely related [2] as we explain in Section 7.

3. A general extension procedure

Let Y be a vector space over a field K, let X be a linear subspace and let

T : X −→ K ,

be a linear map. Let us also suppose that
S : Y −→ Y ,

is a linear isomorphism.

Definition 3.1. We say that T is invariant with respect to S and X if the following two conditions are satisfied:

1. Sϕ ∈ X if and only if ϕ ∈ X, that is, S (X) = X;

2. TS (ϕ) = T (ϕ) for all ϕ ∈ X.
If T is invariant with respect to S then we can define an extension of T in the following fashion.

Definition 3.2. The set X{1}ext is formed by those elements ϕ ∈ Y for which there exists κ ∈ K, κ 6= 1, such that

ϕκ = ϕ− κSϕ ∈ X .

It would be convenient to denote as Xκ the set of ϕ for which ϕκ ∈ X, so that

X
{1}
ext =

⋃
κ6=1

Xκ .

Naturally X ⊂ Xκ for all κ, but if ϕ ∈ X{1}ext \X then the constant κ is unique, as the next lemma shows.

Lemma 3.1. Let ϕ ∈ X
{1}
ext . If κ 6= λ are scalars, then ϕκ and ϕλ both belong to X if and only if ϕ ∈ X. If κ 6= λ then

Xκ ∩Xλ = X.

Proof. If ϕκ and ϕλ both belong to X for two different scalars κ and λ, then it follows that

Sϕ = (κ− λ)
−1

(ϕκ − ϕλ)

also belongs to the vector subspace X, and consequently ϕ ∈ X. Conversely, if ϕ ∈ X then so does Sϕ and thus ϕκ ∈ X for
any κ ∈ K.

Actually, a little more is true. If ϕ ∈ X{1}ext \X let us denote by κ (ϕ) the unique κ such that ϕ ∈ Xκ.

Lemma 3.2. The constant κ depends only on the equivalence class of ϕ in the quotient space Y/X, [ϕ] ∈ Y/X, that is
κ = κ ([ϕ]) for [ϕ] 6= [0] .

Proof. Indeed, if ϕ ∈ X
{1}
ext \ X and [ϕ] = [ψ] then ϕ − ψ = χ ∈ X and consequently if κ = κ (ϕ) , that is, ϕ ∈ Xκ, then

ψκ = ϕκ − χκ ∈ X, so that ψ ∈ Xκ, hence κ = κ (ψ) .

23
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We observe also that if ϕ ∈ X{1}ext \X then

κ (λϕ) = κ (ϕ) , for all λ ∈ K . (1)

We can now define an extension operator
T
{1}
ext : X

{1}
ext −→ K ,

as follows.

Definition 3.3. If ϕ ∈ X{1}ext we put
T
{1}
ext (ϕ) = (1− κ)

−1
T (ϕκ) , (2)

if ϕ ∈ Xκ.

Notice that if ϕ ∈ X then ϕ ∈ Xκ for any κ 6= 1, but T {1}ext (ϕ) is well defined because (1− κ)
−1
T (ϕκ) = T (ϕ) for any κ.

Notice also that the restriction κ 6= 1 that we have imposed is needed for (2) to make sense.
The space X{1}ext will not be a vector space and the function T

{1}
ext will not be linear, in general. In fact, we have the

following result.

Lemma 3.3. If φ, ψ, and φ+ ψ all belong to X{1}ext \X then

κ (ϕ) = κ (ψ) = κ (ϕ+ ψ) .

Proof. Let λ = κ (ϕ) , ω = κ (ψ) , and µ = κ (ϕ+ ψ) and suppose λ 6= ω. Then λ 6= µ or ω 6= µ; let us say the first one holds, to
fix the ideas. We have that ϕ− λSϕ, ψ − ωSψ, and (ϕ+ ψ)− µS(ϕ+ ψ) all belong to X. Since X is a vector space it follows
by adding the first two and subtracting the third that

(µ− λ)Sϕ+ (µ− ω)Sψ ∈ X ,

and consequently
(µ− λ)ϕ+ (µ− ω)ψ ∈ X .

Hence
[ϕ] =

[(
µ− ω
λ− µ

)
ψ

]
,

which in view of the Lemma 3.2 and (1) yields λ = κ (ϕ) = κ (ψ) = ω, a contradiction.

For each κ 6= 1 the space Xκ is a vector space. However, as the Lemma 3.3 shows, if λ 6= µ and ϕ ∈ Xλ \X, ψ ∈ Xω \X
then ϕ + ψ /∈ X{1}ext . Therefore, unless X{1}ext = X or X{1}ext = Xκ0

for a single value κ0 with Xκ0
6= X, the space X{1}ext is not a

vector space. In order to construct a linear extension of T, defined in a vector space, we need to go beyond T {1}ext and X{1}ext ,

as we explain in the next section.

4. Further extensions

The method of the previous section can be applied whenever T is invariant with respect to S andX. Therefore we can apply
it again to the space Xκ, κ 6= 1, and the operator

Tk = T
{1}
ext

∣∣∣
Xκ

because of the next observation.

Lemma 4.1. The operator Tk is invariant with respect to S and Xκ.

Proof. Notice that ϕ ∈ Xκ if and only if ϕ − κSϕ ∈ X, and since T is invariant with respect to S and X, this is equivalent
to Sϕ− κS(Sϕ) ∈ X, that is Sϕ ∈ Xκ.

The operator Tκ is clearly linear. Also, if ϕ ∈ Xκ,

TκS (ϕ) = T
{1}
ext (Sϕ) = (1− κ)

−1
T (Sϕκ)

= (1− κ)
−1
T (ϕκ) = T

{1}
ext (ϕ) = Tκ (ϕ) ,

namely, TκS = Tκ, as required.
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If we now start from Xκ we can construct spaces (Xκ)λ for any λ 6= 1. Actually the same space is obtained if we start
from the space Xλ.

Lemma 4.2. If κ 6= 1 and λ 6= 1 then
(Xκ)λ = (Xλ)κ .

Proof. Indeed, ϕ ∈ (Xκ)λ if and only if (ϕκ)λ ∈ X, and

(ϕκ)λ = ϕκ − λSϕκ = ϕ− (κ+ λ)Sϕ+ κλS2ϕ = (ϕλ)κ .

From now on we shall denote as ϕκ,λ the element (ϕκ)λ = (ϕλ)κ and the space (Xκ)λ = (Xλ)κ asXκ,λ.We then construct
an extension of T from X to Xκ,λ as

Tκ,λ (ϕ) =
T (ϕκ,λ)

(1− κ) (1− λ)
=

T (ϕκ,λ)

1− κ− λ+ κλ
.

The space Xκ,λ is a vector space and Tκ,λ : Xκ,λ → K is linear. On the other hand, the set

X
{2}
ext =

⋃
κ6=1,λ 6=1

Xκ,λ ,

will not be a vector space, in general, and the operator T {2}ext from X
{2}
ext to K given by T {2}ext (ϕ) = Tκ,λ (ϕ) if ϕ ∈ Xκ,λ will not

be linear, in general. Notice, however, that if ϕ ∈ Xκ, ψ ∈ Xλ then ϕ + ψ, which in general does not belong to X{1}ext , will
belong to X{2}ext and actually

T
{2}
ext (ϕ+ ψ) = T

{2}
ext (ϕ) + T

{2}
ext (ψ) .

More generally for (κ1, . . . , κn) ∈ Kn, with κj 6= 1 for all j, we may define the vector spaces Xκ1,...,κn recursively as

Xκ1,...,κn =
(
Xκ1,...,κn−1

)
κn

.

We can also define extension operators from Xκ1,...,κn to K as

Tκ1,...,κn =
(
Tκ1,...,κn−1

)
κn

.

The set
X
{n}
ext =

⋃
κj 6=1

Xκ1,...,κn ,

will not be a vector space, in general, and the operator T {n}ext from X
{n}
ext to K given by T {n}ext (ϕ) = Tκ1,...,κn (ϕ) if ϕ ∈ Xκ1,...,κn

will not be linear, in general. However, we have the ensuing extension result.

Theorem 4.1. The set
Xext =

∞⋃
n=1

X
{n}
ext ,

is a vector subspace of Y. The operator
Text : Xext → K ,

given by
Text (ϕ) = T

{n}
ext (ϕ) = Tκ1,...,κn (ϕ) ,

if ϕ ∈ Xκ1,...,κn ⊂ X
{n}
ext is a linear operator that extends T : X → K. Furthermore,

Text (Sϕ) = Text (ϕ) . (3)

Proof. We just need to notice that

Xext =

∞⋃
n=1

⋃
κj 6=1

Xκ1,...,κn ,

is a union of vector subspaces of Y and that the operators Tκ1,...,κn are linear, extend T, and satisfy the equation corre-
sponding to (3).
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We can also give an alternative formula for Text. Let ϕ ∈ Xext, say ϕ ∈ Xκ1,...,κn , where κj 6= 1 for all j. Let p = pκ1,...,κn

be the polynomial
p (x) = (1− κ1x) · · · (1− κnx) . (4)

Then
ϕκ1,...,κn = p (S) (ϕ) ∈ X ,

and
Text (ϕ) =

T (ϕκ1,...,κn)

p (1)
. (5)

Notice that when the fieldK is algebraically closed then a polynomial p is of the form (4) if and only if p (0) = 1 and p (1) 6= 0.

It may be useful to use another notation for the extension operator, namely, if Text (ϕ) = γ we put

T (ϕ) = γ (ext, S) .

We will consider several illustrations of the extension procedure in the next sections. Naturally the method applies to
any operator, but we concentrate on extended point values.

5. Symmetric values

In our first illustration we consider the one dimensional case and take

Y = D′ (R) , (6)

X = {f ∈ Y : the distributional point value f (0) exists} , (7)

and T is that distributional value,
T (f) = f (0) . (8)

Let now S be the operator
S (f) (x) = f (−x) .

Clearly T is invariant with respect to S and X. We shall see that in this case

Xκ = X , κ 6= −1 ,

while
X−1 ) X .

In fact, if we decompose f in its even and odd parts,

f = feven + fodd ,

then
X−1 = {f ∈ Y : the distributional point value feven (0) exists} .

Indeed, if κ 6= −1 and fκ ∈ X, fκ (0) = Lκ distributionally, then also the distributional point values (fκ)even (0) = (feven)κ (0)

exist and equal Lκ while (fκ)odd (0) = (fodd)κ (0) exist and equal 0. But

(feven)κ (0) = feven (x)− κfeven (−x)|x=0 = (1− κ) feven (x)|x=0 ,

(fodd)κ (0) = fodd (x)− κfodd (−x)|x=0 = (1 + κ) fodd (x)|x=0 ,

so that feven (0) exists, and equals Lκ/ (1− κ) and, because κ 6= −1, fodd (0) exists. Hence f (0) = feven (0) + fodd (0) exists,
that is, f ∈ X. When κ = −1, on the other hand, f ∈ X−1 means that feven (0) exists since

feven =
1

2
(f + Sf) =

1

2
f−1 .

In this case
Xext = X

{1}
ext = X−1 ,

and the extended point value is given as the symmetric distributional value

Text (f) = T
{1}
ext (f) = feven (0) ,

or
f (0) = feven (0) (ext, S) .

26



R. Estrada / Contrib. Math. 2 (2020) 22–31 27

6. Dilations

Let us keep working with Y, X, and T as in (6), (7), and (8). Let c > 0 be fixed and let us consider the operator

Hc (f) (x) = f (cx) .

T is invariant with respect to Hc and X.
In this case the spaces Xκ, κ 6= 1, are all different, and in fact Xκ1,...,κn = Xλ1,...,λm if and only if n = m and λ1, . . . , λn

is a permutation of κ1, . . . , κn.
In some cases the extended point value Text (f) corresponds to a finite part at x = 0 but that is not always the case.

Indeed, suppose we have an asymptotic expansion of the form

f (εx) =
a−αn (x)

εαn
+ · · ·+ a−α1

(x)

εα1
+ L+ o (1) , (9)

as ε → 0 distributionally, where 0 < α1 < · · · < αn and where the a−αj (x) are homogeneous distributions of degree −αj .
Let p be a polynomial of degree n with p (0) = 1 and p (1) 6= 0,

p (x) = 1 +

n∑
j=1

Ajx
j .

Then p (Hc) = I +
∑n
j=1AjHcj so that the asymptotic expansion of [p (Hc) f ] (εx) as ε→ 0 is

[p (Hc) f ] (εx) =
b−αn (x)

εαn
+ · · ·+ b−α1

(x)

εα1
+ p (1)L+ o (1) ,

where
b−αj (x) = p

(
c−αj

)
a−αj (x) , 1 ≤ j ≤ n .

Therefore, if we take

p (x) =

n∏
j=1

(1− cαjx) ,

we obtain
fcα1 ,...,cα1 (εx) = [p (Hc) f ] (εx) = p (1)L+ o (1) , as ε→ 0 ,

so that fcα1 ,...,cα1 ∈ X and (5) yields

Text (f) =
T (fcα1 ,...,cα1 )

p (1)
= L ,

that is
f (0) = L (ext, Hc) .

In other words, Text (f) is the finite part of the limit of f (εx) as ε→ 0.

Consider next the distribution
g (x) = |x|i = sin ln |x|+ i cos ln |x| .

The distributional point value g (0) does not exist [6]. The function g does not have an asymptotic expansion of the form
(9) either. Here we have that

Hc (g) (x) = cif (x) .

If c 6= e2nπ, n ∈ Z, then gc−i = g − c−iHc (g) belongs to X since it actually vanishes identically, and consequently

Text (g) =
1

1− c−i
T (gc−i) = 0 ,

g (0) = 0 (ext, Hc) .

Interestingly, the point value in the sense of Campos Ferreira g (0) exists and equals zero, g (0) = 0 (CF) [6].
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7. Extended Cesàro summability

We may employ several different notions of point values to obtain corresponding notions of summability of series. In
particular if we use Fourier series we may consider summability of a series

∑∞
n=−∞ an by studying the distributional point

value of the generalized function

f (x) =

∞∑
n=−∞

ane
inx,

at x = 0. The characterization of the point values of periodic distributions was first given in [2], and it can be found
in [4, Chapter 6]. Indeed, using the notion of Cesàro summability, denoted as (C, k), we have the ensuing result.

Theorem 7.1. Let f ∈ S ′ be a periodic distribution of period 2π and let
∑∞
n=−∞ ane

inx be its Fourier series. Let x0 ∈ R.
Then

f(x0) = γ , in D′ ,

if and only if there exists k such that
lim
x→∞

∑
−x≤n≤ax

ane
inx0 = γ (C, k)

for each a > 0.

This theorem gives the complete characterization of point values. There are several important particular cases, as
we now explain. When f is symmetric about x = x0, i.e., f(x − x0) = f(x0 − x), then f(x0) = γ in D′ if and only if∑∞
n=−∞ ane

inx0 = γ (C). Also, if the Fourier series of f is of the power series type, i.e., f(x) =
∑∞
n=0 ane

inx, then f(x0) = γ

in D′ if and only if
∑∞
n=0 ane

inx0 = γ (C).

Let us thus consider the following spaces and operators

Ỹ =

{
{an}∞n=0 :

∞∑
n=0

ane
inx ∈ D′ (R)

}
,

in other words [4,9], {an}∞n=0 ∈ Ỹ if and only if there exists α > 0 such that |an| = O (nα) as n→∞. The space X̃ is defined
as

X̃ =

{
{an}∞n=0 ∈ Ỹ :

∞∑
n=0

an is Cesàro summable
}
.

The results from [2] and [4, Chapter 6] that we quoted yield that {an}∞n=0 ∈ X̃ if and only if the distribution

f (x) = F {{an}∞n=0 ;x} =

∞∑
n=0

ane
inx ,

has a distributional point value at 0. The operator T̃ in this case is given as the Cesàro sum

T̃ ({an}) =

∞∑
n=0

an (C) .

We also have
T̃ ({an}) = f (0) ,

where f (0) is the distributional point value.
If q is an integer, q ≥ 2, we can consider the operator H̃q given as H̃q ({an}) = {bn} where

bqn = an , bqn+j = 0 , 1 ≤ j ≤ q − 1 .

In this case H̃q is not an isomorphism of X̃, but T̃ is “almost” invariant with respect to H̃q and X̃. In fact, in the correspon-
dence {an} ←→ f then H̃q {an} corresponds to the operator Hq (f) considered in the Section 6,

F {{bn}∞n=0 ;x} =

∞∑
n=0

bne
inx =

∞∑
m=0

ame
iqmx = F {{an}∞n=0 ; qx} ,

that is
F
{
H̃q {an} ;x

}
= Hq (f) (x) .
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It would be possible to consider an extension procedure for T̃ with respect to H̃q, but it is simpler to define
∞∑
n=0

an = γ
(
ext, H̃q

)
,

if
f (0) = γ (ext, Hq) .

8. An example

Let us consider the sequence {ns}∞n=1 for s ∈ C. The series
∑∞
n=1 n

s converges for <e s < −1 and of course when this holds

∞∑
n=1

ns = ζ (−s) ,

where ζ is the Riemann zeta function. Our aim is to find an extended value of the series,
∑∞
n=1 n

s
(
ext, H̃q

)
when the

series diverges, that is, when <e s ≥ −1.

Let us define the distribution
f (x) =

∞∑
n=1

nseinx,

convergence in D′ (R) . The distributional point value f (0) exists and equals ζ (−s) when <e s < −1 but it does not exist
otherwise. In fact, the behavior of f (εx) as ε→ 0 is as follows.

Lemma 8.1. If <e s ≥ −1, s 6= −1, then

f (εx) =
Cs
εs+1

(x+ i0)
−s−1

+ ζ (−s) + o (ε) , (10)

distributionally, where
Cs = eiπ(s+1)/2Γ (s+ 1) ,

and where (x+ i0)
α is the distribution limy→0+ (x+ iy)

α if α ∈ C.

Proof. Let φ ∈ D (R) . Then

〈f (εx) , φ (x)〉 =

∞∑
n=1

ns
〈
einεx, φ (x)

〉
=

∞∑
n=1

nsφ̂ (nε) ,

where φ̂ (u) =
∫∞
−∞ eiuxφ (x) dx is the Fourier transform of φ. The asymptotic expansion of this series can be obtained from

an asymptotic formula of Ramanujan [4, (5.15)], namely,
∞∑
n=1

nsψ (nε) ∼ 1

εs+1

∫ ∞
0

xsψ (x) dx+

∞∑
j=0

ζ (−s− j) ψ
(j) (0)

j!
εj ,

as ε→ 0 if ψ is smooth in R and of exponential decrease at infinity. If ψ = φ̂ we obtain
∞∑
n=1

nsφ̂ (nε) =
1

εs+1

〈
us+, φ̂ (u)

〉
+ ζ (−s) + o (ε)

=
1

εs+1

〈
ûs+ (x) , φ (x)

〉
+ ζ (−s) + o (ε)

=
Cs
εs+1

〈
(x+ i0)

−s−1
, φ (x)

〉
+ ζ (−s) + o (ε)

since [9] the Fourier transform of us+ is precisely Cs (x+ i0)
−s−1

.

Applying the extension procedure corresponding to the operator Hc, for any c > 0, the analysis of the Section 6 yields
that the extended point value of f at 0 is the finite part of the expansion (10), hence

f (0) = ζ (−s) , (ext, Hc) , (11)

for <e s ≥ −1, s 6= −1. In fact, (11) also holds when <e s < −1 as a distributional point value, no extension needed.
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Using the extended sum operator of the previous section we obtain
∞∑
n=1

ns = ζ (−s) ,
(
ext, H̃q

)
, s 6= −1 . (12)

We can also derive formula (12) by using the method employed by Sasane [15], to find an extended sum for the divergent
series

∑∞
n=1 n. Sasane was inspired by a trick used by Ramanujan, but the method is probably much older. Indeed, using

the operator H2,

fκ (x) = f (x)− κf (2x) =

∞∑
n=1

nseinx − κ
∞∑
n=1

nse2inx,

so that if κ = 2s+1,

f2s+1 (x) =

∞∑
n=1

(−1)
n+1

nseinx.

Notice now that the series
∑∞
n=1 (−1)

n+1
ns is always Cesàro summable [4, pg. 251], that is, for all s ∈ C

∞∑
n=1

(−1)
n+1

ns =
(
1− 2s+1

)
ζ (−s) (C) .

Therefore the point value f2s+1 (0) exists for any s and

f2s+1 (0) =
(
1− 2s+1

)
ζ (−s) .

Hence if s 6= −1, namely, if κ 6= 1,

Text (f) =
f2s+1 (0)

1− 2s+1
= ζ (−s) ,

and consequently,
∞∑
n=1

ns = ζ (−s) ,
(
ext, H̃2

)
.

9. An example in several variables

We may consider the following spaces and operators

Y = D′ (Rn) ,

X = {f ∈ Y : the distributional point value f (0) exists} ,

and
T (f) = f (0) .

Let A be an invertible n× n matrix and let us define SA to be the operator

SA (f) (x) = f (Ax) .

Clearly T is invariant with respect to SA and X. The extension procedure is applicable.
To illustrate our ideas, let us consider a particular case. We take n = 2 and A the counterclockwise rotation of angle

2π/3, so that A3 = I. As we shall see, in this case Xext 6= X
{1}
ext , but

Xext = X
{2}
ext , Text = T

{2}
ext .

Indeed, Xκ 6= X for just two values of κ, namely ω = e2πi/3 and ω2. This can be seen by writing

f = f1 + f2 + f3 ,

where
f1 =

f + SA (f) + SA2 (f)

3
,

f2 =
f + ω2SA (f) + ωSA2 (f)

3
,

and
f3 =

f + ωSA (f) + ω2SA2 (f)

3
.
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Notice that
SA (f1) = f1 , SA (f2) = ωf2 , SA (f3) = ω2f2 .

Hence if f − κSA (f) ∈ X then
(1− κ) f1 + (1− κω) f2 +

(
1− κω2

)
f3 ∈ X ,

and since SA (X) = X,

(1− κ) f1 + (1− κω)ωf2 +
(
1− κω2

)
ω2f3 ∈ X ,

and also, because ω4 = ω,

(1− κ) f1 + (1− κω)ω2f2 +
(
1− κω2

)
ωf3 ∈ X .

Solving the corresponding system of equations yields

(1− κ) f1 ∈ X , (1− κω) f2 ∈ X ,
(
1− κω2

)
f3 ∈ X .

If κ 6= 1, ω, and ω2 then it follows that f1, f2, and f3 all belong to X and thus so does f. Similarly we obtain

Xω = {f : f1, f2 ∈ X} ,

Xω2 = {f : f1, f3 ∈ X} .

Iteration of these results gives
Xω, ω = Xω , Xω2, ω2 = Xω2 ,

and
Xω, ω2 = Xω2, ω = {f : f1 ∈ X} .

Therefore
Xext = X

{2}
ext = {f : f1 ∈ X} ,

and
Text (f) = T

{2}
ext (f) = T (f1) ,

that is
f (0) = f1 (0) (ext, SA) .
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[16] L. Schwartz, Thèorie des Distributions, Second Edition, Hermann, Paris, 1966.
[17] V. S. Vladimirov, Y. N. Drozhzhinov, B. I. Zavialov, Tauberian theorems for generalized functions, Kluwer Academic, Dordrecht, 1988.

31


	Introduction
	Preliminaries
	A general extension procedure
	Further extensions
	Symmetric values
	Dilations
	Extended Cesàro summability
	An example
	An example in several variables

