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Abstract
Let gcd(k, j) be the greatest common divisor of the positive integers k and j. For any real number x > 1 and for any fixed
positive integers s and r, we give an asymptotic formula of the sum function∑

k≤x

1

ks+1

k∑
j=1

jsµr (gcd (j, k)) ,

where µr is the characteristic function of the set of r-free numbers.
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1. Introduction

Let k and j be two positive integers. We denote by gcd(k, j) the greatest common divisor of the integers k and j. For any
two arithmetical functions f and g, let us consider the sum function

Sk (j) = Sf,g (k, j) :=
∑

d | gcd(k,j)

f (d) g (k/d) . (1)

The function given in (1) is a generalization of the following sum function

Sf,g (k) :=
∑
d | k

f (d) g (k/d) = (f ∗ g) (k) ,

where the symbol “∗” denotes the Dirichlet convolution of arithmetic functions. We remark here that Anderson and Apostol
[1] are the first who created this sum function. However, the function Sk (j) has been studied by several researchers,
including Johnson [6], Apostol [2]; and Kiuchi, Minamide and Ueda [9]. In particular, Kiuchi [8] proved the following
formula∑

k≤x

1

ks+1

k∑
j=1

jsSk (j) =
1

2

∑
n≤x

(f ∗ g) (n)
n

+
1

s+ 1

∑
n≤x

(
f

Id
∗ g
)
(n) +

1

s+ 1

bs/2c∑
m=1

(
s+ 1

2m

)
B2m

∑
n≤x

(
f

Id
∗ g

Id2m

)
(n) (2)

which is valid for any positive integer k and any fixed positive integer s, where Bm is Bernoulli’s number, btc is the integer
part of t and for any positive integer n the functions Id, Idm and the unit function 1 are given as Id(n) = n, Idm(n) = nm,
for any real number m, and 1(n) = 1. We note that the formula (2) has a lot of interesting applications (see [7]). The sums
of the form ∑

n≤x

n∑
j=1

f (gcd (j, n)) (3)

have also been studied by many researchers (see [3, 4]). In 2010, O. Bordellès [4] gave an asymptotic formula of (3) under
the assumption that x ≥ 1 is sufficiently large and f is an arithmetic function satisfying certain hypotheses. In this note,
an asymptotic formula of the sum function ∑

k≤x

1

ks+1

k∑
j=1

jsµr (gcd (j, k))

is given, where x is any real number greater than 1; s and r are any fixed positive integers; and µr is the characteristic
function of the set of r-free numbers.
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2. Main result

Let µr and fr be two functions defined by

fr (n) =

µ (m) if n = mr,

0 otherwise,
(4)

and

µr (n) =

1 if n is an r-free number,

0 otherwise,

where r ≥ 2 is a fixed integer and µ is the Möbius function. Denote by ζ (s) the Riemann zeta-function. The proof of the
next lemma is well-known, however, we include it for the sake of completeness.

Lemma 2.1. For any fixed integer r ≥ 2, we have
µr = 1 ∗ fr . (5)

i.e., ∑
dr |n

µ (d) = µr (n) .

Proof. The function fr is clearly multiplicative, so the function µr, being the convolution product of two multiplicative
functions is also a multiplicative function. Therefore, it suffices to show that

µr (p
α) = (1 ∗ fr) (pα)

for all prime powers pα. Indeed, one has

(1 ∗ fr) (pα) =

r∑
α=0

fr (p
α) = 1 +

r∑
α=1

fr (p
α)

=

1 if α < r

0 if α ≥ r

= µr (p
α) .

We use the identity (5) and the formula (2) to give an asymptotic formula of the following sum

∑
k≤x

1

ks+1

k∑
j=1

jsµr (gcd (j, k)) .

Now, we can state our main result.

Theorem 2.1. For any positive real number x > 1 and any fixed positive integer s, we have

∑
k≤x

1

ks+1

k∑
j=1

jsµr (gcd(k, j)) =
x

(s+ 1) ζ (2r)
+

log x

2ζ (r)
+ L(r; s)− 1

s+ 1

∑
dr≤x

µ (d)

dr
ψ
( x
dr

)
+O

(
x−1+

1
r log x

)
where

L(r; s) =
1

2 (s+ 1) ζ (r)

(s+ 1)

(
γ − rζ ′ (r)

ζ (r)

)
− 1 + 2

b s
2c∑

m=1

(
s+ 1
2m

)
B2mζ (2m)

 .

In order to prove Theorem 2.1, we firstly need to prove some lemmas.

Lemma 2.2. For any real number x > 1 and any fixed positive integer s, we have

∑
k≤x

1

ks+1

k∑
j=1

jsµr (gcd(k, j)) =
1

2

∑
n≤x

µr (n)

n
+

1

s+ 1

∑
dl≤x

fr (d)

d
+

1

s+ 1

bs/2c∑
m=1

(
s+ 1

2m

)
B2m

∑
dl≤x

fr (d)

d

1

l2m
. (6)
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Proof. By using the two formulas (1), (5); and by using the definition (4), we get

Sk (j) = Sfr,1 (k, j) =
∑

d | gcd(k,j)

fr (d)

=
∑

dr | gcd(k,j)

µ (d)

= µr (gcd(k, j)) .

Thus, ∑
k≤x

1

ks+1

k∑
j=1

jsSfr,1 (k, j) =
∑
k≤x

1

ks+1

k∑
j=1

jsµr (gcd(k, j)) .

On the other hand, the right side of (6) is a direct application of formula (2) whenf = fr and g = 1.

Lemma 2.3. For any x > 1 and r ≥ 2, we have∑
n≤x

µr (n)

n
=

log x

ζ (r)
+

γ

ζ (r)
− r ζ

′ (r)

ζ2 (r)
+O

(
x−1+

1
r log x

)
. (7)

Proof. Using the identity (3) , and the known formula∑
n≤x

1

n
= log x+ γ +O

(
x−1

)
,

we have ∑
n≤x

µr (n)

n
=

∑
n≤x

(
fr
Id
∗ 1

Id

)
(n)

=
∑
d≤x

fr (d)

d

∑
m≤x/d

1

m

=
∑
dr≤x

µ (d)

dr

∑
m≤x/dr

1

m

= log x

∞∑
d=1

µ (d)

dr
− r

∞∑
d=1

µ (d) log d

dr
+ γ

∞∑
d=1

µ (d)

dr
+A (x) ,

where

A (x) = log x
∑

d>x1/r

µ (d)

dr
− r

∑
d>x1/r

µ (d) log d

dr
+ γ

∑
d>x1/r

µ (d)

dr
+O

dr
x

∑
dr≤x

µ (d)

dr

 .

By the known identity
1

ζ (r)
=

∞∑
d=1

µ (d)

dr
,

where r > 1, we have
ζ ′ (r)

ζ2 (r)
=

∞∑
d=1

µ (d) log d

dr
,

and by using the estimate ∑
n>x

1

nr
= O

(
x−1+r

)
,

where r > 1, we get ∑
n≤x

µr (n)

n
=

log x

ζ (r)
+

γ

ζ (r)
− r ζ

′ (r)

ζ2 (r)
+O

(
x−1+

1
r log x

)
.

Lemma 2.4. For any x > 1 and r ≥ 2, we have∑
dl≤x

fr (d)

d
=

x

ζ (2r)
−
∑
dr≤x

µ (d)

dr
ψ
( x
dr

)
− 1

2ζ (r)
+O

(
x

1
r−1
)
. (8)
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Proof. For x > 1 and r ≥ 2, we have ∑
dl≤x

fr (d)

d
=

∑
drl≤x

µ (d)

dr

=
∑
dr≤x

µ (d)

dr

∑
l≤x/dr

1

=
∑
dr≤x

µ (d)

dr

⌊ x
dr

⌋
,

Using the fact that
ψ(x) = x− bxc − 1

2
,

we get ∑
dl≤x

fr (d)

d
= x

∑
dr≤x

µ (d)

d2r
−
∑
dr≤x

µ (d)

dr
ψ
( x
dr

)
− 1

2

∑
dr≤x

µ (d)

dr

=
x

ζ (2r)
−
∑
dr≤x

µ (d)

dr
ψ
( x
dr

)
− 1

2ζ (r)
+O

(
x

1−r
r

)
.

Lemma 2.5. For any x > 1 and for the two fixed integers r ≥ 2, m ≥ 0, we have∑
dl≤x

fr (d)

d

1

l2m
=
ζ (2m)

ζ (r)
+O

(
x−1+1/r

)
+O

(
x−2m/r+1/r

)
. (9)

Proof. For x > 1 and r ≥ 2, we have∑
dl≤x

fr (d)

d

1

l2m
=

∑
drl≤x

µ (d)

dr
1

l2m

=
∑

d≤x1/r

µ (d)

dr

∑
l≤x1/r/d

1

l2m

=
∑

d≤x1/r

µ (d)

dr

(
ζ (2m) +O

((
x1/r

d

)1−2m))

=
ζ (2m)

ζ (r)
+O

(
x−1+1/r

)
+O

(
x−2m/r+1/r

)
.

Now, we are ready to prove the main result of this note.

Proof of Theorem 2.1. By substituting formulas (7) , (8) , (9) in (6), we obtain∑
k≤x

1

ks+1

k∑
j=1

jsµr (gcd(k, j)) =
x

(s+ 1) ζ (2r)
+

log x

2ζ (r)
+ L(r; s)− 1

s+ 1

∑
dr≤x

µ (d)

dr
ψ
( x
dr

)
+O

(
x−1+

1
r log x

)
where

L(r; s) =
1

2 (s+ 1) ζ (r)

(s+ 1)

(
γ − rζ ′ (r)

ζ (r)

)
− 1 + 2

b s
2c∑

m=1

(
s+ 1
2m

)
B2mζ (2m)

 .

Since for all t ∈ R, it holds that |ψ (t)| ≤ 1
2 , we see that the absolute value of the ψ-sum is not greater than ζ(r)

4ζ(2r) and

ζ (r)

4ζ (2r)
≤ 5

4π2
<

2

5
.

Also, using Euler’s formula
ζ (2m) = (−1)m+1

22m−1
π2m

(2m)!
B2m

we write

2

b s
2c∑

m=1

(
s+ 1
2m

)
B2mζ (2m) =

b s
2c∑

m=1

(
s+ 1
2m

)
(−1)m+1

22m
π2m

(2m)!
B2

2m .
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