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Abstract
A function f : V (G)→ {0, 1} defined on the vertex set of a graph G is a dominating function of G if the associated function
cf : V (G)→ {0, 1, 2, . . . ,∆(G)+1} defined by cf (v) =

∑
u∈N [v] f(u) has the property that cf (v) ≥ 1 for every vertex v of G. If

cf (x) 6= cf (y) for every two adjacent vertices x and y of G, then f is a proper dominating function of G. Sufficient conditions
are obtained under which a graph has a proper dominating function and sufficient conditions are obtained under which a
graph does not have a proper dominating function. For certain classes of graphs, all those members possessing a proper
dominating function are determined.
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1. Introduction

A vertex v in a graph G is said to dominate a vertex u if either u = v or uv ∈ E(G), that is, a vertex v dominates the
vertices in its closed neighborhood N [v] = N(v) ∪ {v}. A set S of vertices in G is a dominating set of G if every vertex of
G is dominated by at least one vertex in S. The minimum number of vertices in a dominating set of G is the domination
number γ(G) of G. We refer to the books [2,3,6] for graph theory notation and terminology not described in this paper.

There is another way that domination and the domination number of a graph G have been looked at (see [2]). For
a graph G with maximum degree ∆(G), each function f : V (G) → {0, 1} gives rise to another function cf : V (G) →
{0, 1, . . . ,∆(G) + 1} defined by cf (v) =

∑
u∈N [v] f(u). If cf (v) ≥ 1 for every vertex v of G, then f is a dominating function

of G. If f is a dominating function of G, then the set {v ∈ V (G) : f(v) = 1} is a dominating set of G. The domination
number γ(f) of a dominating function f of a graph G is γ(f) =

∑
v∈V (G) f(v) and so the domination number γ(G) of G can

be defined as γ(G) = min {γ(f) : f is a dominating function of G} .
If f is a dominating function of a graphG and cf (v) is the same positive integer k for every vertex v ofG, then f is called

a regular (or k-regular) dominating function of G. Consequently, if G has a k-regular dominating function, then there is a
dominating set S of G such that every vertex of G is dominated by exactly k vertices of S. Not every graph has a regular
dominating function. The primary topic studied in [4, 5] was that of investigating graphs having a regular dominating
function.

A graphG has been called irregular if the vertices ofG have distinct degrees. It is well known that there is no nontrivial
irregular graph. There is a related dominating function for graphs. A dominating function f of a nontrivial graph G is an
irregular dominating function if cf (u) 6= cf (v) for every two vertices u and v of G. It was observed in [4] that not only is no
graph irregular, but no graph possesses an irregular dominating function.

Theorem 1.1. No nontrivial connected graph has an irregular dominating function.

Although no nontrivial graph is irregular, there are graphs with exactly two vertices having the same degree. These
graphs have been referred to by many names in the literature but here we refer to them as antiregular graphs (see [1]).
Formally then, a nontrivial graph G is antiregular if exactly two vertices of G have the same degree. For each integer
n ≥ 2, it is known that there are exactly two non-isomorphic antiregular graphs of order n. The two antiregular graphs of
a given order n ≥ 2 are complementary, one of which has a vertex of degree n−1 (and is therefore connected) and the other
has an isolated vertex. A dominating function f of a nontrivial graph G of order n is called an antiregular dominating
function if there are exactly two vertices u and v of G such that cf (u) = cf (v). It was shown in [4] that not only does
every antiregular graph have an antiregular dominating function but there are also non-antiregular graphs that have an
antiregular dominating function.
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Theorem 1.2. For each integer n ≥ 4, there are exactly n − 1 non-isomorphic connected graphs of order n having an
antiregular dominating function, one graph of which is antiregular.

If one were to consider a dominating function f of a graph G as giving rise to a vertex coloring cf of G, then a regular
dominating function results in a monochromatic vertex coloring of G (all vertices of G are colored the same). The most
studied vertex colorings, and certainly those of greatest interest, are proper vertex colorings, however. This leads us to
the following concept. If f is a dominating function of a graph G such that cf (u) 6= cf (v) for each pair u, v of adjacent
vertices ofG, then f is a proper dominating function ofG. For example, ifG is a graph in which every two adjacent vertices
have different degrees, then the function that assigns 1 to every vertex of G is a proper dominating function of G. All such
graphsG have the property that the set of all vertices ofG having a specific degree is independent. For example, ifG = Ks,t

is the complete bipartite graph where s 6= t, then the function that assigns 1 to every vertex of G is a proper dominating
function of G. The two non-bipartite graphs in Figure 1 also have this property, where each vertex is labeled (colored) with
its degree.

Figure 1: Two graphs in which no two adjacent vertices have the same degree.

As is the case with regular dominating functions, not every graph has a proper dominating function. There are graphs
where one can see quite quickly that they do not possess a proper dominating function. Two vertices u and v in a connected
graph G are called twins if u and v have the same neighborhood. If u and v are adjacent twins in a graph G, then cf (u) =

cf (v) for every dominating function f of G. Thus, we have the following observation.

Observation 1.1. If a graph G contains two adjacent twins, then G does not have a proper dominating function.

As a consequence of Observation 1.1, it follows, for example, that no complete graph Kn of order n ≥ 2 has a proper
dominating function. In fact, every dominating function of a complete graph is a regular dominating function. While the
complete graphs Kn, n ≥ 2, are regular graphs that do not have a proper dominating function, regular graphs that are
not complete may or may not have a proper dominating function. For example, of the two 3-regular graphs of order 6, the
complete bipartite graph K3,3 has a proper dominating function, while the prism C3 � K2 does not. The fact that K3,3 has
a proper dominating function is a consequence of the following result dealing with connected bipartite graphs.

Proposition 1.1. Let G be a connected bipartite graph. If each vertex in one of the partite sets of G has degree 2 or more,
then G has a proper dominating function. Consequently, if δ(G) ≥ 2, then G has a proper dominating function.

Proof. Let U and W be the partite sets of G such that deg u ≥ 2 for every u ∈ U . Define a function f : V (G) → {0, 1} by
f(u) = 0 for each u ∈ U and f(w) = 1 for each w ∈W . Since cf (u) = deg u ≥ 2 for each u ∈ U and cf (w) = f(w) = 1 for each
w ∈W , it follows that f is a proper dominating function of G.

This result also shows that every grid has a proper dominating function.

Corollary 1.1. For an integer n ≥ 2, the grid Pn � K2 has a proper dominating function.

The fact that C3 � K2 does not have a proper dominating function is a consequence of the following result. The clique
number ω(G) of a graph G is the maximum order of a complete subgraph of G.

Proposition 1.2. If G is a connected graph with clique number ω(G) ≥ k for some integer k ≥ 3 and maximum de-
gree ∆(G) ≤ 2k − 3, then G does not have a proper dominating function.

Proof. Assume, to the contrary, that G contains a complete subgraph H of order k ≥ 3 with ∆(G) ≤ 2k− 3 such that G has
a proper dominating function f : V (G) → {0, 1}. Suppose that f assigns r of the k vertices of H the value 1. If v ∈ V (H),
then cf (v) ≤ r + [deg v − (k − 1)] ≤ r + [∆(G)− (k − 1)] ≤ r + k − 2. Consequently, r ≤ cf (v) ≤ r + k − 2 for every vertex v
of H. However then, two vertices of H have the same cf -value, which is impossible.

As with regular dominating functions, the primary question here is to determine which graphs (especially well-known
classes of graphs) have a proper dominating function and which do not.
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2. Which prisms have a proper dominating function?

We saw that the prism C3 � K2 does not have a proper dominating function. We now investigate the other prisms, namely
Cn � K2, where n ≥ 4. First, we determine those cycles having a proper dominating function.

Proposition 2.1. For an integer n ≥ 3, the cycle Cn of order n has a proper dominating function if and only if n is even.

Proof. By Proposition 1.1, it remains to show that if n is odd, then Cn does not have a proper dominating function. Since
C3 = K3 does not have a proper dominating function, we may assume that n ≥ 5. Let Cn = (v1, v2, . . . , vn, v1). Assume,
to the contrary, that there is a proper dominating function g : V (Cn) → {0, 1} of Cn. We claim that no two consecutive
vertices of Cn can have g-value 0; for otherwise, we may assume that g(v1) = g(v2) = 0. Since g is a dominating function,
it follows that g(vn) = g(v3) = 1. However then, cg(v1) = cg(v2) = 1, which is a contradiction. Since n ≥ 5 is odd and no two
consecutive vertices of Cn have g-value 0, there are two consecutive vertices on Cn having g-value 1, say g(v1) = g(v2) = 1.
If g(vn) = g(v3), then cg(v1) = cg(v2), which is impossible. Hence, {g(vn), g(v3)} = {0, 1}, say g(vn) = 1 and g(v3) = 0, which
in turn forces g(v4) = 1. However then, cg(v2) = cg(v3) = 2, which is impossible.

We now turn to prisms. We have already seen that C3 � K2 does not have a proper dominating function. This, it turns
out, is the exceptional prism.

Proposition 2.2. For each integer n ≥ 4, the prism Cn � K2 has a proper dominating function.

Proof. For each even integer n ≥ 4, the prism Cn � K2 is a 3-regular bipartite graph and so has a proper dominating
function by Proposition 1.1. Thus, it remains to show for each odd integer n that Cn �K2 has a proper dominating function.
Suppose that G = Cn � K2 is constructed from the two cycles C = (u1, u2, . . . , un, u1) and C ′ = (v1, v2, . . . , vn, v1) by adding
the edges uivi for 1 ≤ i ≤ n. We write n = 2k + 3 for some positive integer k. Define a function f : V (G) → {0, 1} of G
by (f(u1), f(u2), . . . , f(un)) = (0, 1, 0, 1, . . . , 0, 1, 1, 0, 1) and (f(v1), f(v2), . . . , f(vn)) = (1, 0, 1, 0, . . . , 1, 0, 1, 0, 0), where there
are k pairs (0, 1) in the f -values of C and k pairs (1, 0) in the f -values of C ′. This implies that (cf (u1), cf (u2), . . . , cf (un)) =

(3, 1, 3, 1, . . . , 3, 1, 3, 2, 3, 2, 1) and (cf (v1), cf (v2), . . . , cf (vn)) = (1, 3, 1, 3, . . . , 1, 3, 1, 3, 2, 1, 2), where there are k − 1 ≥ 0 pairs
(3, 1) in the cf -values of C and k pairs (1, 3) in the cf -values of C ′. Therefore, f is a proper dominating function of Cn � K2

for all odd integers n ≥ 5.

We have seen that the prism C5 � K2 has a proper dominating function. This cubic graph consists of two disjoint
5-cycles C and C ′, where the set [V (C), V (C ′)] of edges joining C and C ′ is a perfect matching in C5 � K2. Another, even
better known, cubic graph constructed in this manner is the famous Petersen graph. Before presenting a result dealing
with this graph, it is useful to introduce another concept. Let G be a nontrivial connected graph and let f : V (G)→ {0, 1}
be a function of G. The complementary function f : V (G)→ {0, 1} is defined by f(v) = 1− f(v) for every vertex v of G.

Proposition 2.3. If f : V (G) → {0, 1} is a proper dominating function of an r-regular graph G where r ≥ 2 such that
cf (v) ≤ r for every vertex v of G, then f is also a proper dominating function of G.

Proof. Observe that cf (v) + cf (v) = 1 + r for each vertex v of G. Since cf (v) ≤ r, it follows that cf (v) ≥ 1 and so f is a
dominating function of G. Let x and y be adjacent vertices of G. Since cf (x) 6= cf (y), it follows that cf (x) = 1 + r − cf (x) 6=
1 + r − cf (y) = cf (y) and so f is a proper dominating function of G.

Theorem 2.1. The Petersen graph does not have a proper dominating function.

Proof. Assume, to the contrary, that the Petersen graph P has a proper dominating function f : V (P ) → {0, 1}. Thus,
cf (x) ≤ 4 for every vertex v of P . Thus, either cf (x) = 4 for some vertex x of P or 1 ≤ cf (x) ≤ 3 for each x ∈ V (P ). We
consider these two cases. We label the vertices of P as shown in Figure 2.

Figure 2: The Petersen graph.

Case 1. cf (x) = 4 for some vertex x of P . Since P is vertex-transitive, we may assume that cf (u1) = 4. Thus, f(x) = 1

for each x ∈ N [u1] and 2 ≤ cf (x) ≤ 3 for each x ∈ N(u1).
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Subcase 1.1. cf (u5) = cf (v1) = cf (u2) = 2. This implies that the f -value of each remaining vertex of P is 0. However
then, cf (u3) = cf (u4) = 1, for example. This is a contradiction.

Subcase 1.2. Exactly two neighbors of u1 have cf -value 2, say cf (u5) = cf (u2) = 2 and cf (v1) = 3. Then f(x) = 0 for
each x ∈ {v2, u3, v5, u4} and {f(v3), f(v4)} = {0, 1}, say f(v3) = 0 and f(v4) = 1. However then, cf (v3) = f(v5) = 1, a
contradiction.

Subcase 1.3. Exactly one neighbor of u1 has cf -value 2, say cf (u5) = cf (u2) = 3 and cf (v1) = 2. Then f(v3) = f(v4) = 0 and
so {cf (v2), cf (v5)} = {1, 2}, say cf (v5) = 1. This implies that f(v5) = f(v2) = 0 and so cf (v2) = cf (v5) = 1, a contradiction.

Subcase 1.4. cf (u5) = cf (v1) = cf (u2) = 3. Thus, {f(v3), f(v4)} = {0, 1}, say f(v3) = 0 and f(v4) = 1. Thus, cf (u4) = 2

or cf (u4) = 4. If cf (u4) = 2, then f(u3) = f(u4) = 0 and so cf (v4) ∈ {2, 3}, a contradiction; while if cf (u4) = 4, then
f(u3) = f(v4) = 1 and so cf (u3) = cf (u2) = 3, a contradiction.

Case 2. cf (x) ≤ 3 for each vertex x of P . This implies that the complementary function f of f is also a proper dominating
function of P . Let C = (u1, u2, u3, u4, u5, u1). We may assume that at least three vertices of C have f -value 1 (for otherwise,
we consider f ).

Subcase 2.1. Three consecutive vertices of C have f -value 1, say f(u5) = f(u1) = f(u2) = 1. Thus, cf (u1) = 3 and
so cf (u5) = cf (u2) = 2. Thus, f(x) = 0 for each x ∈ {v1, v2, u3, u4, v5}. This implies that {cf (v2), cf (v5)} = {1, 2}, a
contradiction.

Subcase 2.2. No three consecutive vertices of C have f -value 1, say f(u4) = f(u1) = f(u3) = 1 and f(u2) = f(u5) = 0.
We may assume that cf (u4) = 2 and cf (u3) = 3. Thus, f(v3) = 1 and f(v4) = 0. Since cf (u5) = 3, it follows that f(v5) = 1.
However then, cf (v3) = cf (u3) = 3, a contradiction.

3. Proper dominating functions of trees

We saw in Proposition 1.1 that if G is a bipartite graph with δ(G) ≥ 2, then G has a proper dominating function. This
brings up the question of what can be said if G is a bipartite graph with δ(G) = 1. The best known bipartite graphs with
this property are trees. The following result is a consequence of Proposition 1.1.

Proposition 3.1. If T is a tree such that all end-vertices of T belong to the same partite set, then T has a proper dominating
function.

An immediate consequence of Proposition 3.1 is that every star of order 3 or more has a proper dominating function.
One of the simplest classes of trees are the paths.

Proposition 3.2. For an integer n ≥ 3, the path Pn has a proper dominating function if and only if n = 4 or n is odd.

Proof. If n ≥ 3 is odd, then the two end-vertices of Pn belong to a same partite set. It then follows by Proposition 3.1 that
Pn has a proper dominating function for odd integers n.

For the converse, suppose that Pn = (v1, v2, . . . , vn) is a path of even order n ≥ 4. For n = 4, the function f with
f(v1) = f(v2) = f(v3) = 1 and f(v4) = 0 is a proper dominating function. Thus, we may assume that n ≥ 6. Assume,
to the contrary, that there is a proper dominating function g : V (Pn) → {0, 1} of Pn for some even integer n ≥ 6. First,
we claim that no two consecutive vertices of Pn can have g-value 0. Since g is a dominating function, it is impossible that
g(v1) = g(v2) = 0 or g(vn−1) = g(vn) = 0. Thus, we may assume that g(vi) = g(vi+1) = 0 where 2 ≤ i ≤ n − 2. This forces
g(vi−1) = g(vi+2) = 1 and so cg(vi) = cg(vi+1) = 1, a contradiction. Necessarily, there is a vertex vi, 2 ≤ i ≤ n − 1, with
g(vi) = 0. Thus, g(vi−1) = g(vi+1) = 1, which implies that cg(vi) = 2 and cg(vi−1) = cg(vi+1) = 1. This in turns implies that
g(vi) = g(vj) if and only if i and j are of the same parity. We may therefore assume that g(vi) = 0 if i is odd and 1 ≤ i ≤ n−1

and g(vi) = 1 if i is even and 2 ≤ i ≤ n. However then, cg(v1) = cg(v2) = 1, which is impossible.

A path P3 = (x, y, z) in a connected graph G of order 4 or more is called a pendant 3-path at z in G if x is an end-vertex
in G and y has degree 2 in G. In this case, z is referred to as the terminal vertex of P3. Clearly, z is not an end-vertex in G.
For example, the tree of Figure 3 has exactly three pendant 3-paths, two at the vertex z1 and one at the vertex z2.

Figure 3: Illustrating pendant 3-paths and their terminal vertices.

If P3 = (x, y, z) is a pendant 3-path at z in a connected graph G of at least order 4, then every proper dominating
function f of G must assign 1 to the terminal vertex z; for otherwise, cf (x) = cf (y), which is impossible. We will see that
this observation is useful. We state this next.
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Observation 3.1. If f is a proper dominating function of a connected graph G of order 4 or more, then f assigns 1 to the
terminal vertex of each pendant 3-path in G.

We saw in Proposition 3.1 that if T is a tree all of whose end-vertices of T belong to the same partite set, then T has a
proper dominating function. The converse of Proposition 3.1 is not true, however, since the path P4 has a proper dominating
function, as stated in Proposition 3.2. In fact, there is an infinite class of trees which includes P4 whose end-vertices belong
to different partite sets and having a proper dominating function. A double star is a tree of diameter 3. Thus, every double
star T has exactly two vertices that are not leaves, which are referred to as the central vertices of T .

Proposition 3.3. Every double star has a proper dominating function.

Proof. Let T denote a double star whose central vertices are u and v and let w be an end-vertex that is adjacent to u.
Define a function f : V (T )→ {0, 1} by f(u) = f(v) = f(w) = 1 and f(x) = 0 for all remaining vertices of T . Since cf (u) = 3,
cf (v) = cf (w) = 2, and cf (x) = 1 for each x ∈ V (T )− {u, v, w}, it follows that f is a proper dominating function.

We now consider some familiar classes of trees and determine which trees in these classes have a proper dominating
function. In the first class we consider, every member possesses a proper dominating function. The non-leaf minimum
degree δ∗(T ) of a tree T is the minimum degree among the non-leaves of T . A tree T is often referred to as r-regular for
some integer r ≥ 2 if every non-leaf of T has degree r. In particular, a 3-regular tree is a cubic tree. A caterpillar T is a
tree of order 3 or more, the removal of whose leaves produces a path called the spine of T . A star is therefore a caterpillar
with a trivial spine and a double star is a caterpillar with spine P2.

Proposition 3.4. Every caterpillar T with δ∗(T ) ≥ 3 has a proper dominating function.

Proof. Let T be a caterpillar of diameter d. Since all stars and double stars have a proper dominating function, we may
assume that d ≥ 4. Let (u0, u1, . . . , ud−1, ud) be a path of length d in T . We consider two cases.

Case 1. T is a cubic caterpillar. For 1 ≤ i ≤ d− 1, let vi be the end-vertex adjacent to ui. Define a function f : V (T )→
{0, 1} of T by

f(x) =

{
1 if x = ui for 1 ≤ i ≤ d or x = vj for odd integer j with 3 ≤ j ≤ d− 1
0 otherwise.

It remains to show that cf is proper.

? If d is even, say d = 2k for some integer k ≥ 2, then (cf (u0), cf (u1), . . . , cf (ud)) = (1, 2, 3, 4, 3, 4, . . . , 3, 4, 2) and
(cf (v1), cf (v2), . . . , cf (vd−1)) = (1, 1, 2, 1, 2, . . . , 1, 2, 1, 2), where there are k − 1 ≥ 0 pairs (3, 4) in the cf (ui)-values for
0 ≤ i ≤ d and k − 1 pairs (1, 2) in the cf (vi)-values for 1 ≤ i ≤ d− 1.

? If d is odd, say d = 2k + 1 for some integer k ≥ 2, then (cf (u0), cf (u1), . . . , cf (ud)) = (1, 2, 3, 4, 3, 4, . . . , 3, 4, 3, 2) and
(cf (v1), cf (v2), . . . , cf (vd−1)) = (1, 1, 2, 1, 2, . . . , 1, 2, 1, 2, 1), where there are k−1 ≥ 0 pairs (3, 4) in the cf (ui)-values for
0 ≤ i ≤ d and k − 1 pairs (1, 2) in the cf (vi)-values for 1 ≤ i ≤ d− 1.

Thus, f is a proper dominating function of T .
Case 2. T is not a cubic caterpillar. Since δ∗(T ) ≥ 3, it follows that T contains a cubic subcaterpillar T0 as described

in Case 1 and let f be the proper dominating function of T0 defined in Case 1. The function f then can be extended to a
proper dominating function g of T by defining g(v) = f(v) if v ∈ V (T0) and g(v) = 0 for each v ∈ V (T )− V (T0).

The condition that δ∗(T ) ≥ 3 in Proposition 3.4 for a caterpillar T to possess a proper dominating function is needed
since δ∗(T ) = 2 for the caterpillar T of Figure 4 but this caterpillar has no proper dominating function. We will soon see
why this tree fails to have a proper dominating function. The caterpillar T of Figure 4 has the added characteristic of
possessing only one vertex of degree greater than 2. It is the class of trees containing a unique vertex of degree greater
than 2 that we now consider. The simplest members of this class are the stars K1,n−1 of order n ≥ 4, all of which have a
proper dominating function by Proposition 3.1. All other members of this class are obtained by subdividing the edges of
a star of order 4 or more. As we will see, many members of this class possess a proper dominating function and many do
not. We characterize all such trees possessing a proper dominating function.

Figure 4: A caterpillar possessing no proper dominating function.

A tree T is starlike if T is obtained by subdividing the edges of a star of order 4 or more. Thus, the caterpillar shown in
Figure 4 is a starlike tree. Equivalently, a tree T is starlike if and only if T has exactly one vertex whose degree is greater
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than 2. This vertex is referred to as the center of T . The branches of T at the center are called the arms of T . An arm is
even if its length is even; while an arm is odd if its length is odd. For example, the tree T shown in Figure 5 is a starlike
tree obtained by subdividing the edges of the star K1,3. Its center is v4; T has two even arms and one odd arm, one arm of
each of the lengths 2, 3, and 4.

Figure 5: A starlike tree T .

The primary problem here is that of determining which starlike trees possess a proper dominating function. While all
stars have a proper dominating function, such is not the case for starlike trees. We give one such example.

Example 3.1. The starlike tree T in Figure 5 does not have a proper dominating function.

Proof. Assume, to the contrary, that T has a proper dominating function f : V (T ) → {0, 1}. The tree T has three pen-
dant 3-paths , namely (v1, v2, v3), (v10, v9, v4) and (v8, v7, v6). Thus, each of the vertices v3, v4, v6 is the terminal vertex of a
pendant 3-path in T . It then follows by Observation 3.1 that f(v3) = f(v4) = f(v6) = 1. We consider two cases, depending
on the value of f(v5).

Case 1. f(v5) = 1. Then cf (v5) = 3, which forces that f(v7) = 0 and f(v8) = 1. However then, cf (v6) = cf (v7) = 2, a
contradiction.

Case 2. f(v5) = 0. Then cf (v5) = 2. If f(v7) = 1, then cf (v5) = cf (v6) = 2, which is impossible – necessarily then
f(v7) = 0 and so f(v8) = 1. Since cf (v5) = 2, it requires that cf (v4) = 3 and so cf (v3) = 2. Consequently, f(v2) = 0 and
f(v1) = 1. However then, cf (v2) = cf (v3) = 2, which is impossible.

The starlike tree T in Example 3.1 has two even arms and one odd arm and so T has arms of different parity. On the
other hand, if all arms in a starlike tree have the same parity, then all end-vertices of this tree belong to the same partite
set. Consequently, the following is a consequence of Proposition 3.1.

Corollary 3.1. If T is a starlike tree of maximum degree 3 or more and having arms of the same parity, then T has a proper
dominating function.

Proposition 3.5. If T is a starlike tree with diameter at most 3, then T has a proper dominating function.

Proof. Let T be a starlike tree whose center is v with deg v ≥ 3. Since diam(T ) ≤ 3, each arm of T has length at most 3. For
i = 0, 1, 2, 3, let Vi = {w ∈ V (T ) : d(v, w) = i}. Thus, V0 = {v}. Define the function f : V (T ) → {0, 1} by f(w) = 0 if w ∈ V3
if V3 6= ∅ and f(w) = 1 if w /∈ V3. Since

cf (w) =


1 if w ∈ V3
2 if w ∈ V1 and w is an end-vertex or w ∈ V2
3 if w ∈ V1 and w is not an end-vertex
1 + deg v if w = v.

It follows that f is a proper dominating function of T .

By Corollary 3.1 and Propositions 3.5, we only consider starlike trees of diameter at least 4 having arms of different
parity. First, we present some useful observations. The following is a consequence of the proof of Proposition 3.2.

Observation 3.2. Let Pn = (v1, v2, . . . , vn) be a path of order n, where n = 4 or n is odd. For a proper dominating function f
of Pn, let Sf = (f(v1), f(v2), . . . , f(vn)).

(a) If n = 4, then Sf = (0, 1, 1, 1) or Sf = (1, 1, 1, 0).

(b) If n = 3, then Sf = (1, 1, 1) or Sf = (1, 0, 1).

(c) If n = 5, then Sf = (0, 1, 1, 1, 0) or Sf = (1, 0, 1, 0, 1).

(d) If n is odd and n 6= 5, then Sf = (1, 0, 1, 0, . . . , 1, 0, 1).

Lemma 3.1. Let T be a starlike tree whose center is v with deg v ≥ 3. If T has a proper dominating function f such that
f(v) = 0, then each arm of T has odd length or length 4. For u ∈ N(v), let `u be the length of the arm Au containing the
edge vu in T .
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(i) If `u is odd, then f(u) can be 0 or 1 when `u = 5 and f(u) = 1 when `u 6= 5.

(ii) If `u is even, then `u = 4 and f(u) can be 0 or 1.

Proof. For u ∈ N(v), let Au = (v, u = v1, v2, . . . , v`u) be the arm of length `u at v and let P`u = Au − v = (v1, v2, . . . , v`u).
Since f(v) = 0, the restriction of f to P`u is also a proper dominating function of P`u . It then follows by Proposition 3.2 that
either `u is odd or `u = 4. Therefore, (i) and (ii) are consequences of Observation 3.2.

Proposition 3.6. Let T be a starlike tree whose center is v with deg v ≥ 3. If each arm of T has odd length or length 4,
then T has a proper dominating function.

Proof. For u ∈ N(v), let Au be the arm of length `u at v and let P`u = Au − v = (u = v1, v2, . . . , v`u). We define a function
f : V (T )→ {0, 1} as follows:

? Let f(v) = 0.

? If `u = 4, let (f(v1), f(v2), f(v3), f(v4)) = (1, 1, 1, 0).

? If `u is odd, then (f(v1), f(v2), . . . , f(v`u)) = (1, 0, 1, 0, . . . , 1, 0, 1).

Since f(v) = 0 and f(u) = 1 for each u ∈ N(v), it follows that cf (v) = deg v ≥ 3 and cf (u) ∈ {1, 2} for each u ∈ N(v).
Furthermore, the restriction of f to each arm of T is a proper proper dominating function of the arm. Therefore, f is a
proper dominating function of T .

Lemma 3.2. Let T be a starlike tree whose center is v with deg v ≥ 3. If T has a proper dominating function f such that
f(v) = 1, then each arm of T has even length or length 1 or 3. For u ∈ N(v), let `u be the length of the arm Au containing the
edge vu in T .

(i) If `u is even, then f(u) can be 0 or 1 when `u = 2 and f(u) = 0 when `u 6= 2.

(ii) If `u = 1, then f(u) can be 0 or 1.

(iii) If `u = 3, then f(u) = 1.

Proof. For u ∈ N(v), let Au = (v, u = v1, v2, . . . , v`u) be the arm of length `u at v and let P`u = Au − v = (u = v1, v2, . . . , v`u).
Assume, to the contrary, that `u is odd and `u ≥ 5. Then P`u−1 = Au − {v, u} = (v2, v3, . . . , v`u) is a subpath of P`u of even
order `u − 1 ≥ 4. We consider two cases, according to whether f(u) = 0 or f(u) = 1.

Case 1. f(u) = 0. Since f(u) = 0, the restriction of f to P`u−1 is a proper dominating function of P`u−1. Since `u − 1 ≥ 4

is even, it follows by Proposition 3.2 that `u − 1 = 4. Hence, P`u−1 = P4 = (v2, v3, v4, v5). By Observation 3.2, either
(f(v2), f(v3), f(v4), f(v5)) = (0, 1, 1, 1) or ((f(v2), f(v3), f(v4), f(v5)) = (1, 1, 1, 0), as indicated below. In either case, cf (v1) =

cf (v2), which is impossible.
Case 2. f(u) = 1. First, suppose that f(v2) = 0 and so cf (u) = cf (v1) = 2. This implies that f(v3) = 0 and so Au has

two adjacent vertices whose f -value is 0, which is impossible. Next, suppose that f(v2) = 1 and so cf (u) = cf (v1) = 3. This
forces f(v3) = 0 and results in cf (v2) = 2. Since cf (v3) 6= 2, this forces f(v4) = 0, once again, resulting in two adjacent
vertices whose f -value is 0, an impossibility.

The statements (i), (ii), and (iii) are then consequences of Observation 3.2.

The starlike tree T in Figure 5 has two arms of length at most 3. As we saw, T has no proper dominating function.

Proposition 3.7. Let T be a starlike tree whose center is v with deg v ≥ 3. If each arm of T has even length or length 1 or 3

and at least three arms of length at most 3, then T has a proper dominating function.

Proof. For u ∈ N(v), let Au be the arm of length `u at v and let P`u = Au − v = (u = v1, v2, . . . , v`u). We define a function
f : V (T )→ {0, 1} as follows:

? Let f(v) = 1.

? If `u = 1, let f(u) = f(v1) = 1.

? If `u = 2, let (f(v1), f(v2)) = (1, 1).

? If `u = 3, let (f(u) = f(v1), f(v2), f(v3)) = (1, 1, 0).
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? If `u is even, then (f(v1), f(v2), . . . , f(v`u)) = (0, 1, 0, 1, . . . , 0, 1).

Since f(v) = f(u) = 1 for each u ∈ N(v) such that 1 ≤ `u ≤ 3 and T has at least three arms of length at most 3, it follows
that cf (vi) ∈ {1, 2, 3} for 1 ≤ i ≤ `u.

If `u = 1, then cf (u) = cf (v1) = 2.

If `u = 2, then (cf (u) = cf (v1), cf (v2)) = (3, 2).

If `u = 3, then (cf (u) = cf (v1), cf (v2), cf (v3)) = (3, 2, 1),

If `u ≥ 4 is even, then (cf (u) = cf (v1), cf (v2), . . . , cf (v`u)) = (2, 1, 2, 1, . . . , 2, 1).

Therefore, f is a proper dominating function of T .

Proposition 3.8. Let T be a starlike tree whose center is v with deg v ≥ 3. If each arm of T has even length or length 1, at
least two of which have length 1 or 2, then T has a proper dominating function.

Proof. For u ∈ N(v), let Au be the arm of length `u at v and let P`u = Au − v = (u = v1, v2, . . . , v`u). We define a function
f : V (T )→ {0, 1} as follows:

? Let f(v) = 1.

? If `u = 1, let f(u) = f(v1) = 1.

? If `u = 2, let (f(v1), f(v2)) = (1, 0).

? If `u ≥ 4, then (f(v1), f(v2), . . . , f(v`u)) = (0, 1, 0, 1, . . . , 0, 1).

Since f(v) = f(u) = 1 for each u ∈ N(v) such that 1 ≤ `u ≤ 2 and T has at least two arms of length 1 or 2, it follows that
cf (vi) ∈ {1, 2} for 1 ≤ i ≤ `u. If `u = 1, then cf (u) = cf (v1) = 2. If `u = 2, then (cf (u) = cf (v1), cf (v2)) = (2, 1). If `u ≥ 4,
then (cf (u) = cf (v1), cf (v2), . . . , cf (v`u)) = (2, 1, 2, 1, . . . , 2, 1). Therefore, f is a proper dominating function of T .

We begin with those starlike trees having at least three arms of length at most 3.

Theorem 3.1. Let T be a starlike tree whose center is v with deg v ≥ 3 and diameter at least 4 such that T has arms of
different parity and at least three arms of length 1, 2 or 3. Then T has a proper dominating function if and only if

(i) each arm of T has odd length or length 4 or

(ii) each arm of T has even length or length 1 or 3.

Proof. By Propositions 3.6 and 3.7, it remains for such starlike trees only to verify the necessity of this statement. Suppose
that T satisfies neither of (i) nor (ii). This implies that T has an even arm whose length is not 4 and an arm of odd length 5

or more. We show that T does not have a proper dominating function. Assume, to the contrary, that T has a proper
dominating function f : V (T ) → {0, 1}. Since T has an even arm whose length is not 4, it follows by Lemma 3.1 that
f(v) = 1. However then, all odd arms of T have length 1 or 3 by Lemma 3.2, which is a contradiction.

We now consider those starlike trees without any arm of length at most 3.

Theorem 3.2. Let T be a starlike tree whose center is v with deg v ≥ 3 and diameter at least 4 such that T has arms of
different parity and no arm has length 1, 2, or 3. Then T has a proper dominating function if and only if each arm of T has
odd length or length 4.

Proof. By Proposition 3.6, if each arm of T has odd length or length 4, then T has a proper dominating function. For
the converse, suppose that T has an even arm whose length is not 4 and assume, to the contrary, that T has a proper
dominating function f : V (T ) → {0, 1}. By Lemma 3.1, f(v) = 1. However then, all odd arms of T have length 1 or 3 by
Lemma 3.2, which is a contradiction.

Next, we consider those starlike trees having exactly one arm of length at most 3. We begin with starlike trees having
exactly one arm of length 1 and all other arms have length 4 or more.

Proposition 3.9. Let T be a starlike tree whose center is v with deg v ≥ 3 and having arms of different parity. Suppose
that T has exactly one arm of length 1 with all other arms of (even or odd) length 4 or more. Then T has a proper dominating
function if and only if all even arms of T have length 4.
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Proof. Let x ∈ N(v) such that Ax = (v, x) has length 1. Thus, for each u ∈ N(v), the arm Au at v has length `u ≥ 4. By
Proposition 3.6, if all even arms of T have length 4, then T has a proper dominating function. For the converse, suppose
that T has an even arm of length 6 or more and a proper dominating function f : V (T )→ {0, 1}. By Lemma 3.1, f(v) = 1.
It then follows by Lemma 3.2 that Ax is the only odd arm in T and f(u) = 0 for u ∈ N(v)−{x}. However then, cf (v) = cf (x),
which is impossible.

The situation is the same if a starlike tree has exactly one arm of length 3 and all other arms have length at least 4.

Proposition 3.10. Let T be a starlike tree whose center is v with deg v ≥ 3 and having arms of different parity. Suppose
that T has exactly one arm of length 3 with all other arms of (even or odd) length 4 or more. Then T has a proper dominating
function if and only if all even arms of T have length 4.

Proof. Let x ∈ N(v) such that Ax = (v, x = x1, x2, x3) has length 3. Thus, for each u ∈ N(v), the arm Au at v has
length `u ≥ 4. By Proposition 3.6, if all even arms of T have length 4, then T has a proper dominating function. For the
converse, suppose that T has an even arm of length 6 or more and a proper dominating function f : V (T ) → {0, 1}. By
Lemma 3.1, f(v) = 1. It then follows by Lemma 3.2 that Ax is the only odd arm in T and f(x) = 1 and f(u) = 0 for each
u ∈ N(v) − {x}. Let u ∈ N(v) − {x}. Since no two adjacent vertices on an arm (different from v) can both have f -value 0,
there exists a neighbor v′ of u distinct from v such that f(v′) = 1. However then, cf (v) = cf (u) = 2, which is impossible.

The situation is completely different for a starlike tree having arms of different parity, some of which have length 2 and
others have length 4 or more.

Proposition 3.11. Let T be a starlike tree whose center is v with deg v ≥ 3 and having arms of different parity. If T has
an arm of length 2 with all other arms of (even or odd) length 4 or more, then T has no proper dominating function.

Proof. Let x ∈ N(v) such that the arm Ax has length 2. Thus Ax is a pendant P3 at v. Assume, to the contrary, that T has
a proper dominating function f : V (T )→ {0, 1}. Then f(v) = 1. It follows by Lemma 3.2 that each odd arm of T must have
length 1 or 3, which is impossible.

The following is a consequence of the proof of Proposition 3.11 (or Lemma 3.2).

Corollary 3.2. Let T be a starlike tree whose center is v with deg v ≥ 3 and having arms of different parity. If T has an
arm of length 2 and T has a proper dominating function, then every odd arm of T has length 1 or 3.

First, we determine which starlike trees having arms of different parity and an arm of length 2 possess a proper
dominating function.

Theorem 3.3. Let T be a starlike tree whose center is v with deg v ≥ 3 and having arms of different parity and an arm of
length 2. Then T has a proper dominating function if and only if T satisfies the following conditions (a) and (b):

(a) each odd arm of T has length 1 or 3 and

(b) if T has an arm of length 3, then T has at least three arms of length 1, 2, or 3.

Proof. First, suppose that T satisfies (a) and (b). If each odd arm of T has length 1, then T has at least two arms of length
at most 2 and so T has a proper dominating function by Proposition 3.8. If T has an arm of length 3, then T has at least
three arms of length 1, 2, or 3 and so T has a proper dominating function by Proposition 3.7.

For the converse, suppose that T does not satisfy (a) or does not satisfy (b) and has a proper dominating function
f : V (T )→ {0, 1}. By Corollary 3.2, each arm of T has even length or length 1 or length 3. So, (a) is satisfied and (b) is not
satisfied. If T does not have an arm of length 3, then (b) is true vacuously. Hence, T has an arm of length 3 but T has at most
two arms of length 1, 2 or 3. Since T has an arm of length 2, it follows that T has exactly one odd arm and this odd arm has
length 3. Therefore, T has exactly one arm of length 2, exactly one arm of length 3, and all other arms have even length 4
or more. Let x, y ∈ N(v) such that the length of Ax is 2 and the length of Ay is 3, say Ax = (v, x, x′) and Ay = (v, y, y′, y′′).
For each u ∈ N(v)−{x, y} 6= ∅, the arm Au has even length 4 or more, say Au = (v, u = v1, v2, . . . , v`u) where `u is even and
`u ≥ 4. By Lemma 3.2, it follows that (f(v), f(x), f(x′)) ∈ {(1, 0, 1), (1, 1, 0), (1, 1, 1)}, (f(v), f(y), f(y′), f(y′′)) = (1, 1, 1, 0)

and (f(v), f(v1), f(v2), . . . , f(v`u)) = (1, 0, 1, 0, 1, . . . , 0, 1). Thus, cf (x) ∈ {2, 3}, cf (y) = 3 and cf (u) = 2. If f(x) = 0, then
cf (v) = cf (u) = 2; while if f(x) = 1, then cf (v) = cf (y) = 3. In either case, a contradiction is produced.

We now consider starlike trees having arms of different parity but no arm of length 2. In order to do this, we first
present a result that is similar to Propositions 3.9 and 3.10.
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Proposition 3.12. Let T be a starlike tree whose center is v with deg v ≥ 3 and having arms of different parity. Suppose
that T has two arms of length 1 or 3, at least one of which has length 3, with all other arms of (even or odd) length 4 or more.
Then T has a proper dominating function if and only if all even arms of T have length 4.

Proof. Let x, y ∈ N(v) such that Ax has length 1 or 3 and Ay = (v, y = y1, y2, y3) has length 3. If all even arms of T have
length 4, then T has a proper dominating function by Proposition 3.6. For the converse, suppose that T has an even arm
of length 6 or more and a proper dominating function f : V (T ) → {0, 1}. By Lemma 3.1, f(v) = 1. It then follows by
Lemma 3.2 that (i) Ax and Ay are the only odd arms in T and (ii)f(y) = 1 and f(u) = 0 for each u ∈ N(v) − {x, y} 6= ∅.
For u ∈ N(v) − {x, y}, let Au = (v, u = v1, v2, . . . , v`u) where then `u is even and `u ≥ 4. Since f(u) = f(v1) = 0 and no two
adjacent vertices on an arm (different from v) can both have f -value 0, it follows that f(v2) = 1 and so cf (u) = 2. This forces
f(x) = 1 and so cf (v) = 3. If f(y2) = 1, then cf (v) = cf (y) = 3, while if f(y2) = 0, then f(y3) = 1 and so cf (y) = cf (y2) = 2,
which is impossible in either case.

Theorem 3.4. Let T be a starlike tree whose center is v with deg v ≥ 3 and having arms of different parity but no arms of
length 2. Then T has a proper dominating function if and only if T satisfies one of the following conditions:

(i) Each even arm of T has length 4.

(ii) Some even arm of T has length 6 or more and each odd arm has length 1 or 3 such that either T has at least two arms
of length 1 or T has at least three odd arms, each of which has length 1 or 3.

Proof. If T satisfies (i), then T has a proper dominating function by Proposition 3.6. If T satisfies (ii), then T has a proper
dominating function by Proposition 3.8 and Theorem 3.1.

For the converse, suppose that T satisfies neither (i) nor (ii), but T has a proper dominating function f : V (T )→ {0, 1}.
Since T does not satisfy (i), it follows that T has an even arm of length 6 or more. Let x ∈ N(v) such that Ax is an even arm
of length `x ≥ 6. It then follows by Lemma 3.1 that f(v) = 1 and so f(x) = 0 by Lemma 3.2(i). Since f(v) = 1, it follows by
Lemma 3.2 that each odd arm of T has length 1 or 3. Since T does not satisfy (ii), it follows that T has one or two odd arms,
each of which has length 1 or 3 and at least one of which has length 3. However then, all even arms must have length 4 by
Propositions 3.9, 3.10, and 3.12. This contradicts the assumption that T has an even arm of length 6 or more.

By Corollary 3.1, Propositions 3.5 and 3.8, and Theorems 3.3 and 3.4, we are now prepared to present a characterization
of all starlike trees T with maximum degree 3 or more such that T has a proper dominating function.

Theorem 3.5. A starlike tree T with maximum degree 3 or more has a proper dominating function if and only if T satisfies
any of the following conditions:

(a) The diameter of T is at most 3.

(b) All arms of T have the same parity.

(c) Each arm of T has odd length or length 4.

(d) Some even arm of T has length 2 or at least length 6 and each odd arm has length 1 or 3 such that either T has at least
two arms of length at most 2 or T has at least three arms of length at most 3,
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