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Abstract

A condition ensuring the invariance of the “digital” entropy of a cyclic permutation under refinement of the interval
partition is established. Also, a “canonical form” for the 0-1 matrix induced by a Markov map is introduced, which
provides a structured representation that captures and elucidates the dynamics of the map on the interval.

Keywords: “digital” entropy; canonical form; 0-1 matrix; Markov maps; spectral radius; cyclic permutations; characteristic
polynomial.

2020 Mathematics Subject Classification: 15A21, 37E05.

1. Introduction

For any given permutation θ of m+1 objects, we define the canonical θ-linear map Lθ, also known as the “connect-the-dots”
map of θ. This map Lθ : I → I is defined such that Lθ = θ on the discrete set T = {0, 1, . . . ,m} and is linear on each
subinterval Ii = (i, i+ 1) for i = 0, 1, . . . ,m − 1, where I = [0,m]. Together, Lθ and T induce a 0-1 matrix A of size m.
In [3], Fisher demonstrated that if θ is a cyclic permutation of length m + 1, then the coefficients of the characteristic
polynomial det (λIm −A) of A must all be odd. Also, in [4], Swanson and Volkmer demonstrated that if θ is a unimodal
cyclic permutation, then every coefficient of the characteristic polynomial det (λIm −A) of A must be either −1 or 1. Then,
in [5], the present author introduced the concept of “digital” entropy, T (θ), for a unimodal cyclic permutation θ, defined as

T (θ) = .τ (ε1) τ (ε2) τ (ε3) · · ·

where the function τ (εi) is given as follows:

τ (εi) =


2 if i < m+ 1 and εi = −1,
0 if i < m+ 1 and εi = +1,
1 if i ≥ m+ 1.

Here, the coefficients εi are derived from the characteristic polynomial of A, expressed as:

det (λIm −A) = λm + ε1λ
m−1 + ε2λ

m−2 + · · ·+ εm−1λ+ εm.

Our primary concern is whether the “digital” entropy T (θ) of θ remains invariant under any refinement S of T . This
question is addressed through an examination of the behavior of elements in S ∖ T under Lθ. Propositions 2.1 and 2.2 of
this article suggest that T (θ) is preserved if all elements in S ∖ T converge to T under Lθ; otherwise, it is not necessarily
preserved.

On the other hand, in [2], Byers and Boyarsky demonstrated that the spectral radii of two matrices, A and Z, induced
by f with T and by f with S, respectively, are the same. Here, f is any given piecewise-continuous Markov map with
respect to the partition point T , and S is any refinement of T . The propositions presented in this article build upon and
provide further details of the work done in [2]. In the proofs of these propositions, we use Vℓ, a matrix of change of bases,
which is given in [3]. Compared to Z, both VℓZV −1

ℓ and PVℓZV −1
ℓ P−1 offer much more insight into the dynamics of f on S,

where P is a proper permutation matrix. In this context, the matrix PVℓZV −1
ℓ P−1, introduced in this article, can be seen

as a “canonical form” of the 0-1 matrix Z induced by the given Markov map f with respect to the set S.
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2. Statements of the main results

We begin by presenting a few definitions that are used in the rest of this article. Most of these concepts are well-established
in the literature, and we refer the reader primarily to [1,2,5] for their origins and context.

Definition 2.1. Let I = [0,m] be a closed interval, and let T = {0, 1, . . . ,m} be a set of partition points of I. Consider
f : I → I, a piecewise-continuous Markov map with respect to the partition points T . Specifically, f satisfies the following
conditions:

(i) f is strictly monotonic and continuous on each subinterval Ii = (i, i+ 1) for i = 0, 1, . . . ,m− 1;

(ii) The following limits exist and are elements of T :

f
(
0+
)
= lim

x→0+
f (x) ,

f
(
i+
)
= lim

x→i+
f (x) and f

(
i−
)
= lim

x→i−
f (x) for i = 1, . . . ,m− 1, and

f
(
m−) = lim

x→m−
f (x) .

Definition 2.2. Let A =
[
aij
]
m×m

be the 0-1 matrix induced by f with T . Let S = T ∪U , where U = {u1, u2, . . . , un} satisfies
0 < u1 < u2 < · · · < un < m, T ∩ U = ϕ, and S is a partition of the interval [0,m]. Additionally, S is a refinement of T (that
is, T ⊂ S), and f with S induces a 0-1 matrix Z =

[
zij
]
(m+n)×(m+n)

. We define the length from u ∈ U to T under f to be k,
where k ∈ N is the smallest positive integer such that f0 (u) , f1 (u) , . . . , fk−1 (u) ∈ U and fk (u) ∈ T .

Definition 2.3. Let J be a subinterval on which f is strictly monotonic. We denote J by J+ (respectively, J−) if f is monotone
increasing (respectively, monotone decreasing). The sign of the slope of the tangent line to y = f (x) at (u, f (u)) is defined as
positive (respectively, negative) if u is contained in a subinterval J+ (respectively, J−). In this case, we write sgn(f ′(u)) = +1

(respectively, sgn(f ′(u)) = −1), noting that f is not necessarily differentiable at u. We say that U = {u1, u2, . . . , un} forms the
orbit of a (+)-signed n-cycle (respectively, a (−)-signed n-cycle) if U = {u1, u2, . . . , un} = {fs(ui) | s ≥ 0} for any i = 1, 2, . . . , n,
and

∏n
i=1sgn(f ′(ui)) = +1 (respectively,

∏n
i=1sgn(f ′(ui)) = −1).

Now, we are ready to state the main results of this article.

Proposition 2.1. Suppose that U consists of n points u1, u2, . . . , un such that the length from every ui to T under f is a
finite value ki ∈ N, for i = 1, 2, . . . , n. Then, the characteristic polynomial ChZ (λ) of Z is expressed as the product of the
characteristic polynomial ChA (λ) of A and λn, that is,

ChZ (λ) = ChA (λ) λn.

Proposition 2.2. Suppose that U consists of the orbit of a (±)-signed n-cycle. Then,

ChZ (λ) = ChA (λ) (λn ∓ 1) .

As a corollary of Proposition 2.1, we obtain the following result:

Corollary 2.1. Let θ be any given unimodal cyclic permutation with length m+1, and let T (θ) denote the digital entropy of
θ. Then T (θ) remains invariant under a refinement of the partition of the interval if all n newly added points are eventually
periodic points that converge to T , the orbit of the (m+ 1)-cycle of type θ.

Proof. Let ChA (λ) = λm + ε1λ
m−1 + ε2λ

m−2 + · · · + εm−1λ + εm. Then T (θ) = .τ (ε1) τ (ε2) τ (ε3) · · · . On the other hand,
by Proposition 2.1,

ChZ (λ) = ChA (λ) λn = λm+n + ε1λ
m−1+n + ε2λ

m−2+n + · · ·+ εm−1λ
1+n + εmλn.

Thus, T (θ), as computed from ChZ (λ), is also .τ (ε1) τ (ε2) τ (ε3) · · · .
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3. A lemma

In [3], Fisher introduces a matrix of change of bases, defined as follows:

Definition 3.1. For any ℓ ≥ 2, let Vℓ be the ℓ× ℓ matrix with 1’s on and above the diagonal and 0’s below the diagonal. Then
V −1
ℓ is the inverse of Vℓ, and it has 1’s on the diagonal, −1’s on the super-diagonal, and 0’s elsewhere.

It is evident that Vℓ satisfies the properties given in the next lemma.

Lemma 3.1. Let M be any given ℓ× ℓ square matrix. Then the following statements hold.

(i) The i-th row of VℓM is the sum of the i-th row, the (i+ 1)-th row, . . . , and the ℓ-th row of M , for any 1 ≤ i ≤ ℓ. In
particular:

(ii) If the j-th column and the (j + 1)-th column of M are identical, then the j-th column and the (j + 1)-th column of
VℓM are also identical, for any 1 ≤ j ≤ ℓ− 1.

(iii) The 1st column of MV −1
ℓ is the 1st column of M , and the j-th column of MV −1

ℓ is the negative of the (j − 1)-th column
of M plus the j-th column of M , for any 2 ≤ j ≤ ℓ. In particular:

(iv) If the (j − 1)-th column and the j-th column of M are identical, then the j-th column of MV −1
ℓ is the zero column

vector 0ℓ×1, for any 2 ≤ j ≤ ℓ.

Using Lemma 3.1, we proceed to prove Proposition 2.1 and Proposition 2.2 in the subsequent sections.

4. Proof of Proposition 2.1

Proof. Let I = [0,m], T = {0, 1, . . . ,m}, and f : I → I be a piecewise-continuous Markov map with respect to T . Let
A =

[
aij
]
m×m

be the 0-1 matrix induced by f with T . Then, ChA (λ) = ChA (λ) λ0 is obviously true. We reorder the n

points u1, u2, . . . , un in U by their distance to T , and relabel them as follows:

{u1, u2, . . . , un} =
{
u(1,1), u(1,2), . . . , u(1,k1), u(2,1), u(2,2), . . . , u(2,k2), . . .

}
where u(l,1), u(l,2), . . . , u(l,kl) are the kl points at distance l from T , for l = 1, 2, . . ., and k1 + k2 + · · · = n. We then relabel the
points as follows:

u(1,1), u(1,2), . . . , u(1,k1), u(2,1), u(2,2), . . . , u(2,k2), . . .

becoming
v1, v2, . . . , vk1 , vk1+1, vk1+2, . . . , vk1+k2 , . . . .

Let P =
[
pij
]
(m+k)×(m+k)

be the 0-1 matrix induced by f with T ∪ {v1, v2, . . . , vk}. Suppose that

ChP (λ) = det (λIm+k − P ) = ChA (λ) λk (inductive hypothesis).

Let Q =
[
qij
]
(m+k+1)×(m+k+1)

be the 0-1 matrix induced by f with T ∪ {v1, v2, . . . , vk, vk+1}. Denote T ∪ {v1, v2, . . . , vk} as

{w0, w1, . . . , wm+k+1} , where 0 = w0 < w1 < · · · < wm+k+1 = m.

Since vk+1 ∈
(
wik+1

, wik+1+1

)
for some 0 ≤ ik+1 ≤ m + k, vk+1 divides the subinterval

(
wik+1

, wik+1+1

)
into two new

subintervals
(
wik+1

, vk+1

)
and

(
vk+1, wik+1+1

)
. Therefore, the addition of the (ik+1 + 1)-th row and the (ik+1 + 2)-th row of

Q corresponds to the (ik+1 + 1)-th row of P .
Also, since the x-coordinates of the intersection points of the horizontal line y = vk+1 and the graph y = f (x) are not

in T ∪ {v1, v2, . . . , vk, vk+1}, the (ik+1 + 1)-th column and the (ik+1 + 2)-th column of Q are identical, and both correspond
to the (ik+1 + 1)-th column of P .

Thus, by Lemma 3.1.(i) and (ii), striking out the (ik+1 + 2)-th row and the (ik+1 + 2)-th column of Vm+k+1Q results in a
matrix identical to Vm+kP . Additionally, the (ik+1 + 1)-th column and the (ik+1 + 2)-th column of Vm+k+1Q are identical.

Thus, by Lemma 3.1.(iii) and (iv), striking out the (ik+1 + 2)-th row and (ik+1 + 2)-th column of (Vm+k+1Q)V −1
m+k+1

results in a matrix identical to (Vm+kP )V −1
m+k. Moreover, the (ik+1 + 2)-th column of (Vm+kP )V −1

m+k is the zero column
vector.

10
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Let Pσk+1
be the permutation matrix of the cyclic permutation σk+1:

σk+1 = (ik+1 + 2, ik+1 + 3, . . . ,m+ k + 1)

represented as

σk+1 =

(
1 2 · · · ik+1 + 1 ik+1 + 2 ik+1 + 3 · · · m+ k m+ k + 1

1 2 · · · ik+1 + 1 ik+1 + 3 ik+1 + 4 · · · m+ k + 1 ik+1 + 2

)
.

Using the cofactor expansion along the (m+ k + 1)-th column and the inductive hypothesis, we obtain

ChQ (λ) = det
(
λIm+k+1 − Pσk+1

(
Vm+k+1QV −1

m+k+1

)
P−1
σk+1

)
=

∣∣∣∣∣ λIm+k − Vm+kPV −1
m+k 0(m+k)×1

[∗ ∗ · · · ∗]1×(m+k) λ

∣∣∣∣∣
(m+k+1)×(m+k+1)

= det
(
λIm+k − Vm+kPV −1

m+k

)
λ

= ChP (λ) λ

=
(
ChA (λ) λk

)
λ

= ChA (λ) λk+1.

Since both the base step and the inductive step have been proven, we conclude that, for any k ≥ 0, ChP (λ) = ChA (λ) λk,
where P =

[
pij
]
(m+k)×(m+k)

is the 0-1 matrix induced by f with T ∪ {v1, v2, . . . , vk}. In particular,

ChZ (λ) = ChA (λ) λn,

where Z =
[
zij
]
(m+n)×(m+n)

is the 0-1 matrix induced by f with S = T ∪ {u1, u2, . . . , un} = T ∪ {v1, v2, . . . , vn}.

5. Proof of Proposition 2.2

Proof. First, we relabel U = {u1, u2, . . . , un} as follows:

{u1, u2, . . . , un} = {v1, v2, . . . , vn} ,

where f (v1) = v2, f (v2) = v3, . . . , f (vn−1) = vn, and f (vn) = v1. (For convenience, we may denote v1 as vn+1 if necessary).
Then, the mapping f : [0,m] → [0,m] with S = T ∪ U induces the matrix

Z =
[
zij
]
(m+n)×(m+n)

.

Then, f (v1) = v2 in the graph y = f (x) is expressed in Z as either[
1 0
0 1

]
, or

[
0 1
1 0

]
,

at the i1-th and (i1 + 1)-th rows, and the i2-th and (i2 + 1)-th columns, respectively, if the slope of the graph y = f (x) at
x = v1 is positive or negative, for some 1 ≤ i1, i2 ≤ m+ n− 1, and i1 may also be denoted as in+1 if necessary.

Inductively, f (vk) = vk+1 (k = 2, 3, . . . , n− 1) in the graph y = f (x) is expressed in Z as either[
1 0
0 1

]
, or

[
0 1
1 0

]
,

at the ik-th and (ik + 1)-th rows, and the ik+1-th and (ik+1 + 1)-th columns, respectively, if the slope of the graph y = f (x)

at x = vk is positive or negative, for some 1 ≤ ik+1 ≤ m+ n− 1.
Finally, f (vn) = v1 in the graph y = f (x) is expressed in Z as either[

1 0
0 1

]
, or

[
0 1
1 0

]
,

at the in-th and (in + 1)-th rows, and the i1-th and (i1 + 1)-th columns, respectively, if the slope of the graph y = f (x) at
x = vn is positive or negative.

11
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We recall that the sign of the n-cycle is defined as the product of the signs of the slopes of the graph y = f (x) at x = vk

for k = 1, 2, . . . , n. Notice that the x-coordinates of the intersection points of the horizontal line y = vk+1 and the graph
y = f (x) are not in S = T ∪ {v1, v2, . . . , vn}, except for the x-coordinate of the intersection point (vk, vk+1) = (vk, f (vk)) for
1 ≤ k ≤ n. Consequently, the ik+1-th column and the (ik+1 + 1)-th column of Z are identical, except at the ik-th row and the
(ik + 1)-th row. Thus, by Lemma 3.1.(i) and (ii), the ik+1-th column and the (ik+1 + 1)-th column of Vm+nZ are identical,
except at the (ik + 1)-th rows. Notice that [

1 0
0 1

]
, or

[
0 1
1 0

]
,

at the ik-th and (ik + 1)-th rows, and the ik+1-th and (ik+1 + 1)-th columns in Z has been transformed into[
pk pk

pk − 1 pk

]
, or

[
qk qk
qk qk − 1

]
,

at the same position in Vm+nZ, for some pk ∈ Z+ or for some qk ∈ Z+, respectively.
Thus, by Lemma 3.1.(iii) and (iv), the (ik+1 + 1)-th column of (Vm+nZ)V −1

m+n is the zero column vector except at the
(ik + 1)-th row. Notice that [

pk pk
pk − 1 pk

]
, or

[
qk qk
qk qk − 1

]
,

at the ik-th and (ik + 1)-th rows, and the ik+1-th and (ik+1 + 1)-th columns in Vm+nZ has been transformed into +1, or −1,
at the (ik + 1, ik+1 + 1)-th entry of (Vm+nZ)V −1

m+n, respectively.
Let {r1, r2, . . . , rm} = {1, 2, . . . ,m, . . . ,m+ n}∖ {i1 + 1, i2 + 1, . . . , in + 1} where r1 < r2 < · · · < rm. Let

σ =

(
1 2 · · · m m+ 1 m+ 2 · · · m+ n

r1 r2 · · · rm i1 + 1 i2 + 1 · · · in + 1

)
,

and let P be the permutation matrix corresponding to σ. Then

PVm+nZV −1
m+nP

−1 =

[(
Z11

)
m×m

(
Z12

)
m×n(

Z21

)
n×m

(
Z22

)
n×n

]
(m+n)×(m+n)

where (
Z12

)
m×n

= Om×n

and

(
Z22

)
n×n

=



ω11 ω12 · · · · · · ω1n

ω21 ω22 · · · · · · ω2n

...
...

...

ωn1 ωn2 · · · · · · ωnn


=



0 ±1 0 · · · 0

0 0 ±1
. . . ...

... . . . . . . 0

0 · · · · · · 0 ±1

±1 0 · · · · · · 0


n×n

where the sign of ω(k)(k+1) corresponds to the sign of the slope of the graph y = f (x) at x = vk for 1 ≤ k ≤ n − 1, and the
sign of ωn1 corresponds to the sign of the slope of the graph y = f (x) at x = vn.

Next, we consider
(
Z11

)
m×m

. First, notice that the (i, j)-th entry (where 1 ≤ i, j ≤ m) of VmA is given by the number of
intersection points of any horizontal line y = y0 where j − 1 < y0 < j and the graph y = f (x) on [i− 1,m]. Similarly, the
(ri, rj)-th entry of Vm+nZ is also given by the number of intersection points of any horizontal line y = y0 where j−1 < y0 < j

and the graph y = f (x) on [i− 1,m]. Therefore, the (i, j)-th entry of VmA is the same as the (ri, rj)-th entry of Vm+nZ.
Furthermore, if rj+1 is not directly after rj , then the (ri, rj)-th entry, the (ri, rj + 1)-th entry, the (ri, rj + 2)-th entry,

. . . , the (ri, rj+1 − 1)-th entry of Vm+nZ are all the same.
Thus, by Lemma 3.1.(iv), the (i, j)-th entry of (VmA)V −1

m is the same as the (ri, rj)-th entry of (Vm+nZ)V −1
m+n. In

other words, (Vm+nZ)V −1
m+n, when excluding the (i1 + 1)-th, (i2 + 1)-th, . . . , (in + 1)-th, rows and columns, is the same as

(VmA)V −1
m . Therefore, (

Z11

)
m×m

= VmAV −1
m .

12
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Consequently, we obtain

ChZ (λ) = det (λIm+n − Z)

= det
(
λIm+n − PVm+nZV −1

m+nP
−1
)

=

∣∣∣∣∣ λIm − VmAV −1
m Om×n

−
(
Z21

)
n×m

λIn −
(
Z22

)
n×n

∣∣∣∣∣
(m+n)×(m+n)

= det
(
λIm − VmAV −1

m

)
det
(
λIn −

(
Z22

)
n×n

)
= ChA (λ) (λn ± 1) ,

where the sign of ±1 depends on the sign of the n-cycle. Specifically, if the sign of the n-cycle is given as (−1)
l
(+1)

n−l for
some 0 ≤ l ≤ n, where l is the number of negative slopes, then

det
(
λIn −

(
Z22

)
n×n

)
= sgn (ι) λn + sgn

(
1 2 · · · n− 1 n

2 3 · · · n 1

)
(+1)

l
(−1)

n−l

= λn + (−1)
n−1

(+1)
l
(−1)

n−l

= λn + (−1)
l+1

.

Here, (−1)
l+1

= +1 (respectively −1), if and only if l is odd (respectively, even), which corresponds to the sign of the n-cycle:
(−1)

l
(+1)

n−l being negative (respectively, positive).
This completes the proof of Proposition 2.2.

6. Canonical form of the 0-1 matrix induced by the Markov map

By combining Proposition 2.1 and Proposition 2.2, we obtain the following result:

Proposition 6.1. Suppose that U consists of n0 points converging to T , and the remaining n − n0 in U consist of ni of
(−)-signed li-cycles (i = 1, . . . , j), and ni of (+)-signed li-cycles (i = j + 1, . . . , k), where

n0 +

k∑
i=1

nili = n.

Then,

ChZ (λ) = ChA (λ) λn0

j∏
i=1

(
λli + 1

)ni
k∏

i=j+1

(
λli − 1

)ni
.

Remark 6.1. Conversely, consider a 0-1 matrix Z of size ℓ induced by a Markov map f with S = {0, 1, 2, . . . , ℓ}. Starting with
Z, we decompose S into T and U . Naturally, T is chosen to include both endpoints 0 and ℓ of the interval I = [0, ℓ], as well
as every point where the slope of f is undefined, ensuring f (T ) ⊆ T . The remaining points form U = S ∖ T . If necessary,
U is further decomposed into subsets U0, U1, U2, . . . by analyzing the dynamics of f on U . Through this decomposition of
S into T,U0, U1, U2, . . ., a proper permutation σ and its corresponding permutation matrix P are obtained.With these, we
construct PVℓZV −1

ℓ P−1. While Z and PVℓZV −1
ℓ P−1 are similar matrices, the latter provides a far richer representation of

the dynamics of f on S. In this sense, PVℓZV −1
ℓ P−1, as introduced above, can be regarded as a “canonical form” of the 0-1

matrix associated with the given Markov map f and the set S.
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