Research Article Canonical form for the zero-one matrix induced by the Markov map

Yoshifumi Takenouchi*

Division of Mathematics and Computer Sciences, College of Natural and Applied Sciences, University of Guam, UOG Station Mangilao, Guam, USA

(Received: 15 February 2025. Received in revised form: 8 March 2025. Accepted: 10 March 2025. Published online: 17 March 2025.)

© 2025 the author. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

A condition ensuring the invariance of the "digital" entropy of a cyclic permutation under refinement of the interval partition is established. Also, a "canonical form" for the 0-1 matrix induced by a Markov map is introduced, which provides a structured representation that captures and elucidates the dynamics of the map on the interval.

Keywords: "digital" entropy; canonical form; 0-1 matrix; Markov maps; spectral radius; cyclic permutations; characteristic polynomial.

2020 Mathematics Subject Classification: 15A21, 37E05.

1. Introduction

For any given permutation θ of m+1 objects, we define the canonical θ -linear map L_{θ} , also known as the "connect-the-dots" map of θ . This map $L_{\theta} : I \to I$ is defined such that $L_{\theta} = \theta$ on the discrete set $T = \{0, 1, \ldots, m\}$ and is linear on each subinterval $I_i = (i, i+1)$ for $i = 0, 1, \ldots, m-1$, where I = [0, m]. Together, L_{θ} and T induce a 0-1 matrix A of size m. In [3], Fisher demonstrated that if θ is a cyclic permutation of length m + 1, then the coefficients of the characteristic polynomial det $(\lambda I_m - A)$ of A must all be odd. Also, in [4], Swanson and Volkmer demonstrated that if θ is a unimodal cyclic permutation, then every coefficient of the characteristic polynomial det $(\lambda I_m - A)$ of A must be either -1 or 1. Then, in [5], the present author introduced the concept of "digital" entropy, $T(\theta)$, for a unimodal cyclic permutation θ , defined as

$$T(\theta) = .\tau(\varepsilon_1) \tau(\varepsilon_2) \tau(\varepsilon_3) \cdots$$

where the function $\tau(\varepsilon_i)$ is given as follows:

$$\tau \left(\varepsilon_{i} \right) = \begin{cases} 2 & \text{if} \quad i < m+1 \text{ and } \varepsilon_{i} = -1, \\ 0 & \text{if} \quad i < m+1 \text{ and } \varepsilon_{i} = +1, \\ 1 & \text{if} \quad i \ge m+1. \end{cases}$$

Here, the coefficients ε_i are derived from the characteristic polynomial of *A*, expressed as:

$$\det \left(\lambda I_m - A\right) = \lambda^m + \varepsilon_1 \lambda^{m-1} + \varepsilon_2 \lambda^{m-2} + \dots + \varepsilon_{m-1} \lambda + \varepsilon_m.$$

Our primary concern is whether the "digital" entropy $T(\theta)$ of θ remains invariant under any refinement S of T. This question is addressed through an examination of the behavior of elements in $S \setminus T$ under L_{θ} . Propositions 2.1 and 2.2 of this article suggest that $T(\theta)$ is preserved if all elements in $S \setminus T$ converge to T under L_{θ} ; otherwise, it is not necessarily preserved.

On the other hand, in [2], Byers and Boyarsky demonstrated that the spectral radii of two matrices, A and Z, induced by f with T and by f with S, respectively, are the same. Here, f is any given piecewise-continuous Markov map with respect to the partition point T, and S is any refinement of T. The propositions presented in this article build upon and provide further details of the work done in [2]. In the proofs of these propositions, we use V_{ℓ} , a matrix of change of bases, which is given in [3]. Compared to Z, both $V_{\ell}ZV_{\ell}^{-1}$ and $PV_{\ell}ZV_{\ell}^{-1}P^{-1}$ offer much more insight into the dynamics of f on S, where P is a proper permutation matrix. In this context, the matrix $PV_{\ell}ZV_{\ell}^{-1}P^{-1}$, introduced in this article, can be seen as a "canonical form" of the 0-1 matrix Z induced by the given Markov map f with respect to the set S.

^{*}E-mail addresses: takenouchiy@triton.uog.edu, jytakenovich@gmail.com, jytakenovich2006@yahoo.co.jp

2. Statements of the main results

We begin by presenting a few definitions that are used in the rest of this article. Most of these concepts are well-established in the literature, and we refer the reader primarily to [1, 2, 5] for their origins and context.

Definition 2.1. Let I = [0,m] be a closed interval, and let $T = \{0, 1, ..., m\}$ be a set of partition points of I. Consider $f: I \to I$, a piecewise-continuous Markov map with respect to the partition points T. Specifically, f satisfies the following conditions:

- (i) f is strictly monotonic and continuous on each subinterval $I_i = (i, i+1)$ for i = 0, 1, ..., m-1;
- (ii) The following limits exist and are elements of T:

$$f(0^{+}) = \lim_{x \to 0^{+}} f(x),$$

$$f(i^{+}) = \lim_{x \to i^{+}} f(x) \text{ and } f(i^{-}) = \lim_{x \to i^{-}} f(x) \text{ for } i = 1, \dots, m-1, \text{ and}$$

$$f(m^{-}) = \lim_{x \to m^{-}} f(x).$$

Definition 2.2. Let $A = [a_{ij}]_{m \times m}$ be the 0-1 matrix induced by f with T. Let $S = T \cup U$, where $U = \{u_1, u_2, \ldots, u_n\}$ satisfies $0 < u_1 < u_2 < \cdots < u_n < m$, $T \cap U = \phi$, and S is a partition of the interval [0, m]. Additionally, S is a refinement of T (that is, $T \subset S$), and f with S induces a 0-1 matrix $Z = [z_{ij}]_{(m+n)\times(m+n)}$. We define the length from $u \in U$ to T under f to be k, where $k \in \mathbb{N}$ is the smallest positive integer such that $f^0(u), f^1(u), \ldots, f^{k-1}(u) \in U$ and $f^k(u) \in T$.

Definition 2.3. Let J be a subinterval on which f is strictly monotonic. We denote J by J^+ (respectively, J^-) if f is monotone increasing (respectively, monotone decreasing). The sign of the slope of the tangent line to y = f(x) at (u, f(u)) is defined as positive (respectively, negative) if u is contained in a subinterval J^+ (respectively, J^-). In this case, we write sgn(f'(u)) = +1 (respectively, sgn(f'(u)) = -1), noting that f is not necessarily differentiable at u. We say that $U = \{u_1, u_2, \ldots, u_n\}$ forms the orbit of a (+)-signed n-cycle (respectively, a (-)-signed n-cycle) if $U = \{u_1, u_2, \ldots, u_n\} = \{f^s(u_i) \mid s \ge 0\}$ for any $i = 1, 2, \ldots, n$, and $\prod_{i=1}^{n} sgn(f'(u_i)) = +1$ (respectively, $\prod_{i=1}^{n} sgn(f'(u_i)) = -1$).

Now, we are ready to state the main results of this article.

Proposition 2.1. Suppose that U consists of n points $u_1, u_2, ..., u_n$ such that the length from every u_i to T under f is a finite value $k_i \in \mathbb{N}$, for i = 1, 2, ..., n. Then, the characteristic polynomial $Ch_Z(\lambda)$ of Z is expressed as the product of the characteristic polynomial $Ch_A(\lambda)$ of A and λ^n , that is,

$$Ch_{Z}(\lambda) = Ch_{A}(\lambda) \lambda^{n}$$

Proposition 2.2. Suppose that U consists of the orbit of a (\pm) -signed *n*-cycle. Then,

$$Ch_{Z}(\lambda) = Ch_{A}(\lambda) (\lambda^{n} \mp 1).$$

As a corollary of Proposition 2.1, we obtain the following result:

Corollary 2.1. Let θ be any given unimodal cyclic permutation with length m + 1, and let $T(\theta)$ denote the digital entropy of θ . Then $T(\theta)$ remains invariant under a refinement of the partition of the interval if all n newly added points are eventually periodic points that converge to T, the orbit of the (m + 1)-cycle of type θ .

Proof. Let $Ch_A(\lambda) = \lambda^m + \varepsilon_1 \lambda^{m-1} + \varepsilon_2 \lambda^{m-2} + \cdots + \varepsilon_{m-1} \lambda + \varepsilon_m$. Then $T(\theta) = .\tau(\varepsilon_1) \tau(\varepsilon_2) \tau(\varepsilon_3) \cdots$. On the other hand, by Proposition 2.1,

$$Ch_{Z}(\lambda) = Ch_{A}(\lambda) \ \lambda^{n} = \lambda^{m+n} + \varepsilon_{1}\lambda^{m-1+n} + \varepsilon_{2}\lambda^{m-2+n} + \dots + \varepsilon_{m-1}\lambda^{1+n} + \varepsilon_{m}\lambda^{n}.$$

Thus, $T(\theta)$, as computed from $Ch_Z(\lambda)$, is also $\tau(\varepsilon_1) \tau(\varepsilon_2) \tau(\varepsilon_3) \cdots$.

3. A lemma

In [3], Fisher introduces a matrix of change of bases, defined as follows:

Definition 3.1. For any $\ell \ge 2$, let V_{ℓ} be the $\ell \times \ell$ matrix with 1's on and above the diagonal and 0's below the diagonal. Then V_{ℓ}^{-1} is the inverse of V_{ℓ} , and it has 1's on the diagonal, -1's on the super-diagonal, and 0's elsewhere.

It is evident that V_{ℓ} satisfies the properties given in the next lemma.

Lemma 3.1. Let M be any given $\ell \times \ell$ square matrix. Then the following statements hold.

- (i) The *i*-th row of $V_{\ell}M$ is the sum of the *i*-th row, the (i + 1)-th row, ..., and the ℓ -th row of M, for any $1 \le i \le \ell$. In particular:
 - (ii) If the *j*-th column and the (j + 1)-th column of M are identical, then the *j*-th column and the (j + 1)-th column of $V_{\ell}M$ are also identical, for any $1 \le j \le \ell 1$.
- (iii) The 1st column of MV_{ℓ}^{-1} is the 1st column of M, and the *j*-th column of MV_{ℓ}^{-1} is the negative of the (j-1)-th column of M plus the *j*-th column of M, for any $2 \le j \le \ell$. In particular:
 - (iv) If the (j-1)-th column and the *j*-th column of *M* are identical, then the *j*-th column of MV_{ℓ}^{-1} is the zero column vector $\mathbf{0}_{\ell \times 1}$, for any $2 \le j \le \ell$.

Using Lemma 3.1, we proceed to prove Proposition 2.1 and Proposition 2.2 in the subsequent sections.

4. Proof of Proposition 2.1

Proof. Let I = [0,m], $T = \{0,1,\ldots,m\}$, and $f : I \to I$ be a piecewise-continuous Markov map with respect to T. Let $A = [a_{ij}]_{m \times m}$ be the 0-1 matrix induced by f with T. Then, $Ch_A(\lambda) = Ch_A(\lambda) \lambda^0$ is obviously true. We reorder the n points u_1, u_2, \ldots, u_n in U by their distance to T, and relabel them as follows:

$$\{u_1, u_2, \dots, u_n\} = \{u_{(1,1)}, u_{(1,2)}, \dots, u_{(1,k_1)}, u_{(2,1)}, u_{(2,2)}, \dots, u_{(2,k_2)}, \dots\}$$

where $u_{(l,1)}, u_{(l,2)}, \ldots, u_{(l,k_l)}$ are the k_l points at distance l from T, for $l = 1, 2, \ldots$, and $k_1 + k_2 + \cdots = n$. We then relabel the points as follows:

$$u_{(1,1)}, u_{(1,2)}, \dots, u_{(1,k_1)}, u_{(2,1)}, u_{(2,2)}, \dots, u_{(2,k_2)}, \dots$$

becoming

$$v_1, v_2, \ldots, v_{k_1}, v_{k_1+1}, v_{k_1+2}, \ldots, v_{k_1+k_2}, \ldots$$

Let $P = [p_{ij}]_{(m+k)\times(m+k)}$ be the 0-1 matrix induced by f with $T \cup \{v_1, v_2, \dots, v_k\}$. Suppose that

$$Ch_P(\lambda) = \det(\lambda I_{m+k} - P) = Ch_A(\lambda) \lambda^k$$
 (inductive hypothesis).

Let $Q = [q_{ij}]_{(m+k+1)\times(m+k+1)}$ be the 0-1 matrix induced by f with $T \cup \{v_1, v_2, \dots, v_k, v_{k+1}\}$. Denote $T \cup \{v_1, v_2, \dots, v_k\}$ as

$$\{w_0, w_1, \dots, w_{m+k+1}\}, \text{ where } 0 = w_0 < w_1 < \dots < w_{m+k+1} = m.$$

Since $v_{k+1} \in (w_{i_{k+1}}, w_{i_{k+1}+1})$ for some $0 \le i_{k+1} \le m+k$, v_{k+1} divides the subinterval $(w_{i_{k+1}}, w_{i_{k+1}+1})$ into two new subintervals $(w_{i_{k+1}}, v_{k+1})$ and $(v_{k+1}, w_{i_{k+1}+1})$. Therefore, the addition of the $(i_{k+1} + 1)$ -th row and the $(i_{k+1} + 2)$ -th row of Q corresponds to the $(i_{k+1} + 1)$ -th row of P.

Also, since the *x*-coordinates of the intersection points of the horizontal line $y = v_{k+1}$ and the graph y = f(x) are not in $T \cup \{v_1, v_2, \ldots, v_k, v_{k+1}\}$, the $(i_{k+1} + 1)$ -th column and the $(i_{k+1} + 2)$ -th column of Q are identical, and both correspond to the $(i_{k+1} + 1)$ -th column of P.

Thus, by Lemma 3.1.(i) and (ii), striking out the $(i_{k+1}+2)$ -th row and the $(i_{k+1}+2)$ -th column of $V_{m+k+1}Q$ results in a matrix identical to $V_{m+k}P$. Additionally, the $(i_{k+1}+1)$ -th column and the $(i_{k+1}+2)$ -th column of $V_{m+k+1}Q$ are identical.

Thus, by Lemma 3.1.(iii) and (iv), striking out the $(i_{k+1}+2)$ -th row and $(i_{k+1}+2)$ -th column of $(V_{m+k+1}Q)V_{m+k+1}^{-1}$ results in a matrix identical to $(V_{m+k}P)V_{m+k}^{-1}$. Moreover, the $(i_{k+1}+2)$ -th column of $(V_{m+k}P)V_{m+k}^{-1}$ is the zero column vector.

Let $P_{\sigma_{k+1}}$ be the permutation matrix of the cyclic permutation σ_{k+1} :

$$\sigma_{k+1} = (i_{k+1} + 2, i_{k+1} + 3, \dots, m+k+1)$$

represented as

$$\sigma_{k+1} = \begin{pmatrix} 1 & 2 & \cdots & i_{k+1} + 1 & i_{k+1} + 2 & i_{k+1} + 3 & \cdots & m+k & m+k+1 \\ 1 & 2 & \cdots & i_{k+1} + 1 & i_{k+1} + 3 & i_{k+1} + 4 & \cdots & m+k+1 & i_{k+1} + 2 \end{pmatrix}.$$

Using the cofactor expansion along the (m + k + 1)-th column and the inductive hypothesis, we obtain

$$Ch_Q(\lambda) = \det \left(\lambda I_{m+k+1} - P_{\sigma_{k+1}} \left(V_{m+k+1} Q V_{m+k+1}^{-1}\right) P_{\sigma_{k+1}}^{-1}\right)$$

$$= \left| \begin{array}{c} \lambda I_{m+k} - V_{m+k} P V_{m+k}^{-1} & \mathbf{0}_{(m+k)\times 1} \\ [* * \cdots *]_{1\times (m+k)} & \lambda \end{array} \right|_{(m+k+1)\times (m+k+1)}$$

$$= \det \left(\lambda I_{m+k} - V_{m+k} P V_{m+k}^{-1}\right) \lambda$$

$$= Ch_P(\lambda) \lambda$$

$$= (Ch_A(\lambda) \lambda^k) \lambda$$

$$= Ch_A(\lambda) \lambda^{k+1}.$$

Since both the base step and the inductive step have been proven, we conclude that, for any $k \ge 0$, $Ch_P(\lambda) = Ch_A(\lambda) \lambda^k$, where $P = [p_{ij}]_{(m+k)\times(m+k)}$ is the 0-1 matrix induced by f with $T \cup \{v_1, v_2, \dots, v_k\}$. In particular,

$$Ch_{Z}\left(\lambda\right) = Ch_{A}\left(\lambda\right) \,\lambda^{n},$$

where $Z = [z_{ij}]_{(m+n)\times(m+n)}$ is the 0-1 matrix induced by f with $S = T \cup \{u_1, u_2, ..., u_n\} = T \cup \{v_1, v_2, ..., v_n\}.$

5. **Proof of Proposition 2.2**

Proof. First, we relabel $U = \{u_1, u_2, \dots, u_n\}$ as follows:

$$\{u_1, u_2, \ldots, u_n\} = \{v_1, v_2, \ldots, v_n\},\$$

where $f(v_1) = v_2$, $f(v_2) = v_3$, ..., $f(v_{n-1}) = v_n$, and $f(v_n) = v_1$. (For convenience, we may denote v_1 as v_{n+1} if necessary). Then, the mapping $f : [0, m] \rightarrow [0, m]$ with $S = T \cup U$ induces the matrix

$$Z = \left\lfloor z_{ij} \right\rfloor_{(m+n) \times (m+n)}$$

Then, $f(v_1) = v_2$ in the graph y = f(x) is expressed in *Z* as either

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \text{ or } \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

at the i_1 -th and $(i_1 + 1)$ -th rows, and the i_2 -th and $(i_2 + 1)$ -th columns, respectively, if the slope of the graph y = f(x) at $x = v_1$ is positive or negative, for some $1 \le i_1, i_2 \le m + n - 1$, and i_1 may also be denoted as i_{n+1} if necessary.

Inductively, $f(v_k) = v_{k+1}$ (k = 2, 3, ..., n-1) in the graph y = f(x) is expressed in Z as either

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, or $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$,

_ _

at the i_k -th and $(i_k + 1)$ -th rows, and the i_{k+1} -th and $(i_{k+1} + 1)$ -th columns, respectively, if the slope of the graph y = f(x)at $x = v_k$ is positive or negative, for some $1 \le i_{k+1} \le m + n - 1$.

Finally, $f(v_n) = v_1$ in the graph y = f(x) is expressed in Z as either

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \text{ or } \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

at the i_n -th and $(i_n + 1)$ -th rows, and the i_1 -th and $(i_1 + 1)$ -th columns, respectively, if the slope of the graph y = f(x) at $x = v_n$ is positive or negative.

We recall that the sign of the *n*-cycle is defined as the product of the signs of the slopes of the graph y = f(x) at $x = v_k$ for k = 1, 2, ..., n. Notice that the *x*-coordinates of the intersection points of the horizontal line $y = v_{k+1}$ and the graph y = f(x) are not in $S = T \cup \{v_1, v_2, ..., v_n\}$, except for the *x*-coordinate of the intersection point $(v_k, v_{k+1}) = (v_k, f(v_k))$ for $1 \le k \le n$. Consequently, the i_{k+1} -th column and the $(i_{k+1} + 1)$ -th column of *Z* are identical, except at the i_k -th row and the $(i_k + 1)$ -th row. Thus, by Lemma 3.1.(i) and (ii), the i_{k+1} -th column and the $(i_{k+1} + 1)$ -th column of $V_{m+n}Z$ are identical, except at the $(i_k + 1)$ -th rows. Notice that

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \text{ or } \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

at the i_k -th and $(i_k + 1)$ -th rows, and the i_{k+1} -th and $(i_{k+1} + 1)$ -th columns in Z has been transformed into

$$\begin{bmatrix} p_k & p_k \\ p_k - 1 & p_k \end{bmatrix}$$
, or $\begin{bmatrix} q_k & q_k \\ q_k & q_k - 1 \end{bmatrix}$

at the same position in $V_{m+n}Z$, for some $p_k \in \mathbb{Z}^+$ or for some $q_k \in \mathbb{Z}^+$, respectively.

Thus, by Lemma 3.1.(iii) and (iv), the $(i_{k+1}+1)$ -th column of $(V_{m+n}Z)V_{m+n}^{-1}$ is the zero column vector except at the (i_k+1) -th row. Notice that

$$\begin{bmatrix} p_k & p_k \\ p_k - 1 & p_k \end{bmatrix}, \text{ or } \begin{bmatrix} q_k & q_k \\ q_k & q_k - 1 \end{bmatrix}$$

at the i_k -th and $(i_k + 1)$ -th rows, and the i_{k+1} -th and $(i_{k+1} + 1)$ -th columns in $V_{m+n}Z$ has been transformed into +1, or -1, at the $(i_k + 1, i_{k+1} + 1)$ -th entry of $(V_{m+n}Z) V_{m+n}^{-1}$, respectively.

Let $\{r_1, r_2, \ldots, r_m\} = \{1, 2, \ldots, m, \ldots, m+n\} \setminus \{i_1 + 1, i_2 + 1, \ldots, i_n + 1\}$ where $r_1 < r_2 < \cdots < r_m$. Let

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & m & m+1 & m+2 & \cdots & m+n \\ r_1 & r_2 & \cdots & r_m & i_1+1 & i_2+1 & \cdots & i_n+1 \end{pmatrix}$$

and let *P* be the permutation matrix corresponding to σ . Then

$$PV_{m+n}ZV_{m+n}^{-1}P^{-1} = \begin{bmatrix} (\overline{Z}_{11})_{m \times m} & (\overline{Z}_{12})_{m \times n} \\ (\overline{Z}_{21})_{n \times m} & (\overline{Z}_{22})_{n \times n} \end{bmatrix}_{(m+n) \times (m+n)}$$

where

and

$$\left(\overline{Z}_{12}\right)_{m \times n} = O_{m \times n}$$

$$(\overline{Z}_{22})_{n \times n} = \begin{bmatrix} \omega_{11} & \omega_{12} & \cdots & \omega_{1n} \\ \omega_{21} & \omega_{22} & \cdots & \omega_{2n} \\ \vdots & \vdots & & \vdots \\ \omega_{n1} & \omega_{n2} & \cdots & \omega_{nn} \end{bmatrix} = \begin{bmatrix} 0 & \pm 1 & 0 & \cdots & 0 \\ 0 & 0 & \pm 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & \pm 1 \\ \pm 1 & 0 & \cdots & \cdots & 0 \end{bmatrix}_{n \times n}$$

where the sign of $\omega_{(k)(k+1)}$ corresponds to the sign of the slope of the graph y = f(x) at $x = v_k$ for $1 \le k \le n-1$, and the sign of ω_{n1} corresponds to the sign of the slope of the graph y = f(x) at $x = v_n$.

Next, we consider $(\overline{Z}_{11})_{m \times m}$. First, notice that the (i, j)-th entry (where $1 \le i, j \le m$) of $V_m A$ is given by the number of intersection points of any horizontal line $y = y_0$ where $j - 1 < y_0 < j$ and the graph y = f(x) on [i - 1, m]. Similarly, the (r_i, r_j) -th entry of $V_{m+n}Z$ is also given by the number of intersection points of any horizontal line $y = y_0$ where $j - 1 < y_0 < j$ and the graph y = f(x) on [i - 1, m]. Similarly, the and the graph y = f(x) on [i - 1, m]. Therefore, the (i, j)-th entry of $V_m A$ is the same as the (r_i, r_j) -th entry of $V_{m+n}Z$.

Furthermore, if r_{j+1} is not directly after r_j , then the (r_i, r_j) -th entry, the $(r_i, r_j + 1)$ -th entry, the $(r_i, r_j + 2)$ -th entry, ..., the $(r_i, r_{j+1} - 1)$ -th entry of $V_{m+n}Z$ are all the same.

Thus, by Lemma 3.1.(iv), the (i, j)-th entry of $(V_m A) V_m^{-1}$ is the same as the (r_i, r_j) -th entry of $(V_{m+n}Z) V_{m+n}^{-1}$. In other words, $(V_{m+n}Z) V_{m+n}^{-1}$, when excluding the $(i_1 + 1)$ -th, $(i_2 + 1)$ -th, \dots , $(i_n + 1)$ -th, rows and columns, is the same as $(V_m A) V_m^{-1}$. Therefore,

$$\left(\overline{Z}_{11}\right)_{m \times m} = V_m A V_m^{-1}.$$

Consequently, we obtain

$$Ch_{Z}(\lambda) = \det \left(\lambda I_{m+n} - Z\right)$$

= $\det \left(\lambda I_{m+n} - PV_{m+n}ZV_{m+n}^{-1}P^{-1}\right)$
= $\begin{vmatrix} \lambda I_{m} - V_{m}AV_{m}^{-1} & O_{m \times n} \\ -(\overline{Z}_{21})_{n \times m} & \lambda I_{n} - (\overline{Z}_{22})_{n \times n} \end{vmatrix} \Big|_{(m+n) \times (m+n)}$
= $\det \left(\lambda I_{m} - V_{m}AV_{m}^{-1}\right) \det \left(\lambda I_{n} - (\overline{Z}_{22})_{n \times n}\right)$
= $Ch_{A}(\lambda) (\lambda^{n} \pm 1),$

where the sign of ± 1 depends on the sign of the *n*-cycle. Specifically, if the sign of the *n*-cycle is given as $(-1)^{l} (+1)^{n-l}$ for some $0 \le l \le n$, where *l* is the number of negative slopes, then

$$\det \left(\lambda I_n - (\overline{Z}_{22})_{n \times n}\right) = \operatorname{sgn}(\iota) \ \lambda^n + \operatorname{sgn}\begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ 2 & 3 & \cdots & n & 1 \end{pmatrix} \ (+1)^l \ (-1)^{n-l}$$
$$= \lambda^n + (-1)^{n-1} \ (+1)^l \ (-1)^{n-l}$$
$$= \lambda^n + (-1)^{l+1}.$$

Here, $(-1)^{l+1} = +1$ (respectively -1), if and only if l is odd (respectively, even), which corresponds to the sign of the *n*-cycle: $(-1)^{l} (+1)^{n-l}$ being negative (respectively, positive).

This completes the proof of Proposition 2.2.

6. Canonical form of the 0-1 matrix induced by the Markov map

By combining Proposition 2.1 and Proposition 2.2, we obtain the following result:

Proposition 6.1. Suppose that U consists of n_0 points converging to T, and the remaining $n - n_0$ in U consist of n_i of (-)-signed l_i -cycles (i = 1, ..., j), and n_i of (+)-signed l_i -cycles (i = j + 1, ..., k), where

$$n_0 + \sum_{i=1}^k n_i l_i = n$$

Then,

$$Ch_{Z}(\lambda) = Ch_{A}(\lambda) \ \lambda^{n_{0}} \prod_{i=1}^{j} \left(\lambda^{l_{i}}+1\right)^{n_{i}} \prod_{i=j+1}^{k} \left(\lambda^{l_{i}}-1\right)^{n_{i}}.$$

Remark 6.1. Conversely, consider a 0-1 matrix Z of size ℓ induced by a Markov map f with $S = \{0, 1, 2, \dots, \ell\}$. Starting with Z, we decompose S into T and U. Naturally, T is chosen to include both endpoints 0 and ℓ of the interval $I = [0, \ell]$, as well as every point where the slope of f is undefined, ensuring $f(T) \subseteq T$. The remaining points form $U = S \setminus T$. If necessary, U is further decomposed into subsets U_0, U_1, U_2, \dots by analyzing the dynamics of f on U. Through this decomposition of S into T, U_0, U_1, U_2, \dots , a proper permutation σ and its corresponding permutation matrix P are obtained. With these, we construct $PV_{\ell}ZV_{\ell}^{-1}P^{-1}$. While Z and $PV_{\ell}ZV_{\ell}^{-1}P^{-1}$ are similar matrices, the latter provides a far richer representation of the dynamics of f on S. In this sense, $PV_{\ell}ZV_{\ell}^{-1}P^{-1}$, as introduced above, can be regarded as a "canonical form" of the 0-1 matrix associated with the given Markov map f and the set S.

References

^[1] G. Baldwin, Generalizations of a theorem of Sarkovskii on the orbit of continuous real-valued functions, Discrete Math. 67(2) (1987) 111-127.

^[2] W. Byers, A. Boyarsky, Markov maps and the spectral radius of 0-1 matrices, SIAM J. Algebraic Disc. Methods 8(3) (1987) 364-374.

^[3] D. C. Fisher, Characteristic polynomials of Straffin digraphs, Linear Algebra Appl. 218 (1995) 103–111.

^[4] R. Swanson, H. Volkmer, Invariants of weak equivalence in primitive matrices, Ergod. Theory Dyn. Syst. 20(2) (2000) 611–626.

^[5] Y. Takenouchi, "Digital" entropy induced by unimodal cyclic permutations, Bull. Malays. Math. Sci. Soc. 41(2) (2018) 565–595.