
Contributions to Mathematics
www.shahindp.com/locate/cm

Contrib. Math. 11 (2025) 14–21
DOI: 10.47443/cm.2025.013

Research Article

Local antimagic labelling for trees∗

Subhabrata Paul†, Soumen Raul

Department of Mathematics, Indian Institute of Technology Patna, Bihta 801106, Bihar, India

(Received: 5 February 2025. Received in revised form: 29 March 2025. Accepted: 7 April 2025. Published online: 14 April 2025.)

© 2025 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Let G(V,E) be a graph, where V and E are the vertex set and edge set, respectively. A local antimagic labelling of G is a
bijection f : E → {1, 2, . . . , |E|} such that for every edge uv ∈ E, the condition

∑
e∈I(u) f(e) ̸=

∑
e∈I(v) f(e) holds, where I(u)

represents the set of edges incident to u. Bensmail, Senhaji, and Lyngsie [Discrete Math. Theor. Comput. Sci. 19 (2017)
#21] proposed a recursive algorithm for local antimagic labelling of trees. In this article, we propose a linear-time iterative
algorithm for computing a local antimagic labelling for trees. A major tool used in this algorithm is a specific partitioning
scheme, introduced by Kaplan, Lev, and Roditty [Discrete Math. 309 (2009) 2010–2014]. We believe that our technique can
be generalised to achieve local antimagic labelling for some superclasses of trees.

Keywords: local antimagic labelling; tree; linear-time algorithm.

2020 Mathematics Subject Classification: 05C78, 05C85.

1. Introduction

Since its introduction in 1960s, graph labelling has been a major area of research in graph theory due to its enormous
applications in science and engineering. By graph labelling, we mean an assignment of labels (generally integers) to the
vertices, edges, or both of a graph, satisfying few predetermined conditions that depend on the type of labelling. Over
the years, many different variations have been introduced and studied from both algorithmic and structural point of view.
Some important variations of graph labelling are graceful labelling, harmonious labelling, magic labelling, prime labelling,
radio labelling, geometric labelling, etc. We refer readers to the survey [7] for details.

Hartsfield and Ringel [8] introduced a novel concept of graph labelling known as antimagic labelling. This labelling
scheme involves assigning distinct integers to the edges of a graph so that the sums of the labels on edges incident to each
vertex are unique. The sums of the labels of the edges incident to the vertex v are referred to as the vertex sum and denoted
by sum(v). Specifically, for a graph G(V,E) with |E| = m, antimagic labelling is a bijection f : E(G) → {1, 2, . . . ,m} such
that sum(u) ̸= sum(v) for every pair of vertices u and v in G. Clearly, if a graph contains a component isomorphic to K2,
then it does not admit any antimagic labelling. Therefore, we study antimagic labelling for graphs that do not have any
component isomorphic to K2. We call such a graph nice graph. In [8], the authors conjectured that “every nice graph
is antimagic”. Although antimagic labelling has been studied for many graph classes, including Cayley graphs, regular
graphs, Cartesian product of graphs, split graphs, generalised Petersen graphs, this conjecture remains unresolved even
for trees. Kaplan et al. [11] proved that trees with at most one vertex of degree 2 are antimagic. However, their proof
contained an error, which was later corrected by Liang et al. [13]. Chawathe and Krishna [5] proved that all complete m-
ary trees are antimagic. Alon et al. [1] used probabilistic methods and techniques from analytic number theory to support
that the conjecture holds for graphs with n vertices and a minimum degree of Ω(log n). Hafetz et al. [10] proved that if G
is a graph with n = 3k vertices, where k ∈ N, and admits a K3-factor, then it is antimagic. Cranston et al. [6] proved that
all regular bipartite graphs with a minimum degree of 2 are antimagic.

Arumugam et al. [2] and Bensmail et al. [4] independently introduced a variation of antimagic labelling, known as local
antimagic labelling. A labelling that assigns each edge a unique label from the set {1, 2, . . . ,m} is called a local antimagic
labelling if, for every edge uv, the sum(u) and sum(v) are distinct. It is clear that every antimagic labelling is also local
antimagic labelling. Furthermore, local antimagic labelling creates a proper vertex coloring of G, where each vertex v gets
a color based on its vertex sum. The minimum number of distinct vertex sums induced by local antimagic labellings of a
graph G is known as the chromatic number of local antimagic and is denoted by χla(G).

∗Both authors contributed equally to this work.
†Corresponding author (subhabrata@iitp.ac.in).

www.shahindp.com/locate/cm
www.creativecommons.org/licenses/by/4.0/
mailto:subhabrata@iitp.ac.in

S. Paul and S. Raul / Contrib. Math. 11 (2025) 14–21 15

In [2], Arumugam et al. conjectured that every nice connected graph is local antimagic. Bensmail et al. [4] proposed a
slightly stronger form of this conjecture, which states that every nice graph has local antimagic labelling. In [9], Haslegrave
proved this conjecture concerning local antimagic labelling of connected graphs using the probabilistic method. In [12]
and [16], the exact value of the local antimagic chromatic number was determined for various types of join graphs. Nazula
et al. [14] determined the local antimagic chromatic number for some unicyclic graphs, which are connected graphs with
exactly one cycle. Bača et al. [3] showed that the local antimagic chromatic number for all complete full t-ary trees is exactly
l + 1 when t is odd, where l represents the number of leaves. Sarath et al. [15] calculated the local antimagic chromatic
number for trees with a diameter of 3, certain classes of trees with a diameter of 4, and complete bipartite graphs Km,n

when m and n have different parities. Readers are referred to [7] for more details.
In this paper, we present a linear-time algorithm for local antimagic labelling of trees in an iterative approach. Although

Bensmail et al. [4] proposed an algorithm for local antimagic labelling of trees, it is a recursive process, however. We believe
that our work presents a straightforward alternative to the method proposed by Bensmail et al. [4]. We also believe that
our technique can be generalised to achieve local antimagic labelling for some superclasses of trees.

2. Local antimagic labelling of trees

In this section, we design an iterative algorithm to obtain a local antimagic labelling of trees. It is known that for every nice
graph G, with maximum degree 2, any arbitrary labelling from {1, 2, . . . ,m} gives a local antimagic labelling. Therefore,
we assume that the input tree has a maximum degree of at least 3.

First, we give an overview of the algorithm. Given a tree T , we first fix a specific vertex as the root and consider the tree
as a rooted tree. With a slight abuse of notation, we refer to both the tree and the rooted tree by T . We then assign labels
to some edges of the rooted tree according to the labelling scheme used in [11]. Kaplan et al. showed that for every even
integer k, we can partition the set {1, 2, ..., k} into 2-subsets and 3-subsets following some properties that help in achieving
antimagic labelling of a specific type of trees [11]. As we use this labelling in our algorithm, we restate the result in the
following lemma.

Lemma 2.1 (see [11]). Let k be an even integer which is of the form k = 2s + 3 · 2l, where s and l are two non-negative
integers. Then the set {1, 2, ..., k} can be partitioned into s+ 2l subsets, say A1, A2, ..., As+2l, such that the following hold:

1. There are s subsets having two elements (2-subsets) and the sum of those elements is k + 1.

2. There are l subsets having three elements (3-subsets) and the sum of those elements is k + 1.

3. There are l subsets having three elements (3-subsets) and the sum of those elements is 2(k + 1).

First, we fix a specific vertex as root in such a way that allows us to use the labelling technique described in Lemma2.1.
Our main goal here is to set the value of k as k = m, when m is even and k = m − 1 otherwise. Then, in the rooted tree
T , for every vertex having at least two descendant edges, we label those descendant edges using the labelling described in
Lemma 2.1 as follows. If a vertex has odd number of descendant edges, three of those descendant edges are labelled using
a 3-subset, and the remaining descendant edges are labelled using some 2-subsets. For a vertex having an even number
of descendant edges, we label those descendant edges using some 2-subsets. After that, we label all the remaining edges
arbitrarily using the remaining labels from {1, 2, . . . ,m}. This arbitrary labelling might create some conflicting edges, that
is, an edge uv where the vertex sums of u and v are the same. Finally, we describe a method to resolve these conflicts.

Now, we describe each step of the algorithm in detail. First, we introduce some notations that are helpful in describing
the algorithm. Let Deven denote the vertices in the rooted tree T that have an even number of descendant edges, Dodd,3

denote the vertices in the rooted tree T that have degree at least 3 and also have an odd number of descendant edges, and
finally, Dodd,1 denote the vertices in the rooted tree T that have exactly 1 descendant edge.

Step 1: Root identification
In the first step, we fix a specific vertex as the root. That specific vertex is chosen depending on the parity of m and the

number of degree 2 vertices in the tree. Let n2 denote the number of degree 2 vertices in T .

15

S. Paul and S. Raul / Contrib. Math. 11 (2025) 14–21 16

Algorithm 1 Root identification
1: if m is odd and n2 ̸= 1 then
2: Choose a pendant vertex v (i.e., deg(v) = 1) as the root.
3: else if m is even and n2 = 1 then
4: Choose the two-degree vertex as the root.
5: else
6: Select a vertex v as the root such that deg(v) ≥ 3.

Step 2: Setting the values of k, l and s

Next, we set the values for k, s, and l, so that we can apply Lemma 2.1 for some edges. Since, in Lemma 2.1, k is even,
we set k based on the parity of m. The value of l is set based on the parity of |Dodd,3|. If |Dodd,3| is even, then we set
2l = |Dodd,3|; otherwise, we set 2l = |Dodd,3|+ 1. Finally, we set s according to k = 2s+ 3 · 2l.

Algorithm 2 Setting the values of k, l and s

1: if m is odd then
2: k = m− 1.
3: else
4: k = m.
5: if |Dodd,3| is even then
6: 2l = |Dodd,3|.
7: else
8: 2l = |Dodd,3|+ 1.
9: s = (k − 3 · 2l)/2

To prove the correctness of Algorithm 2, we have the following lemma (its proof is given in the next section):

Lemma 2.2. The value of s is always non-negative.

Step 3: Preliminary labelling of the tree
Now, we apply Lemma 2.1 to assign labels to some of the edges of the tree. The rules for assigning labels are given in

the following algorithm.

Algorithm 3 Preliminary labelling of the tree
1: for each vertex v of T do
2: if v is the root and it is a pendant vertex then
3: Label the edge incident to v by k + 1.
4: if v ∈ Dodd,3 then
5: Label 3 of those descendant edges by one 3-subset and label the remaining edges using some 2-subsets.
6: if v ∈ Deven then
7: Label all the descendant edges using some 2-subsets.
8: for each unlabeled edge e do
9: Label e by assigning any unused number from {1, 2, ...,m}.

Step 4: Identify conflicting edges
The labelling described in Step 3 may not be a local antimagic labelling. An edge e is called a conflicting edge if the

vertex sums of the end points are the same. There are two types of conflicting edges, namely, conflicting edges of type-I
and type-II. Now, we describe these two types of conflicting edges. Let e = uv be a conflicting edge with u being the parent
of v in the rooted tree T .

Conflicting edge of type-I: The edge e = uv is called a conflicting edge of type-I if degree of u is 2, the parent of u is
the root vertex having degree 1 and sum of descendant edges of v is k + 1.

Conflicting edge of type-II: Let e1 and e2 be the edges that are above u and below v, respectively. Also, let the labels
of e1, e and e2 are x, y and z, respectively. The edge e = uv is called a conflicting edge of type-II if the degree of v is 2, the
sum of labels of the descendant edges of u is k+ 1, and y+ z − x = k+ 1. We consider the edge e = uv as a conflicting edge
of type-II even if u is the root vertex; in that case, e1 does not exist, and hence, x is considered to be 0.

In the next section, we show that except for these two types of conflicts, no other type of conflict can occur by proving
the following lemma:

Lemma 2.3. After Step 3, only conflicting edges of type-I and type-II can occur.

16

S. Paul and S. Raul / Contrib. Math. 11 (2025) 14–21 17

Step 5: Resolve conflicts
Once we have identified the conflicting edges, we describe how to resolve them. We describe two resolution techniques

for the two types of conflicting edges.
Resolution for a conflicting edge of type-I: We interchange the labels of the edge uv and its above edge.
Resolution for a conflicting edge of type-II: We interchange the labels of the edge uv and one descendant edge of u.

Note that there is at most one edge in T that can be a conflicting edge of type-I. If such an edge is present, then we
apply the corresponding resolution technique once. We prove (in the next section) the following lemma that shows that
after applying resolution for a conflicting edge of type-I, similar conflict cannot occur.

Lemma 2.4. The resolution for a conflicting edge of type-I does not create any other conflicting edge of type-I.

The resolution for a conflicting edge of type-II does not work in the same way; it might create a new conflicting edge
of type-II. But, the following lemma (to be proved in the next section) confirms that the newly created conflicting edge of
type-II must have a higher level than the current conflicting edge of type-II.

Lemma 2.5. Let e be a conflicting edge of type-II and the corresponding resolution be applied on e. This resolution for e

can create another conflicting edge of type-II, say e′. In that case, level of e′ is 1 more than the level of e.

Because of Lemma 2.5, we need to apply the resolution for conflicting edges of type-II in a specific order. We order the
edges of T from top to bottom, keeping all the edges in the same level together. We refer such an ordering of edges as
level-wise top-down ordering.

Algorithm 4 An algorithm for identifying conflict and resolve
Input: Rooted tree T = (V,E) and the preliminary labelling of T after Step 3.
Output: A local antimagic of T .

1: if there is a conflicting edge of type-I then
2: Apply Resolution for conflicting edge of type-I.
3: Let σ be the level-wise top-down ordering of the edges in T .
4: for each edge e = uv in σ do
5: if e is a conflicting edge of type-II then
6: Apply Resolution for conflicting edge of type-II.

3. Proof of correctness and running time

In this section, we discuss the running time of the proposed algorithm and show the correctness of this algorithm. First,
we provide proofs of the lemmas stated in the previous section.

Proof of Lemma 2.2. To prove that s is always non-negative, we show k ≥ 3 ·2l. Note that the total number of descendant
edges of the vertices in Dodd,3 is at least 3 · |Dodd,3|. If |Dodd,3| is even, then we have set 2l = |Dodd,3|. Hence, m ≥ 3 ·2l. Now,
when m is even, we have set k = m and hence k ≥ 3 · 2l. On the other hand, if m is odd, then (m− 1) ≥ 3 · 2l as 3 · 2l is an
even number. As we set k = m− 1, we have k ≥ 3 · 2l.

If |Dodd,3| is odd, then we set 2l = |Dodd,3|+1. This implies that the total number of edges descending from the vertices
of Dodd,3 is at least 3 · (2l− 1). To complete the proof, it is sufficient to show that the number of edges descending from the
vertices of Dodd,3 is at most k − 3. Since |Dodd,3| is odd, the total number of edges descending from the vertices of Dodd,3 is
odd. Therefore, the total number of edges descending from the vertices of Dodd,3 ∪ Deven is also odd. This implies that if
m is even, then |Dodd,1| is odd; otherwise |Dodd,1| is even. The rest of the proof is divided into three cases based on the root
vertex.

Case 1. The root is a pendant vertex.
Note that m is odd and n2 ̸= 1. Since m is odd, we have k = m − 1, and |Dodd,1| is even. As the root vertex belongs to
Dodd,1, which implies that |Dodd,1| is at least 2. If |Dodd,1| = 2, it would follow that n2 = 1, which contradicts the condition
n2 ̸= 1. Therefore, |Dodd,1| is at least 4. The number of edges descending from vertices of Dodd,3 ∪Dodd,1 is at most m. So,
the number of edges descending from vertices of Dodd,3 is at most m− 4. Since k = m− 1, the number of edges descending
from vertices of Dodd,3 is at most k − 3. Hence, k ≥ 3 · 2l.

17

S. Paul and S. Raul / Contrib. Math. 11 (2025) 14–21 18

Case 2. The root is a vertex of degree 2.
Note that m is even and n2 = 1. Since m is even, |Dodd,1| must be odd. However, as the root has two descendant edges, it
follows that the root vertex belongs to Deven, which implies |Dodd,1| is 0, leading to a contradiction. Hence, if the root is a
vertex of degree 2, |Dodd,3| being odd is not possible.

Case 3. The degree of the root vertex is at least 3.
Note that all vertices of Dodd,1 must be vertices of degree 2. So, n2 = |Dodd,1|. In this case, there are two possibilities.

Case 3.1. m is even and n2 ̸= 1.
Since the total number of edges of T is even, it follows that k = m and |Dodd,1| is odd. As n2 ̸= 1 and |Dodd,1| is odd, it
follows that |Dodd,1| is at least 3. Since the total number of edges descending from vertices of Dodd,3 ∪Dodd,1 is at most m,
the number of edges descending from vertices of Dodd,3 is at most m− 3. As k = m, this implies that the number of edges
descending from vertices of Dodd,3 is at most k − 3. Hence, k ≥ 3 · 2l.

Case 3.2. m is odd and n2 = 1.
Since the total number of edges in T is odd, it follows that |Dodd,1| must be even. However, in this case, n2 = |Dodd,1| = 1,
leading to a contradiction. Hence, if m is odd and n2 = 1, |Dodd,3| cannot be odd.

Therefore, the value of s is always non-negative.

Proof of Lemma 2.3. We prove this result by examining every edge e = uv of the tree T . Observe that if the degree of
either u or v is 1, then e = uv cannot be a conflicting edge. Hence, we assume that deg(u) ≥ 2 and deg(v) ≥ 2. We divide
the proof based on the degrees of u and v. Let us consider that u′ is the parent of u if u is not the root vertex. Also, recall
that sum(u) denotes the vertex sum of u.

Case 1. deg(u) > 2 and deg(v) > 2.
Since the degrees of u and v are at least 3, the number of descendant edges of u and v is at least 2. We label these descendant
edges using either 2-subsets or 3-subsets, or both. Therefore, the sum of the labels of the descendant edges of u and v is a
multiple of (k + 1). Let the sum of the labels of the descendant edges from u and v be p(k + 1) and q(k + 1), respectively,
where p, q ∈ N and the label of the edge uv is y, where 1 ≤ y ≤ k. So, the vertex sum of v is q(k + 1) + y. The vertex sum of
u depends on the edge label above u. Therefore, we analyze this case based on the edge label above u.

Case 1.1. The label of u′u lies between 1 and k.
Let the label of edge u′u be x. The vertex sum of u is p(k+1)+x. Thus, sum(u) ≡ x (mod k+1) and sum(v) ≡ y (mod k+1).
Since labels are not repeated, it follows that sum(u) ̸= sum(v). Therefore, e = uv is not a conflicting edge.

Case 1.2. The label of u′u is k + 1, or u is the parent of the tree.
If the label of u′u is (k + 1), then the vertex sum of u becomes (p+ 1) · (k + 1). If u is the root of the tree, the vertex sum of
u is p(k + 1). In both cases, sum(u) ≡ 0 (mod k + 1). On the other hand, the vertex sum of v is q(k + 1) + y, which implies
sum(v) ̸≡ 0 (mod k + 1). So, sum(u) ̸= sum(v). Therefore, e = uv is not a conflicting edge.

Case 2. deg(u) > 2 and deg(v) = 2.
If v is the only two-degree vertex, then the descendant edge label of v is k + 1. By reasoning similar to the previous case,
we can conclude that sum(u) ̸= sum(v).
As the number of descendant edges of u is at least 2, the sum of the labels of these edges is a multiple of (k + 1). Let the
labels of edge uv and the descendant edge of v be y and z, respectively, where 1 ≤ y, z ≤ k. If deg(u) ≥ 5, the number of
descendant edges from u is at least 4, so the sum of the labels of u’s descendant edges is at least 2(k + 1). Since the sum
of y and z is at most 2k − 1, the vertex sums of u and v will never conflict. Now, let us consider the case where deg(u) ≤ 4.
Next, we examine this case based on the edge label above u.

Case 2.1. The label of u′u lies between 1 and k.
Let the label of the edge u′u be x. If deg(u) = 4, then u has 3 descendant edges, which are labeled using a 3-subset. If the
sum of the labels of these edges is 2(k + 1), then sum(u) ̸= sum(v). On the other hand, if the sum of the labels of these
edges is k + 1 (meaning the edges are labeled with a 3-subset whose sum is k + 1) or if deg(u) = 3 (which implies that u

has two descendant edges and labeled these edges using a 2-subset), then sum(u) = (k + 1) + x and sum(v) = y + z. If
y + z − x = k + 1, a conflict arises between u and v. Therefore, the edge e = uv is a conflicting edge of type-II.

18

S. Paul and S. Raul / Contrib. Math. 11 (2025) 14–21 19

Case 2.2. Label of u′u is k + 1.
If the label of the edge u′u is k+1, then the vertex sum of u is always at least 2(k+1), as the sum of the descendant edges
of u is at least k+1, while the vertex sum of v is at most 2k− 1. So, sum(u) ̸= sum(v). Therefore, e = uv is not a conflicting
edge.

Case 2.3. u is the root.
If deg(u) = 4, this implies that the number of descendant edges of u is 4. To label these edges, we use two 2-subsets. As
a result, the vertex sum of u is 2(k + 1), ensuring that sum(u) ̸= sum(v). If deg(u) = 3 and the descendant edges of u are
labeled with a 3-subset whose sum is 2(k + 1), the vertex sums of u and v will not conflict. However, if these edges are
labeled with a 3-subset whose sum is k + 1 and y + z = k + 1, then a conflict arises between u and v. Therefore, e = uv is a
conflicting edge of type-II.

Case 3. deg(u) = 2 and deg(v) > 2.
If u is not the only vertex of degree two, then we do not choose a vertex of degree two as the root. So, the conflict between
u and v depends on the edge label above u and the sum of the labels of the descendant edges of v, as the label of the edge
uv contributes equally to the vertex sums of both u and v. Therefore, we analyze this case based on the edge label above u.

Case 3.1. The label of u′u lies between 1 and k.
The degree of v is at least three, which means the number of descendant edges of v is at least two. The sum of the labels of
these descendant edges is at least k+1, as edges of a vertex with at least two descendants are labeled using either 2-subset
or 3-subset, or both. Since the label of the edge u′u lies between 1 and k and the sum of the labels of the descendant edges
of v is at least k + 1, it follows that the vertex sums of u and v are always distinct. Therefore, e = uv is not a conflicting
edge.

Case 3.2. The label of u′u is k + 1, that is, u′ is the pendant root of the tree.
If deg(v) ≥ 5, then the sum of the labels of the descendant edges of v is at least 2(k + 1), ensuring that sum(u) ̸= sum(v).
Suppose that deg(v) = 4, the sum of the labels of the descendant edges of v is either 2(k+1) or k+1, depending on the type
of 3-subset used. When the descendant edges of v are labeled with a 3-subset whose sum is 2(k + 1), the vertex sums of u
and v do not conflict. However, if the descendant edges of v are labeled with a 3-subset whose sum is k+1, or if deg(v) = 3,
implying v has two descendant edges labeled using a 2-subset, a conflict arises between u and v. Therefore, the edge e = uv

is a conflicting edge of type-I.

Case 3.3. The vertex u is the root.
When m is even and n2 = 1, then only we root two-degree vertex. In this case, the vertex sum of u is k + 1, that is,

sum(u) ≡ 0 (mod k + 1).

The sum of the labels of the descendant edges of v is a multiple of k+1, and the edge label of uv lies between 1 and k. This
implies that

sum(v) ̸≡ 0 (mod k + 1).

Therefore, sum(u) ̸= sum(v), and e = uv is not a conflicting edge.

Case 4. deg(u) = 2 and deg(v) = 2.
The labels of the edges that are above u and below v are distinct. Hence, the vertex sums of u and v do not conflict.
Therefore, e = uv is not a conflicting edge.

Therefore, after Step-3, we can have only two types of conflicting edges.

Proof of Lemma 2.4. Suppose that e = uv is a conflicting edge of type-I. Then, the degree of u is 2, the parent of u is
the root vertex with degree 1, and the sum of the labels of the descendant edges of v is k + 1. Since the root is a pendant
vertex, the edge incident to the root is labelled as k + 1, which makes the vertex sums of u and v equal. In the resolution
for conflicting edge of type-I, the labels of uv and the edge above it are interchanged. After interchanging, the label of
the incident edge of the root lies between 1 and k, and the label of the edge uv becomes k + 1. As the label of the edge uv

contributes equally to the vertex sums of both u and v, the label of the edge above uv lies between 1 and k, but the sum of
the descendant edges of v remains k+1, which implies sum(u) ̸= sum(v). Therefore, the conflict at the edge uv is resolved.
Moreover, since none of the labels of any edge below v is changed, this resolution for a conflicting edge of type-I does not
create any other conflicting edge of type-I.

19

S. Paul and S. Raul / Contrib. Math. 11 (2025) 14–21 20

Proof of Lemma 2.5. Suppose that e = uv is a conflicting edge of type-II. Also assume that e1 is the edge above u and
e2 is the edge below v of the tree T and the labels assigned to e1, e, and e2 in Step 3 are x, y, and z, respectively. Since the
edge e = uv is a conflicting edge of type-II if the degree of v is 2, the sum of the labels of the descendant edges of u is k+1,
and the relationship y + z − x = k + 1 holds. If u is the root vertex, then e1 does not exist. In such a case, x is considered
to be 0, and e = uv is still considered to be a conflicting edge of type-II. To resolve this type of conflict, the labels of the
edge uv and another descendant edge of u, say uv′, are interchanged. After this interchange, the vertex sums of u and v

become distinct. Since the vertex sum of u remains the same, resolving the conflict of e cannot create any conflicting edge
of type-II that is above the edge e = uv.

Now, we show that resolving the conflict of e cannot create another conflict at the level of e. To prove this, we show
that sum(u) ̸= sum(v′). Consider the case when deg(v′) = 2. In this scenario, sum(u) ̸= sum(v′) because the vertex sum
of u remains unchanged and the label of the descendant edges of v and v′ are distinct. Now, if deg(v′) > 2, we still have
sum(u) ̸= sum(v′). This is because the sum of the labels of the descendant edges of u and v′ is a multiple of k + 1, and
the labels of the above edge of u and v′ are distinct and within the range 1 to k. However, a conflicting edge of type-II may
occur at the edge v′v′′, where v′′ is the child of v′ and the degree of v′′ is 2. If the sum of the labels of the descendant edges
of v′ is k + 1, and a + b − y = k + 1, where the labels of the edges v′v′′ and the edge below v′′ are a and b respectively, and
a, b ∈ [1, k], then a conflicting edge of type-II arises at v′v′′. Therefore, this resolution for e, can create another conflicting
edge of type-II, say e′ = v′v′′. In that case, the level of e′ is 1 more than the level of e.

Next, we discuss the running time of our algorithm. Firstly, in Step 1, identifying the root needs information about the
number of degree 2 vertices of the graph. This can be calculated in O(n) time. Therefore, we can fix the root of the tree in
linear time. Once the root is fixed, we can calculate |Dodd,3| in linear time, and hence Step 2 also takes linear time. The
preliminary labelling assignment can also be done in linear time; we have to traverse the vertices in BFS/DFS order and
assign 2-subsets and/or 3-subsets as required. Finding conflicting edges and their resolution can be done in linear time.
If a conflicting edge is of type-I, then applying the corresponding resolution only once is sufficient because of Lemma 2.4.
However, if the conflicting edge is of type-II, then we have to apply the corresponding resolution on edges in a specific order.
Since each resolution is just an interchange of labels, it takes constant time, and hence, the whole resolution process in
Step 5 takes linear time. In view of this discussion, we have the following main result:

Theorem 3.1. Given a tree T , a local antimagic labelling can be obtained in a iterative way in linear time.

Remark 3.1. We can use the proposed algorithm to construct a local antimagic labelling of a forest. First, we pick a pendant
vertex from every component of the forest and glue these vertices together into a single vertex to construct a tree. Then, we
apply the algorithm for trees to obtain a local antimagic labelling of the tree. Clearly, this labelling is also a local antimagic
labelling of the forest.

4. Conclusion

In this paper, we have given a linear-time algorithm to achieve a local antimagic labelling for trees (forests). We believe
that our technique can be generalised to achieve a local antimagic labelling for some superclasses of trees. Designing an
algorithm for local antimagic labelling of other well-known classes of graphs, including block graphs and unicyclic graphs,
seems to be an interesting problem.

Acknowledgement

The work of Soumen Raul is supported by the University Grants Commission (NTA Ref. No.: 211610022458), Government
of India.

References
[1] N. Alon, G. Kaplan, A. Lev, Y. Roditty, R. Yuster, Dense graphs are antimagic, J. Graph Theory. 47 (2004) 297–309.
[2] S. Arumugam, K. Premalatha, M. Bača, A. Semaničová-Feňovčı́ková, Local antimagic vertex coloring of a graph, Graphs Combin. 33 (2017) 275–285.
[3] M. Bača, A. Semaničová-Feňovčı́ková, R. T. Lai, T. Wang, On local antimagic vertex coloring for complete full t-ary trees, Fundam. Inform. 26 (2022) 99–113.
[4] J. Bensmail, M. Senhaji, K. S. Lyngsie, On a combination of the 1-2-3 conjecture and the antimagic labelling conjecture, Discrete Math. Theor. Comput. Sci. 19 (2017)

#21.
[5] P. D. Chawathe, V. Krishna, Antimagic labelings of complete m-ary trees, In: A. K. Agarwal, B. C. Berndt, C. F. Krattenthaler, G. L. Mullen, K. Ramachandra, M.

Waldschmidt (Eds.), Number Theory and Discrete Mathematics, Birkhäuser, 2002, 77–80.
[6] D. W. Cranston, Regular bipartite graphs are antimagic, J. Graph Theory. 60 (2009) 173–182.
[7] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 6 (2022) 4–623.
[8] N. Hartsfield, G. Ringel, Pearls in Graph Theory, Academic Press, 1994.

20

S. Paul and S. Raul / Contrib. Math. 11 (2025) 14–21 21

[9] J. Haslegrave, Proof of a local antimagic conjecture, Discrete Math. Theor. Comput. Sci. 20 (2018) #18.
[10] D. Hefetz, Anti-magic graphs via the combinatorial nullstellensatz, J. Graph Theory. 50 (2005) 263–272.
[11] G. Kaplan, A. Lev, Y. Roditty, On zero-sum partitions and anti-magic trees, Discrete Math. 309 (2009) 2010–2014.
[12] G. C. Lau, K. Premalatha, S. Arumugam, W. C. Shiu, On local antimagic chromatic number of cycle-related join graphs II, Discrete Math. Algorithms Appl. 16 (2024)

#2350022.
[13] Y. Liang, T. Wong, X. Zhu, Anti-magic labeling of trees, Discrete Math. 331 (2014) 9–14.
[14] N. H. Nazula, S. Slamin, D. Dafik, Local antimagic vertex coloring of unicyclic graphs, Indones. J. Combin. 2 (2018) 30–34.
[15] V. S. Sarath, A. V. Prajeesh, Local antimagic chromatic number of certain classes of trees, Second International Conference on Electrical, Electronics, Information and

Communication Technologies (ICEEICT), Trichirappalli, India, 2023, 1–6.
[16] X. Yang, H. Bian, H. Yu, D. Liu, The local antimagic chromatic numbers of some join graphs, Math. Comput. Appl. 26 (2021) #80.

21

	Introduction
	Local antimagic labelling of trees
	Proof of correctness and running time
	Conclusion

