Research Article ${f Primitive ideals in}\ (m,n)$ –near rings

Fahime Mohammadi, Bijan Davvaz*

Department of Mathematical Sciences, Yazd University, Yazd, Iran

(Received: 5 September 2024. Received in revised form: 25 November 2024. Accepted: 27 November 2024. Published online: 28 November 2024.)

© 2024 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

An (m, n)-near ring is an algebraic structure similar to an (m, n)-ring but satisfying fewer axioms. More precisely, the notion of (m, n)-near rings generalizes the concepts of rings, near rings, and (m, n)-rings. In this article, we define the notions of i-(m, n)-near ring, N-group, N-ideal, η -primitive, constant (m, n)-near ring, modular j-ideal, and η -modular, and investigate their properties.

Keywords: $i \cdot (m, n)$ -near ring; N-group; N-ideal; η -primitive; constant (m, n)-near ring.

2020 Mathematics Subject Classification: 16Y30, 16Y99.

1. Introduction

Let A be a non-empty set. The sequence $z_i, z_{i+1}, \ldots, z_m$ of elements of A is indicated by z_i^m where $1 \le i \le m$. For each $1 \le i \le j \le m$, the phrase $h(z_1, z_2, \ldots, z_i, k_{i+1}, \ldots, k_j, l_{j+1}, \ldots, l_m)$ is represented as $h(z_1^i, k_{i+1}^j, l_{j+1}^m)$; in the case when $k_{i+1} = k_{i+2} = \cdots = k_j = k$, we simply write $h(z_1^i, k_1^{(j-i)}, l_{j+1}^m)$. An m-ary groupoid (A, h) is said to be an m-ary semigroup if h is associative; that is, if $h(z_1^{i-1}, h(z_i^{m+i-1}), z_{m+i}^{2m-1}) = h(z_1^{j-1}, h(z_j^{m+j-1}), z_{m+j}^{2m-1})$ for each $z_1, z_2, \ldots, z_{2m-1} \in A$, where $1 \le i \le j \le m$. An m-ary semigroupoid (A, h) is said to be an m-ary group if for all $c_1^{i-1}, c_{i+1}^m, b \in A$, there exists $z_1^m \in A$, such that $h(c_1^{i-1}, z_i, c_{i+1}^m) = b$ for every $1 \le i \le m$. We say that h is commutative if $h(z_1, z_2, \ldots, z_m) = h(z_{\eta(1)}, z_{\eta(2)}, \ldots, z_{\eta(m)})$, for every permutation η of $\{1, 2, \ldots, m\}$ and $z_1, z_2, \ldots, z_m \in A$.

2. The (m, n)-near ring

We recommend that readers familiarize themselves with the basic concepts of near rings by consulting [2,4,5,7]; we do not define such notions in this article. In this section, we define the notion of (m, n)-near rings and provide some examples. We also present definitions of the *N*-group, *N*-ideal, η -primitive, and constant (m, n)-near ring. Moreover, we assert theorems related to these concepts.

Definition 2.1. Assume that A is a non-empty set. Let h and k be the m-ary and n-ary operations on A, respectively. In this case, (A, h, k) is said to be an i-(m, n)-near ring if the following conditions are met:

- (1) (A, h) is an *m*-ary group (not necessarily abelian);
- (2) (A, k) is an *n*-ary semigroup;
- (3) The *n*-ary operation k is *i*-distributive with respect to the *m*-ary operation h,

where the definition of *i*-distributive condition is as follows: for every $c_1, c_2, \ldots, c_n, d_1, d_2, \ldots, d_m \in A$, if i = n, then

$$k(c_1^{n-1}, h(d_1, d_2, \dots, d_m)) = h(k(c_1^{n-1}, d_1), k(c_1^{n-1}, d_2), \dots, k(c_1^{n-1}, d_m)).$$

If i = 1 then

$$k(h(d_1, d_2, \dots, d_m), c_2^n) = h(k(d_1, c_2^n), k(d_2, c_2^n), \dots, k(d_m, c_2^n)).$$

If 1 < i < n then

$$k(c_1^{i-1}, h(d_1, d_2, \dots, d_m), c_{i+1}^n) = h(k(c_1^{i-1}, d_1, c_{i+1}^n), k(c_1^{i-1}, d_2, c_{i+1}^n), \dots, k(c_1^{i-1}, d_m, c_{i+1}^n)).$$

^{*}Corresponding author (davvaz@yazd.ac.ir).

In the rest of the paper, for simplicity, we write (m, n)-near ring instead of i-(m, n)-near ring. We remark here that every (m, n)-ring is an (m, n)-near ring.

Example 2.1. Consider the additive group \mathbb{Z}_{mn} . Then (\mathbb{Z}_{mn}, h) is a group, where $h(s_1, s_2, \ldots, s_m) = s_1 + s_2 + \cdots + s_m$. We define k on \mathbb{Z}_{mn} by $k(s_1, s_2, \ldots, s_n) = s_1$, for all $s_1, s_2, \ldots, s_n \in \mathbb{Z}_{mn}$. Note that (\mathbb{Z}_{mn}, h, k) is an (m, n)-near ring. For $1 < i \leq n$ and $s_1^n, f_1^m \in \mathbb{Z}_{mn}$, we have $k(s_1, s_2, \ldots, s_{i-1}, h(f_1, f_2, \ldots, f_m), s_{i+1}, \ldots, s_n) = s_1$ and

 $h(k(s_1, s_2, \dots, s_{i-1}, f_1, s_{i+1}, \dots, s_n), \dots, k(s_1, s_2, \dots, s_{i-1}, f_m, s_{i+1}, \dots, s_n)) = h(s_1^{(m)}) = ms_1.$

If mn = m - 1, then $\overline{m} = \overline{1} \in \mathbb{Z}_{mn}$. Hence, for all $1 < i \leq n$, $(\mathbb{Z}_{mn-1}, h, k)$ is *i*-distributive. For i = 1, we have

$$k(h(f_1, f_2, \dots, f_m), s_2, \dots, s_n) = h(f_1, f_2, \dots, f_m) = f_1 + f_2 + \dots + f_m \quad and$$

$$h(k(f_1, s_2, \dots, s_n), k(f_2, s_2, \dots, s_n), \dots, k(f_m, s_2, \dots, s_n)) = h(f_1, f_2, \dots, f_m) = f_1 + f_2 + \dots + f_m$$

Consequently, for i = 1, $(\mathbb{Z}_{mn-1}, h, k)$ is 1-distributive.

Assume that *I* is a non-empty subgroup of an (m, n)-near ring (A, h, k). Then *I* is said to be a normal subgroup of *A* if for each $a_i \in A$, s_1^{i-1} , $s_{i+1}^m \in A$ and $1 \le i, j \le m$ there is $b_j \in I$ such that $h(s_1^{i-1}, a_i, s_{i+1}^m) = h(s_1^{j-1}, b_j, s_{j+1}^m)$.

Definition 2.2. Assume that I is a non-empty subset of an (m, n)-near ring (A, h, l). The set I is said to be an ideal of A if

- (1) I is a normal subgroup of the m-ary group (A, h), (I, h) is an m-ary group,
- (2) for every $a_1, a_2, \ldots, a_n \in A$, $l(a_1^{i-1}, I, a_{i+1}^n) \subseteq I$.

and (3).

- (3) For all $r_1^{k-1}, r_{k+1}^m, w_1^{j-1}, w_{j+1}^n \in A$ and $1 \le k \le n$, $d \in I$, there exists $o \in I$ so that $l(w_1^{j-1}, h(r_1^{k-1}, d, r_{k+1}^m), w_{j+1}^n)$ equals $h(l(w_1^{j-1}, r_1, w_{j+1}^n), l(w_1^{j-1}, r_2, w_{j+1}^n), \dots, l(w_1^{j-1}, r_{k-1}, w_{j+1}^n), o, l(w_1^{j-1}, r_{k+1}, w_{j+1}^n), \dots, l(w_1^{j-1}, r_m, w_{j+1}^n))).$ The set I is called an i-ideal of A if it satisfies (1) and (2). The set I is called a j-ideal of A for $j \ne i$ if it satisfies (1)
 - If *J* is an *i*-ideal for each $1 \le i \le n$, then *J* is referred to as an ideal of *A*.

Definition 2.3. A proper ideal J of an (m, n)-near ring (A, h, l) is said to be prime if for any ideals A_1, A_2, \ldots, A_n of A, $l(A_1, A_2, \ldots, A_n) \subseteq J$ implies $A_1 \subseteq J$ or $A_2 \subseteq J$ or \ldots or $A_n \subseteq J$.

Definition 2.4. Assume that (N, h, k) is an (m, n)-near ring, (G, h) is an m-group and

$$f: \underbrace{G \times G \times \cdots \times G}_{i-1} \times N \times \underbrace{G \times G \times \cdots \times G}_{n-i} \longrightarrow G$$

is a mapping $(f(g_1^{i-1}, n, g_{i+1}^n) = k(g_1^{i-1}, n, g_{i+1}^n))$. In this case, (G, f) is an N-group if for all $g_1^n \in G$ and for all $n_1^m, a_1^n \in N$, the following conditions hold:

- (1) $k(g_1^{i-1}, h(n_1, n_2, \dots, n_m), g_{i+1}^n) = h(k(g_1^{i-1}, n_1, g_{i+1}^n), k(g_1^{i-1}, n_2, g_{i+1}^n), \dots, k(g_1^{i-1}, n_m, g_{i+1}^n)).$
- (2) For all $2 \le j \le i 1$ and $2 \le l \le n$,

$$k(g_1^{i-1}, k(a_1^n), g_{i+1}^n) = k(g_1^{j-1}, k(g_j^{i-1}, a_1^{n-i+j}), a_{n-i+j+1}^n, g_{i+1}^n) = k(g_1^{i-1}, a_1^{l-1}, k(a_l^n, g_{i+1}^{l+i-1}), g_{l+i}^n).$$

Example 2.2. In Example 2.1, if we let $N = \mathbb{Z}_{mn-1}$, $i \neq 1$ and $G = \mathbb{Z}_{m-1}$, then (\mathbb{Z}_{m-1}, k) is a \mathbb{Z}_{mn-1} -group. For all $z_1^n \in \mathbb{Z}_{m-1}$, $z \in \mathbb{Z}_{mn-1}$, we have $k(z_1^{i-1}, z, z_{i+1}^n) = z_1 \in \mathbb{Z}_{m-1} = G$.

- (1) We note that $k(g_1^{i-1}, h(n_1, n_2, \dots, n_m), g_{i+1}^n) = g_1 = mg_1 = h(k(g_1^{i-1}, n_1, g_{i+1}^n), \dots, k(g_1^{i-1}, n_m, g_{i+1}^n)).$
- (2) For all $2 \le j \le i 1$ and $2 \le l \le n$, we have

$$g_1 = k(g_1^{i-1}, k(a_1^n), g_{i+1}^n) = k(g_1^{j-1}, k(g_j^{i-1}, a_1^{n-i+j}), a_{n-i+j+1}^n, g_{i+1}^n) = k(g_1^{i-1}, a_1^{l-1}, k(a_l^n, g_{i+1}^{l+i-1}), g_{l+i}^n) = k(g_1^{i-1}, g_1^{i-1}, g_1^{i-1}) = k(g_1^{i-1}, g_1^{i-1}$$

Definition 2.5. Assume that (N, h, k) is an (m, n)-near ring, G is an N-group, $\emptyset \neq A \subseteq G$ and $\emptyset \neq B \subseteq G$. We define

$$(A:B)_N = \{n \in N \mid k(B^{(i-1)}, n, B^{(n-i)}) \subseteq A\}.$$

The set $(0:B)_N$ is called the *i*-annihilator of B in N.

Example 2.3. In Example 2.1, if we let $N = \mathbb{Z}_{mn-1}$, $G = \mathbb{Z}$ and $A = 3\mathbb{Z}$, and $B = 6\mathbb{Z}$, then

$$(A:B)_N = (3\mathbb{Z}:6\mathbb{Z})_{\mathbb{Z}_{mn-1}} = \{s \in \mathbb{Z}_{mn-1} \mid k(6\mathbb{Z}^{(i-1)}, s, 6\mathbb{Z}^{(n-i)}) \subseteq 3\mathbb{Z}\} = \{s \in \mathbb{Z}_{mn-1} \mid 6\mathbb{Z} \subseteq 3\mathbb{Z}\} = \mathbb{Z}_{mn-1}$$

For $i \neq 1$, we have $(0: 6\mathbb{Z}) = \{s \in \mathbb{Z} \mid k(6\mathbb{Z}^{(i-1)}, s, 6\mathbb{Z}^{(n-i)}) = 0\} = \{s \in \mathbb{Z} \mid 6\mathbb{Z} = 0\}$, and for i = 1, we have

$$(0:6\mathbb{Z}) = \{s \in \mathbb{Z} \mid k(s, 6\mathbb{Z}^{(n-1)}) = 0\} = \{s \in \mathbb{Z} \mid s = 0\} = \{0\}$$

Definition 2.6. An *N*-group *B* is said to be faithful if $k(s_1^{i-1}, o, s_{i+1}^n) = 0$, for all $s_1^n \in B$ and $o \in N$, then o = 0.

Example 2.4. In Example 2.1, if i = 1, $N = \mathbb{Z}_{mn-1}$, and $B = \mathbb{Z}$, then

$$(0:B)_N = (0:\mathbb{Z}) = \{s \in \mathbb{Z}_{mn-1} \mid k(s,\mathbb{Z}^{(n-1)}) = 0\} = \{s \in \mathbb{Z}_{mn-1} \mid s = 0\} = 0_{Z_{mn-1}}.$$

Definition 2.7. Assume that M is an O-group and Q is a subgroup of M. In this case Q is said to be an O-subgroup of M if $k(Q^{(i-1)}, O, Q^{(n-i)}) \subseteq Q$ and M is said to be O-simple if the only O-subgroups of M are $k(0_M^{(i-1)}, O_c, 0_M^{(n-i)})$ and M.

Example 2.5. In Example 2.1, if we take $O = \mathbb{Z}_{mn-1}$, $i \neq 1$, and $M = \mathbb{Z}$, and let Q be a subgroup of \mathbb{Z} , then the relation $k(Q^{(i-1)}, \mathbb{Z}_{mn-1}, Q^{(n-i)}) = Q \subseteq Q$ holds. Thus, every subgroup of \mathbb{Z} is a \mathbb{Z}_{mn-1} -subgroup of \mathbb{Z} .

Definition 2.8. Assume that (M,h) is an *m*-group, $H \subseteq M$, and that *M* is an *O*-group for the (m,n)-near ring (O,h,l). In this case, *H* is an *O*-ideal of *M* if the following conditions hold:

- (1) (H,h) is a normal subgroup of (M,h),
- (2) for all $r_1^{j-1}, r_{j+1}^m \in M$, $s_1^{j-1}, s_{j+1}^n \in O$, $1 \le k \ne i \le m$, $1 \le j \ne i \le n$ and $d \in H$, there exists $z \in H$ such that $l(s_1^{j-1}, h(r_1^{k-1}, d, r_{k+1}^m), s_{j+1}^n)$

$$= h(l(s_1^{j-1}, r_1, s_{j+1}^n), l(s_1^{j-1}, r_2, s_{j+1}^n), \dots, l(s_1^{j-1}, r_{k-1}, s_{j+1}^n), z, l(s_1^{j-1}, r_{k+1}, s_{j+1}^n), \dots, l(s_1^{j-1}, r_n, s_{j+1}^n))$$

The O-group M is said to be a simple O-group if 0 and M are the only O-ideals of M.

Example 2.6. In Example 2.1, if we let $H = 2\mathbb{Z}$, $O = \mathbb{Z}_{mn-1}$, i = 1, and $M = \mathbb{Z}$, then $(2\mathbb{Z}, h)$ is a normal subgroup of (\mathbb{Z}, h) , and for all $r_1^{j-1}, r_{j+1}^m \in \mathbb{Z}$, $s_1^{j-1}, s_{j+1}^n \in \mathbb{Z}_{mn-1}$, and $1 \le k \le n$, $d \in 2\mathbb{Z}$, the following relation holds:

 $h(r_1^{k-1}, d, r_{k+1}^m) = k(h(r_1^{k-1}, d, r_{k+1}^m), s_2^n) = h(k(r_1, s_2^n), k(r_2, s_2^n), \dots, k(r_{k-1}, s_2^n), l, k(r_{k+1}, s_2^n), \dots, k(r_n, s_2^n)).$

If we let l = d, then there exists $l \in 2\mathbb{Z}$ such that the second condition of the definition is valid. Now, we conclude that $2\mathbb{Z}$ is a \mathbb{Z}_{mn-1} -ideal of \mathbb{Z}

Definition 2.9. Assume that (M, h, l) is an (m, n)-near ring and (W, l) is an M-group. In this case, W is said to be a monogenic M-group if there is $w \in W$ such that $l(w^{(i-1)}, M, w^{(n-i)}) = W$.

Example 2.7. In Example 2.1, if we let $M = \mathbb{Z}_{mn-1}$, $W = \{0\}$, and w = 0, then $k(0^{(i-1)}, \mathbb{Z}_{mn-1}, 0^{(n-i)}) = 0 = W$. Hence, $W = \{0\}$ is a monogenic \mathbb{Z}_{mn-1} -group.

Example 2.8. In Example 2.1, if we let $M = W = \mathbb{Z}_{mn-1}$, then for all $w \in W$, $k(\mathbb{Z}_{mn-1}, w^{n-1}) = \mathbb{Z}_{mn-1} = W$. So, we conclude that \mathbb{Z}_{mn-1} is a monogenic \mathbb{Z}_{mn-1} -group.

Assume that (A, h, k) is an (m, n)-near ring, I is an ideal, (A, h) is a group, and I is a normal subgroup. Then the quotient group $(\frac{A}{I}, H, K)$ is defined. An *m*-ary operation H on the cosets is defined by the *m*-ary operation h given below:

$$H(h(d_{1_1}, d_{1_2}, \dots, d_{1_{m-1}}, I), h(d_{2_1}, d_{2_2}, \dots, d_{2_{m-1}}, I), \dots, h(d_{m_1}, d_{m_2}, \dots, d_{m_{m-1}}, I))$$

= $h(h(d_{1_1}, d_{1_2}, \dots, d_{1_{m-1}}, h(d_{2_1}, d_{2_2}, \dots, d_{2_{m-1}}, h(d_{3_1}, d_{3_2}, \dots, d_{3_{m-1}}, \dots))$
 $h(d_{(m-1)_1}, d_{(m-1)_2}, \dots, d_{(m-1)_{m-1}}, h(d_{m_1}, d_{m_2}, \dots, d_{m_{m-1}}, I), \dots)).$

An *n*-ary operation *K* on cosets is defined by the *n*-ary operation *k* given below:

$$\begin{split} K(h(d_{1_1}, d_{1_2}, \dots, d_{1_{m-1}}, I), h(d_{2_1}, d_{2_2}, \dots, d_{2_{m-1}}, I), \dots, h(d_{n_1}, d_{n_2}, \dots, d_{n_{m-1}}, I)) \\ &= h(k(h(d_{1_1}, d_{1_2}, \dots, d_{1_{m-1}}, I), \dots, h(d_{(i-1)_1}, d_{(i-1)_2}, \dots, d_{(i-1)_{(m-1)}}, I), d_{i_1}, \\ h(d_{(i+1)_1}, d_{(i+1)_2}, \dots, d_{(i+1)_{m-1}}, I)) \dots, h(d_{n_1}, d_{n_2}, \dots, d_{n_{m-1}}, I)), \dots, k(h(d_{1_1}, d_{1_2}, \dots, d_{n_{m-1}}, I)), I), \\ d_{1_{m-1}}, I), \dots, h(d_{(i-1)_1}, d_{(i-1)_2}, \dots, d_{(i-1)_{m-1}}, I), d_{i_{m-1}}, h(d_{(i+1)_1}, d_{(i+1)_2}, \dots, d_{(i+1)_{m-1}}, I)) \dots, h(d_{n_1}, d_{n_2}, \dots, d_{(i+1)_{m-1}}, I)), I). \end{split}$$

Theorem 2.1. If I is an ideal in an (m, n)-near ring (A, h, k), then $(\frac{A}{I}, H, K)$ has the structure of an (m, n)-near ring, where the operations H and K are defined after Example 2.8.

Proof. We prove that *H* is well defined. Assume that $h(d_{i_1}, d_{i_2}, \ldots, d_{i_{m-1}}, I) = h(w_{i_1}, w_{i_2}, \ldots, w_{i_{m-1}}, I)$, for $1 \le i \le m$. Then $H(h(d_{1_1}, d_{1_2}, \ldots, d_{1_{m-1}}, I), h(d_{2_1}, d_{2_2}, \ldots, d_{2_{m-1}}, I), \ldots, h(d_{m_1}, d_{m_2}, \ldots, d_{m_{m-1}}, I))$

 $= h(h(d_{1_1}, d_{1_2}, \dots, d_{1_{m-1}}, h(d_{2_1}, d_{2_2}, \dots, d_{2_{m-1}}, h(d_{3_1}, d_{3_2}, \dots, d_{3_{m-1}}, \dots, h(d_{(m-1)_1}, d_{(m-1)_2}, \dots, d_{(m-1)_{m-1}}h(d_{m_1}, \dots, d_{m_{m-1}}, I) \dots))$

 $=h(d_{1_1}, d_{1_2}, \dots, d_{1_{m-1}}, h(d_{2_1}, d_{2_2}, \dots, d_{2_{m-1}}, h(d_{3_1}, d_{3_2}, \dots, d_{3_{m-1}}, \dots) \\ h(d_{(m-1)_1}, d_{(m-1)_2}, \dots, d_{(m-1)_{m-1}}, h(w_{m_1}, w_{m_2}, \dots, w_{m_{m-1}}, I) \dots))$

 $=h(d_{1_1}, d_{2_2}, \dots, d_{1_{m-1}}, h(d_{2_1}, d_{2_2}, \dots, d_{2_{m-1}}, h(d_{3_1}, d_{3_2}, \dots, d_{3_{m-1}}, \dots)$ $h(d_{(m-1)_1}, d_{(m-1)_2}, \dots, d_{(m-1)_{m-1}}, h(I, w_{m_1}, w_{m_2}, \dots, w_{m_{m-1}}) \dots))$

 $= h(d_{1_1}, d_{1_2}, \dots, h(d_{1_{(m-1)}}, h(d_{2_1}, d_{2_2}, \dots, d_{2_{m-1}}, h(d_{3_1}, d_{3_2}, \dots, d_{3_{m-1}}, \dots))$ $h(h(d_{(m-1)_1}, d_{(m-1)_2}, \dots, d_{(m-1)_{m-1}}, I), h(w_{m_1}, w_{m_2}, \dots, w_{m_{m-1}}) \dots))$

 $= h(d_{1_1}, d_{1_2}, \dots, d_{1_{m-1}}, h(d_{2_1}, d_{2_2}, \dots, d_{2_{m-1}}, h(d_{3_1}, d_{3_2}, \dots, d_{3_{m-1}}, \dots) \\ h(h(w_{(m-1)_1}, w_{(m-1)_2}, \dots, w_{(m-1)_{m-1}}, I), w_{m_1}, w_{m_2}, \dots, w_{m_{(m-1)}}) \dots))$

 $= \dots = h(d_{1_1}, d_{1_2}, \dots, d_{1_{m-1}}, h(h(d_{2_1}, d_{2_2}, \dots, d_{2_{m-1}}, I), w_{3_1}, w_{3_2}, \dots, w_{3_{m-1}}), \dots$ $h(w_{(m-1)_1}, w_{(m-1)_2}, \dots, w_{(m-1)_{m-1}}, h(w_{m_1}, w_{m_2}, \dots, w_{m_{m-1}}, I) \dots))$

 $= h(d_{1_1}, d_{1_2}, \dots, d_{1_{m-1}}, h(h(w_{2_1}, w_{2_2}, \dots, w_{2_{m-1}}, I), w_{3_1}, w_{3_2}, \dots, w_{3_{m-1}}), \dots h(w_{(m-1)_1}, w_{(m-1)_2}, \dots, w_{(m-1)_{m-1}}, h(w_{m_1}, w_{m_2}, \dots, w_{m_{m-1}}, I) \dots))$

 $= h(d_{1_1}, d_{1_2}, \dots, d_{1_{m-1}}, h(h(I, w_{2_1}, w_{2_2}, \dots, w_{2_{m-1}}), w_{3_1}, \dots, w_{3_{m-1}}), \dots,$ $h(w_{(m-1)_1}, w_{(m-1)_2}, \dots, w_{(m-1)_{m-1}}, h(w_{m_1}, w_{m_2}, \dots, w_{m_{m-1}}, I) \dots))$

 $=h(h(d_{1_1}, d_{1_2}, \dots, d_{1_{m-1}}, I), w_{2_1}, w_{2_2}, \dots, w_{2_{m-1}}), h(w_{3_1}, w_{3_2}, \dots, w_{3_{m-1}}, \dots h(w_{(m-1)_1}, w_{(m-1)_2}, \dots, w_{(m-1)_{m-1}}, h(w_{m_1}, w_{m_2}, \dots, w_{m_{m-1}}, I) \dots))$

 $=h(w_{1_1},w_{1_2},\ldots,w_{1_{m-1}},h(w_{2_1},w_{2_2},\ldots,w_{2_{m-1}},h(w_{3_1},w_{3_2},\ldots,w_{3_{m-1}},\ldots,h(w_{(m-1)_1},w_{(m-1)_2},\ldots,w_{(m-1)_{m-1}},h(w_{m_1},w_{m_2},\ldots,w_{m_{m-1}},I)\ldots))$

 $= H(h(w_{1_1}, w_{1_2}, \dots, w_{1_{m-1}}, I), \dots, h(w_{m_1}, w_{m_2}, \dots, w_{m_{m-1}}, I)).$

Since I is an ideal, it follows that the operator K is well defined and since (A, h) is an *m*-ary group so $(\frac{A}{I}, H)$ is an *m*-ary group. Furthermore, since (A, k) is an *n*-ary semigroup, it follows that $(\frac{A}{I}, K)$ is an *n*-ary semigroup. The *n*-ary operation k is *i*-distributive with respect to the *m*-ary operation h. Thus, the *n*-ary operation K is *i*-distributive with respect to the *m*-ary operation H.

Definition 2.10. Assume that (M, h, k) is an (m, n)-near ring. In this case, a monogenic M-group W $(W \neq 0)$ is of

(1) type 0 if W has no M-ideals except 0 and W,

(2) type 1 if W is of type 0 and for all $w \in W$ either $k(w^{(i-1)}, M, w^{(n-i)}) = W$ or $k(w^{(i-1)}, M, w^{(n-i)}) = k(0_W^{(i-1)}, M_c, 0_W^{(n-i)})$,

(3) type 2 if W has no M-subgroups except 0 and W (particularly, W is M_0 -simple),

(4) type 3 if W is of type 2 and for all $s \in M$, $k(a_1^{i-1}, s, a_{i+1}^n) = k(w_1^{i-1}, s, w_{i+1}^n)$ implies $a_i = w_i$ for all $i \in \{1, 2, ..., n\}$.

Example 2.9. In Example 2.1, if we let $M = \mathbb{Z}_{mn-1}$ and $W = \{0\}$, then \mathbb{Z}_{mn-1} -group $\{0\}$ is of type 0.

Example 2.10. In Example 2.1, if we let $M = W = \mathbb{Z}_{mn-1}$ and i = 1, then \mathbb{Z}_{mn-1} -group \mathbb{Z}_{mn-1} is of type 1.

Primitive near rings play a particular role in the structure theory of near rings because of the applications of primitive rings in ring theory [3, 8-11]. In the case of (m, n)-near rings, we can consider several kinds of primitives.

Definition 2.11. Let (W, h, k) be an (m, n)-near ring. Then W is said to be η -primitive, for $\eta \in \{0, 1, 2, 3\}$, if there exists a group S such that S is a faithful W-group of type η .

An ideal I of an (m, n)-near ring (M, h, k) is an η -primitive ideal of M if and only if $\frac{M}{T}$ is an η -primitive.

Definition 2.12. Γ is said to be strongly monogenic if $k(\Gamma^{(i-1)}, N, \Gamma^{(n-i)}) \neq \{0\}$ and for all $s \in \Gamma$ either $k(s^{(i-1)}, N, s^{(n-i)}) = \Gamma$ or $k(s^{(i-1)}, N, s^{(n-i)}) = \{0\}$.

Example 2.11. In Example 2.7, $W = \{0\}$ is a strongly monogenic \mathbb{Z}_{mn-1} -group.

Definition 2.13. Assume that (W, h, k) is an (m, n)-near ring and 0 is the identity element of (W, h). Then

$$W_0 = \{ w \in W \mid k(0^{(s-1)}, w, 0^{(n-s)}) = 0, \ 1 \le s \le n \}$$

is called the zero symmetric part of W. In addition, $W_c = \{w \in W \mid k(0^{(s-1)}, w, 0^{(n-s)}) = w, 1 \le s \le n\}$ is called the resistant part of W. An (m, n)-near ring W is said to be a zero symmetric near ring if $W = W_0$. An (m, n)-near ring W is said to be a zero symmetric near ring if $W = W_0$. An (m, n)-near ring W is said to be a zero symmetric near ring if $W = W_0$.

Example 2.12. In Example 2.1, if we let $W = \mathbb{Z}_{mn-1}$, $i \neq 1$, then

$$\mathbb{Z}_{(mn-1)_0} = \{ w \in \mathbb{Z}_{mn-1} \mid k(0^{(s-1)}, w, 0^{(n-s)}) = 0, \ 1 \le s \le n \} = \mathbb{Z}_{mn-1},$$

which implies that $\mathbb{Z}_{(mn-1)_c} = \{w \in \mathbb{Z}_{mn-1} \mid k(w, 0^{(n-1)}) = w, 1 \leq s \leq n\} = \mathbb{Z}_{mn-1}$. Therefore, \mathbb{Z}_{mn-1} is a constant (m, n)-near ring.

Lemma 2.1. A_0 and A_c are i-(m, n)-subnear rings of the i-(m, n)-near ring (A, c, l) for i = 1, n.

Proof. We show that A_0 is a subgroup of A. If $x_1, x_2, ..., x_m \in A_0$, then $l(0^{(i-1)}, x_j, 0^{(n-i)}) = 0$ for $1 \le j \le m$ and $1 \le i \le n$. Now, if i = n, then $l(0^{(i-1)}, c(x_1, x_2, ..., x_m), 0^{(n-i)}) = c(l(0^{(i-1)}, x_1, 0^{(n-i)}), l(0^{(i-1)}, x_2, 0^{(n-i)}), ..., l(0^{(i-1)}, x_m, 0^{(n-i)})) = 0$. Therefore, $c(x_1, x_2, ..., x_m) \in A_0$. Since (A, h) is an *m*-group, for all $x_1^m, y \in A_0$ there is $s \in A$ such that for all $1 \le j \le m$, $c(x_1^{j-1}, s, x_{j+1}^m) = y$. It is enough to show $s \in A_0$. Here, we have

$$0 = l(0^{(i-1)}, y, 0^{(n-i)}) = l(0^{(i-1)}, c(x_1^{j-1}, s, x_{j+1}^m), 0^{(n-i)}) = c(l(0^{(i-1)}, x_1, 0^{(n-i)}), \dots, l(0^{(i-1)}, x_{i-1}, 0^{(n-i)}), l(0^{(i-1)}, s, 0^{(n-i)}), l(0^{(i-1)}, x_{i+1}, 0^{(n-i)}), \dots, l(0^{(i-1)}, x_m, 0^{(n-i)})) = c(0^{(j-1)}, l(0^{(i-1)}, s, 0^{(n-i)}), 0^{(m-j)}).$$

Hence, $0 = c(0^{(j-1)}, l(0^{(i-1)}, s, 0^{(n-i)}), 0^{(m-j)})$. Since (A, c) is an *m*-group, it follows that $0 = l(0^{(i-1)}, s, 0^{(n-i)})$. Thus, $s \in A_0$, which implies that (A_0, c) is a subgroup of (A, c, l). Next, if we take $s_1, s_2, \ldots, s_n \in A_0$, then for all $1 \le i \le n$ and $1 \le j \le n$, we have $l(0^{(i-1)}, s_j, 0^{(n-i)}) = 0$. If i = n, then $l(0^{(n-1)}, l(s_1, s_2, \ldots, s_n))$ equals $l(l(0^{(n-1)}, s_1), s_2, \ldots, s_n) = l(0, s_2, s_3, \ldots, s_n) = l(l(0^{(n-1)}, s_2, s_3, \ldots, s_n)) = l(0, 0, s_3, s_4, \ldots, s_n) = \cdots = l(0^{(n-1)}, s_n) = 0$. If i = 1, then

$$l(l(s_1, s_2, \dots, s_n), 0^{(n-1)}) = l(s_1, s_2, \dots, s_{n-1}, l(s_n, 0^{(n-1)})) = l(s_1, s_2, \dots, s_{n-1}, 0) = l(s_1, s_2, \dots, s_{n-1}, l(0^{(n)})) = l(s_1, s_2, \dots, s_{n-2}, l(s_2, 0^{(n-1)}), 0) = l(s_1, s_2, \dots, s_{n-2}, 0, 0) = \dots = l(s_1, 0^{(n-1)}) = 0$$

Therefore, $l(s_1, s_2, \ldots, s_n) \in A_0$. So, we get $l(A_0^{(n)}) \subseteq A_0$. This indicates that (A_0, c, l) is an (m, n)-subnear ring of (m, n)-near ring (A, c, l). We show that A_c is a subgroup of A. Let $x_1, x_2, \ldots, x_m \in A_0$. Then, we have $l(0^{(i-1)}, x_j, 0^{(n-i)}) = x_j$ for $1 \leq j \leq m$ and $1 \leq i \leq n$. Now, we obtain

$$l(0^{(i-1)}, c(x_1, x_2, \dots, x_m), 0^{(n-i)}) = c(l(0^{(i-1)}, x_1, 0^{(n-i)}), l(0^{(i-1)}, x_2, 0^{(n-i)}), \dots, l(0^{(i-1)}, x_m, 0^{(n-i)})) = l(x_1, x_2, \dots, x_m)$$

This yields that $c(x_1, x_2, \ldots x_m) \in A_c$. as (A, h) is an *m*-group, for all $x_1^m, y \in A_c$ there is $s \in A$ such that for all $1 \le j \le m$, $c(x_1^{j-1}, s, x_{j+1}^m) = y$. It is enough to show that $s \in A_c$. We know that

$$\begin{split} c(x_1^{j-1}, s, x_{j+1}^m) &= y = l(0^{(i-1)}, y, 0^{(n-i)}) = l(0^{(i-1)}, c(x_1^{j-1}, s, x_{j+1}^m), 0^{(n-i)}) \\ &= c(l(0^{(i-1)}, x_1, 0^{(n-i)}), \dots, l(0^{(i-1)}, x_{i-1}, 0^{(n-i)}), l(0^{(i-1)}, s, 0^{(n-i)}), l(0^{(i-1)}, x_{i+1}, 0^{(n-i)}), \dots, l(0^{(i-1)}, x_m, 0^{(n-i)})) \\ &= c(x_1^{j-1}, l(0^{(i-1)}, s, 0^{(n-i)}), x_{j+1}^m). \end{split}$$

So, we obtain $c(x_1^{j-1}, s, x_{j+1}^m) = c(x_1^{j-1}, l(0^{(i-1)}, s, 0^{(n-i)}), x_{j+1}^m)$. As (A, c) is an *m*-group, we get $s = l(0^{(i-1)}, s, 0^{(n-i)})$, and so $s \in A_c$. Hence, (A_c, c) is a subgroup of (A, c, l). Next, if $s_1, s_2, \ldots, s_n \in A_c$, then $l(0^{(i-1)}, s_j, 0^{(n-i)}) = s_j$, for all $1 \le i \le n$, $1 \le j \le n$. This gives that if i = n, then $l(0^{(n-1)}, l(s_1, s_2, \ldots, s_n)) = l(l(0^{(n-1)}, s_1), s_2, \ldots, s_n) = l(s_1, s_2, \ldots, s_n)$. On the other hand, if i = 1, then we have $l(l(s_1, s_2, \ldots, s_n), 0^{(n-1)}) = l(s_1, s_2, \ldots, s_n) = l(s_1, s_2, \ldots, s_n)$.

Therefore, $l(s_1, s_2, \ldots, s_n) \in A_c$ and $l(A_c^{(n)}) \subseteq A_c$. Hence, (A_c, c, l) is an (m, n)-subnear ring of (m, n)-near ring (A, c, l).

Theorem 2.2. If Γ is a monogenic *M*-group (by y_0) and an M_0 -simple (Γ can be considered as an M_0 -group), then either $k(\Gamma^{(i-1)}, M, \Gamma^{(n-i)}) = 0$ or Γ is an *M*-group strongly monogenic.

Proof. For all $s \in \Gamma$, $k(s^{(i-1)}, M, s^{(n-i)}) \leq_{M_0} \Gamma$ implies $k(s^{(i-1)}, M, s^{(n-i)}) = \{0\}$ or $k(s^{(i-1)}, M, s^{(n-i)}) = \Gamma$.

Theorem 2.3. Assume that I is an ideal of (2, 2)-near ring (S, h, z), Γ is a group, and $\eta \in \{1, 2, 3\}$ (see [6]).

- (1) If Γ is an S-group with $I \subseteq (0:\Gamma)$ then $z(h(n_1, I), \gamma_1) = z(n_1, \gamma_1)$ makes Γ an $\frac{S}{I}$ -group.
 - If Γ is an S-group of type η , then Γ is an $\frac{S}{T}$ -group of type η .
 - If Γ is a faithful S-group, then Γ is a faithful $\frac{S}{T}$ -group.
- (2) If Γ is an $\frac{S}{I}$ -group, then $z(h(n_1, I), \gamma_1) = z(n_1, \gamma_1)$, so Γ is an S-group with $I \subseteq (0 : \Gamma)$.

If Γ is an $\frac{S}{T}$ -group of type η , then Γ is an S-group of type η .

If Γ is a faithful $\frac{S}{T}$ -group, then Γ is a faithful S-group.

Proof. We prove the result for i = 1. The proof for i = 2 is similar to the proof concerning i = 1. We have $z(h(n, I), \gamma) = h(z(n, \gamma), z(I, \gamma)) = z(n, \gamma) \in \Gamma$, and so $z(h(n, I), \gamma) \in \Gamma$. Hence, Γ is an $\frac{S}{I}$ -group. Let Γ be an S-group of type 0. So, Γ has no S-ideals except 0 and Γ . Assume that L is an $\frac{S}{I}$ -ideal of Γ , for all $d \in L$, $r \in \Gamma$, and $h(l, I) \in \frac{S}{I}$; so, there is $s \in L$ such that

 $z(h(d,r),h(l,I)) = h(s,z(r,h(l,I))), \\ z(l,h(d,r)) = z(h(l,I),h(d,r)) = h(s,z(h(l,I),r)) = h(s,z(l,r)).$

This implies that L is an S-ideal of Γ . Thus, L = 0 or $L = \Gamma$, and consequently, Γ is an $\frac{S}{T}$ -group of type 0.

If Γ is an S-group of type 1, then for all $g \in \Gamma$, $z(S,g) = \Gamma$ or $z(S,g) = z(S_c, 0_{\Gamma})$. Also, $z(\frac{S}{I}, g) = z(h(S, I), g) = z(S, g)$. Thus, $z(\frac{S}{I}, g) = \Gamma$ or $z(\frac{S}{I}, g) = z(S_c, 0_{\Gamma}) = z(h(S_c, I), 0_{\Gamma}) = z(\frac{S_c}{I}, 0_{\Gamma})$. Therefore, Γ is an $\frac{S}{I}$ -group of type 1.

If Γ is an S-group of type 2, then Γ has no S-subgroups except 0 and Γ . Assume that H is an $\frac{S}{I}$ -subgroup of Γ . So, $z(\frac{S}{I}, H) \subseteq H$ and $z(\frac{S}{I}, H) = z(h(S, I), H) = h(z(S, H), z(I, H)) = z(S, H)$. It means that $z(S, H) \subseteq H$, which implies that H is an S-subgroup of Γ . Therefore, H = 0 or $H = \Gamma$. Consequently, Γ is an $\frac{S}{I}$ -group of type 2.

Assume that Γ is a faithful *S*-group, $(0 : \Gamma)_S = 0$. If $h(n, I) \in (0 : \Gamma)_{\frac{S}{I}}$, then $0 = z(h(n, I), \gamma) = z(n, \gamma)$. Therefore, $n \in (0 : \gamma) = 0$, which implies that n = 0, and hence $(0 : \gamma) = 0_{\frac{S}{2}}$. So, we deduce that Γ is a faithful $\frac{S}{I}$ -group.

Next, we prove (2). If Γ is an $\frac{S}{I}$ -group and $z(n_1, \gamma_1) = z(h(n_1, I), \gamma_1) \in \Gamma$, then Γ is an S-group.

Assume that Γ is an $\frac{S}{I}$ -group of type 0 so Γ has no $\frac{S}{I}$ -ideals except 0 and Γ . Assume that S is an S-ideal of Γ . Then, for all $d \in L$, $r \in \Gamma$ and $l \in S$ there is $s \in L$ such that

$$z(l, h(d, r)) = h(s, z(l, r)), \\ z(h(l, I), h(d, r)) = z(l, h(d, r)) = h(s, z(l, r)) = h(s, z(h(l, I), r)).$$

This yields that *L* is an $\frac{S}{T}$ -ideal of Γ , and hence L = 0 or $L = \Gamma$. Therefore, Γ is an *S*-group of type 0.

If Γ is an $\frac{S}{I}$ -group of type 1, then for all $g \in \Gamma$, we have $z(\frac{S}{I},g) = \Gamma$ or $z(\frac{S}{I},g) = z(\frac{S_c}{I},0_{\Gamma}), z(\frac{S}{I},g) = z(h(S,I),g) = z(S,g)$. Thus, $z(S,g) = \Gamma$ or $z(S,g) = z(S_c,0_{\Gamma}) = z(h(S_c,I),0_{\Gamma}) = z(\frac{S_c}{I},0_{\Gamma})$. Hence, we conclude that Γ is an S-group of type 1

If Γ is an $\frac{S}{I}$ -group of type 2, then Γ has no $\frac{S}{I}$ -subgroups except 0 and Γ . Assume that H is an S-subgroup of Γ , so $z(S,H) \subseteq H$ and $z(\frac{S}{I},H) = z(h(S,I),H) = h(z(S,H),z(I,H)) = z(S,H)$. Thus, $z(\frac{S}{I},H) \subseteq H$, which implies that H is an $\frac{S}{I}$ -subgroup of Γ . Therefore, we have H = 0 or $H = \Gamma$. Consequently, Γ is an S-group of type 2.

Assume that Γ is a faithful $\frac{S}{I}$ -group, so $(0:\Gamma)_{\frac{S}{I}} = 0$. Assume that $n \notin I$ and $n \in (0:\Gamma)_S$. So, $z(h(n,I),\gamma) = z(n,\gamma) = 0$. This implies that $h(n,I) \in (0:\gamma)_{\frac{S}{I}} = 0$. Hence, $h(n,I) = 0_{\frac{S}{I}}$ and so n = 0. This yields that $(0:\gamma)_S = 0$. Therefore, we conclude that Γ is a faithful S-group.

We note that $(\frac{S}{I})_0 = \frac{S_0}{I}$. Each S-group Γ can be viewed as an S_0 -group as well as an S_c -group [6].

Theorem 2.4. If Γ is a faithful N-group, then N_c and N_0 are faithful N-groups (see [6])

Theorem 2.5. Assume that I is an ideal of a (2, 2)-near ring (N, h, k). The following statements are equivalent:

- (1) I is an η -primitive.
- (2) there is an $\frac{N}{T}$ -group Γ such that Γ is faithful and of type η .

Proof. (1) \iff (2) By the definition of η -primitive ideal, I is η -primitive if and only if $\frac{N}{I}$ is an η -primitive near ring if and only if there exists an $\frac{N}{I}$ -group Γ such that $\frac{N}{I}$ is η -primitive on $\frac{N}{I}$ -group Γ if and only if there exists an $\frac{N}{I}$ -group Γ such that Γ is faithful and of type η .

Theorem 2.6. If (M, h, k) is a simple (m, n)-near ring and Γ is an *M*-group of type η , then *M* is an η -primitive on Γ .

Proof. We only need to prove that Γ is faithful. Since $(0 : \Gamma)$ is a normal subgroup of M, we have $(0 : \Gamma) = \{0\}$. Hence M is an η -primitive on Γ (see [6]).

3. Modular *j*-ideals

Definition 3.1. For $i \neq j$, a *j*-ideal of the (m, n)-near ring (N, h, k) is modular if there are some $e_1^{i-1}, e_{i+1}^n \in N$ such that for all $l \in N$, there are $j_1^m \in J$ satisfying $l = h(j_1^{j-1}, k(e_1^{i-1}, l, e_{i+1}^n), j_{j+1}^m)$.

Assume that (A, h, k) is an (m, n)-near ring. An element $e \in A$ is said to be an *i*-identity element if $k(e^{(i-1)}, z, e^{(n-i)}) = z$. If for all $1 \le i \le n$, $e \in A$ is an *i*-identity element, then e is called an identity element.

- **Remark 3.1.** (1) If A_1 and A_2 are *j*-ideals $(i \neq j)$ of N with $A_1 \subseteq A_2$ and A_1 is modular by e_1^{i-1}, e_{i+1}^n then A_2 is modular by e_1^{i-1}, e_{i+1}^n .
 - (2) $\{0\}$ is modular if N contains an identity element.
 - (3) Every normal subgroup of (N_c, h) is a modular *j*-ideal $(i \neq j)$ of N_c (by any element of N_c).
 - (4) If L is modular by e_1^{i-1}, e_{i+1}^n in an (m, n)-near ring N, then $e_1^{i-1}, e_{i+1}^n \in L$ if and only if L = N.

Theorem 3.1. Each modular *j*-ideal ($i \neq j$) $S \neq N = N_0$ is contained in a maximal one (which is modular, too).

Proof. Let S be modular by e_1^{i-1}, e_{i+1}^n . By applying Zorn's Lemma to the set of all j-ideals $S \subseteq I$ with $e_1^{i-1}, e_{i+1}^n \notin I$ and using Remark 3.1(1), we obtain the desired conclusion.

Theorem 3.2. Assume that (N, h, k) is an *i*-(m, n)-near ring and *L* is an *j*-ideal $(i \neq j)$ of *N*. If *L* is modular, then $(L:N) \subseteq L$.

Proof. We consider a monogenic *N*-group
$$\Gamma$$
 (by γ) with $L = (0 : \gamma)$. Then $(L : N) = (0 : \frac{N}{L}) = (0 : \Gamma) \subseteq (0 : \gamma) = L$.

Theorem 3.3. If (M, h, l) is an (m, 2)-near ring and H is modular by e_1 , then

$$(H:M) = (H: l(e_1^{i-1}, M, e_{i+1}^n))$$

and this is the greatest ideal of M contained in H.

Proof. If $n \in (H : M)$ and i = 1, then $l(n, M) \subseteq H$. So, we have

$$l(n, l(M, e_1)) = l(l(n, M), e_1) \subseteq l(H, e_1) \subseteq H.$$

Hence, we get $(H : M) \subseteq (H : l(M, e_1))$. If $n \in (H : l(M, e_1))$, then $l(n, l(M, e_1) \subseteq H)$. So, for all $m \in M$, we have $l(n, l(m, e_1)) \in H$. On the other hand, since H is modular, it follows that

$$l(n,m) = h(l_1^{j-1}, l(l(n,m), e_1), l_{j+1}^m) = h(l_1^{j-1}, l(n, l(m, e_1)), l_{j+1}^m) \in H.$$

Thus, $n \in (H : M)$, which implies that $(H : l(M, e_1)) \subseteq (H : M)$, and so $(H : l(M, e_1)) = (H : M)$. If $n \in (H : M)$ and i = 2, then $l(M, n) \subseteq H$. So, we have

$$l(l(e_1, M), n) = l(e_1, l(M, n)) \subseteq l(e_1, H) \subseteq H.$$

Hence, we obtain

$$(H:M) \subseteq (H:l(e_1,M)).$$

If $n \in (H : l(e_1, M))$, then $l(l(e_1, M), n) \subseteq H$. So, for all $m \in M$, we have $l(l(e_1, m), n) \in H$. On the other hand, since H is modular, it follows that

$$l(m,n) = h(l_1^{j-1}, l(e_1, l(m,n)), l_{j+1}^m) = h(l_1^{j-1}, l(l(e_1,m), n), l_{j+1}^m) \in H.$$

So, we get $n \in (H:M)$, and hence $(H:l(e_1,M)) \subseteq (H:M)$, which implies that $(H:l(e_1,M)) = (H:M)$.

Since *H* is a *j*-ideal, it follows that (H : M) is an ideal of *M* and hence $(H : M) \subseteq H$ by Theorem 3.2. If *J* is a normal subgroup of *M* with $J \subseteq H$ then trivially $J \subseteq (H : M)$.

Definition 3.2. Assume that $\eta \in \{1, 2, 3\}$ and $i \neq j$. A *j*-ideal L of (m, n)-near ring S is said to be η -modular if L is modular and $\frac{S}{T}$ is an S-group of type η .

The next theorem is stated for (2, 2)-near ring (R, +, .) in [1].

Theorem 3.4. Let (M, h, k) be an *i*-(m, n)-near ring and S be an M-group.

(1) If I is a j-ideal of M such that $j \neq i$, then $k(M_0^{(j-1)}, I, M_0^{(n-j)}) \subseteq I$.

(2) If B is an M-ideal of S, then B is an M_0 -subgroup of S.

Proof. The result follows straightforwardly from the definitions of the ideal and *M*-ideal.

Lemma 3.1. Assume that (M, h, k) is an (m, n)-near ring. The following conditions are equivalent:

- (1) M is a zero symmetric near ring.
- (2) Every *j*-ideal of M, $j \neq i$, is an *M*-subgroup of *M*.

Proof. (1) \Rightarrow (2). It follows from Lemma 3.4.

 $(2) \Rightarrow (1)$. Suppose that every *j*-ideal of *M* is an *M*-subgroup of *M*. Since 0 is clearly a *j*-ideal of *M*, it follows that 0 is an *M*-subgroup of *M*. Consequently, $k(0^{(j-1)}, M, 0^{(n-j)}) = 0$. This shows that $M = M_0$.

Lemma 3.2. If S is an M-group, then for all $x \in S$ and n = 2, $k(x^{(i-1)}, M, x^{(n-i)})$ is an M-subgroup of S.

Proof. If i = 1, then

$$k(M, k(M, x)) = k(k(M, M), x) = k(M, x)$$

so k(M, x) is an N-subgroup of S.

If i = 2, then

$$k(k(x, M), M) = k(x, k(M, M)) = k(x, M),$$

so k(x, M) is an *M*-subgroup of *S*.

Definition 3.3. Assume that (M, h, k) is an (m, n)-near ring. M is said to have the *i*-cancellation property if and only if whenever $r, s, r_1^{i-1}, r_{i+1}^n \in M$, $r_j \neq 0$ for $i \in \{1, 2, ..., n\}$, and $k(r_1^{i-1}, r, r_{i+1}^n) = k(r_1^{i-1}, r, r_{i+1}^n)$, then r = s.

Lemma 3.3. Assume that S is an M-group and O is a subgroup of S.

- (1) If O is an M-ideal of S, then O is an M_0 -ideal of S.
- (2) If O is an M-subgroup of S, then O is an M_0 -subgroup of S.

Proof. (1) Assume that *O* is an *M*-ideal of *S*. Since $M_0 \subseteq M$, it follows that *O* is an M_0 -ideal of *S*.

(2) Assume that O is an M-subgroup of S. then, $k(O^{(i-1)}, M, O^{(n-i)}) \subseteq O$. Thus, we get

$$k(O^{(i-1)}, M_0, O^{(n-i)}) \subseteq k(O^{(i-1)}, M, O^{(n-i)}) \subseteq O.$$

This yields that O is an M_0 -subgroup of S.

Lemma 3.4. Assume that (M, h, l) is an *i*-(m, n)-near ring, *S* is an *M*-group, and H_1, H_2 are subsets of *S*.

- (1) If H_1 be a normal subgroup of S, then $(H_1 : H_2)$ is a normal subgroup of the (m, n)-near ring M.
- (2) If n = 2 and H_1 is an M-subgroup of S, then $(H_1 : H_2)$ is an M-subgroup of M. (It is also valid for an M-group.)
- (3) If n = 2, H_1 is an M-ideal of S, and H_2 is an M-subset of S, then $(H_1 : H_2)$ is an i-ideal of M.

Proof. (1) Since H_1 is a normal subgroup of S, it follows that for all $a_i \in H_1$ and $s_1^{k-1}, s_{k+1}^m \in S$, $1 \le k, j \le m$, there is $b_j \in H_1$ such that $h(s_1^{k-1}, a_k, s_{k+1}^m) = h(s_1^{j-1}, b_j, s_{j+1}^m)$. Since (M, h) is an *m*-group of S, it follows that for all $z_i \in M$ and $d_1^{i-1}, d_{i+1}^m \in N$, $1 \le i, j \le m$, there is $q_j \in M$ such that $h(d_1^{i-1}, z_i, d_{i+1}^m) = h(d_1^{j-1}, q_j, d_{j+1}^m)$. It is enough to prove that $q_j \in (H_1 : H_2)$. We have

$$l(H_2^{(i-1)}, h(d_1^{k-1}, z_i, d_{k+1}^m), H_2^{n-i}) = l(H_2^{(i-1)}, h(d_1^{j-1}, q_j, d_{j+1}^m), H_2^{(n-i)}).$$

Hence, we have

$$h(l(H_{2}^{(i-1)}, d_{1}, H_{2}^{(n-i)}), \dots, l(H_{2}^{(i-1)}, d_{k-1}, H_{2}^{(n-i)}), l(H_{2}^{(i-1)}, z_{i}, H_{2}^{(n-i)}), l(H_{2}^{(i-1)}, d_{k+1}, H_{2}^{(n-i)}), \dots, l(H_{2}^{(i-1)}, d_{m}, H_{2}^{(n-i)})) = h(l(H_{2}^{(i-1)}, d_{1}, H_{2}^{(n-i)}), \dots, l(H_{2}^{(i-1)}, d_{j-1}, H_{2}^{(n-i)}), l(H_{2}^{(i-1)}, q_{j}, H_{2}^{(n-i)}), l(H_{2}^{(i-1)}, d_{j+1}, H_{2}^{(n-i)}), \dots, l(H_{2}^{(i-1)}, d_{m}, H_{2}^{(n-i)})) = h(l(H_{2}^{(i-1)}, d_{1}, H_{2}^{(n-i)}), \dots, l(H_{2}^{(i-1)}, d_{j-1}, H_{2}^{(n-i)}), l(H_{2}^{(i-1)}, q_{j}, H_{2}^{(n-i)}), l(H_{2}^{(i-1)}, d_{j+1}, H_{2}^{(n-i)}), \dots, l(H_{2}^{(i-1)}, d_{m}, H_{2}^{(n-i)})) = h(l(H_{2}^{(i-1)}, d_{1}, H_{2}^{(n-i)}), \dots, l(H_{2}^{(i-1)}, d_{j-1}, H_{2}^{(n-i)}), l(H_{2}^{(i-1)}, d_{j+1}, H_{2}^{(n-i)}), \dots, l(H_{2}^{(i-1)}, d_{m}, H_{2}^{(n-i)})) = h(l(H_{2}^{(i-1)}, d_{1}, H_{2}^{(n-i)}), \dots, l(H_{2}^{(i-1)}, d_{j-1}, H_{2}^{(n-i)}), l(H_{2}^{(i-1)}, d_{j+1}, H_{2}^{(n-i)}), \dots, l(H_{2}^{(i-1)}, d_{m}, H_{2}^{(n-i)})) = h(l(H_{2}^{(i-1)}, d_{1}, H_{2}^{(n-i)}), \dots, l(H_{2}^{(i-1)}, d_{j-1}, H_{2}^{(n-i)}), l(H_{2}^{(i-1)}, d_{j+1}, H_{2}^{(n-i)}), \dots, l(H_{2}^{(i-1)}, d_{m}, H_{2}^{(n-i)})) = h(l(H_{2}^{(i-1)}, d_{1}, H_{2}^{(n-i)}), \dots, l(H_{2}^{(i-1)}, d_{j-1}, H_{2}^{(n-i)}), l(H_{2}^{(i-1)}, d_{j-1}, H_{2}^{(n-i)})) = h(l(H_{2}^{(i-1)}, d_{1}, H_{2}^{(n-i)}), \dots, l(H_{2}^{(i-1)}, d_{m}, H_{2}^{(n-i)}))$$

We know that $l(H_2^{(i-1)}, d_f, H_2^{n-i}) \subseteq S$ for all $f \in \{1, 2, ..., m\}$ and $l(H_2^{(i-1)}, z_i, H_2^{(n-i)}) \subseteq H_1$. Since H_1 is a normal subgroup of S, it follows that $l(H_2^{(i-1)}, q_j, H_2^{(n-i)}) \subseteq H_1$. Thus, $q_j \in (H_1 : H_2)$, which implies that $(H_1 : H_2)$ is a normal subgroup of the (m, n)-near ring M.

(2) If i = 2 then $l(H_1, N) \subseteq H_1$ since H_1 is an M-subgroup of S. Assume that $x \in (H_1 : H_2)$. Then, $l(H_2, x) \subseteq H_1$. We have $l(H_2, l((H_1 : H_2), N)) \subseteq l(H_1, N) \subseteq H_1$, and so H_2 is an M-subgroup of S.

If i = 1 then $l(M, H_1) \subseteq H_1$ since H_1 is an *M*-subgroup of *S*. Assume that $x \in (H_1 : H_2)$. Then $l(x, H_2) \subseteq H_1$. We have

$$l(l(M, (H_1 : H_2)), H_2) \subseteq l(M, H_1) \subseteq H_1.$$

Consequently, H_2 is an *M*-subgroup of *S*.

Recall that H_1 is an *M*-group of *S*. If i = 2 then for all $g_1, g_2 \in H_1$, and $n_1, n_2, \ldots, n_m \in M$, we have

(I) $l(g_1, h(n_1, n_2, \dots, n_m)) = h(l(g_1, n_1), l(g_1, n_2), \dots, l(g_1, n_m)).$

(II) $l(g_1, l(a_1, a_2)) = l(l(g_1, a_1), a_2).$

Hence, for all $s_1, s_2 \in (H_1 : H_2), t \in H_2, n_1, n_2, ..., n_m \in M$, $andk(H_2, s_i) \subseteq H_1$, we have (i)

$$\begin{split} l(t, l(s_1, h(n_1, n_2, \dots, n_m))) &= l(l(t, s_1), h(n_1, n_2, \dots, n_m)) \\ &= h(l(l(t, s_1), n_1), l(l(t, s_1), n_2), \dots, l(l(t, s_1), n_m))) \\ &= h(l(t, l(s_1, n_1)), l(t, l(s_1, n_2), \dots, l(t, l(s_1, n_m)))) \\ &= l(t, h(l(s_1, n_1), l(s_1, n_2), \dots, l(s_1, n_m))). \end{split}$$

Consequently, we obtain $l(s_1, h(n_1, n_2, ..., n_m)) = h(l(s_1, n_1), l(s_1, n_2), ..., l(s_1, n_m))$. Also, (*ii*)

$$l(t, l(s_1, l(a_1, a_2))) = l(l(t, s_1), l(a_1, a_2)) = l(l(l(t, s_1), a_1), a_2)$$

which gives $l(s_1, l(a_1, a_2)) = l(l(s_1, a_1), a_2)$.

Thus, we deduce that $(H_1 : H_2)$ is an *M*-group of *S*.

Again, we recall that H_1 is an *M*-group of *S*. So, if i = 1 then for all $g_1, g_2 \in H_1$ and all $n_1, n_2, \ldots, n_m \in M$, we have

(I)
$$l(h(n_1, n_2, \dots, n_m), g_1) = h(l(n_1, g_1), l(n_2, g_1), \dots, l(n_m, g_1)),$$

(II) $l(l(a_1, a_2), g_2) = l(a_1, l(a_2, g_2)).$

Thus, for all $s_1, s_2 \in (H_1 : H_2)$, $t \in H_2, n_1, n_2, ..., n_m \in M$, and $l(s_i, H_2) \subseteq H_1$, we have (*i*)

$$\begin{aligned} l(l(h(n_1, n_2, \dots, n_m), s_1), t) &= l(h(n_1, n_2, \dots, n_m), l(s_1, t)) \\ &= h(l(n_1, l(s_1, t)), l(n_2, l(s_1, t)), \dots, l(n_m, l(s_1, t))) \\ &= h(l(l(n_1, s_1), t), l(l(n_2, s_1), t), \dots, l(l(n_m, s_1), t)) \\ &= l(h(l(n_1, s_1), l(n_2, s_2), \dots, l(n_m, s_m)), t). \end{aligned}$$

Hence, we obtain $l(h(n_1, n_2, ..., n_m), s_1) = h(l(n_1, s_1), l(n_2, s_1), ..., l(n_m, s_1))$. Also, we have (*ii*)

$$l(t, l(s_1, l(a_1, a_2))) = l(l(t, s_1), l(a_1, a_2)) = l(l(l(t, s_1), a_1), a_2)$$

which implies that $l(s_1, l(a_1, a_2)) = l(l(s_1, a_1), a_2)$. Thus, we deduce that $(H_1 : H_2)$ is an *M*-group of *S*.

(3) If n = 2 and i = 1, then using the statement (1), we conclude that $(H_1 : H_2)$ is a normal subgroup of M. If $a \in (H_1 : H_2)$ then $l(a, H_2) \subseteq H_1$.

If i = 1, then for every $a_2 \in M$, we have $l(l((H_1 : H_2), a_2), H_2) = l((H_1 : H_2), l(a_2, H_2)) = l((H_1 : H_2), H_2) \subseteq H_1$.

Thus, we have $l((H_1 : H_2), a_2) \subseteq (H_1 : H_2)$. If i = 2, then $a \in (H_1 : H_2)$, and hence $l(H_2, a) \subseteq H_1$; for every $a_1 \in M$, we have $l(H_2, (l(a_1, (H_1 : H_2)) = l(l(H_2, a_1), (H_1 : H_2)) = l(H_2, (H_1 : H_2),) \subseteq H_1$. Therefore, $l(a_1, (H_1 : H_2)) \subseteq (H_1 : H_2)$.

Remark 3.2. For any N-group homomorphism $f: G \longrightarrow T$, it holds that $(0:G) \subseteq (0:f(G))$. Hence, every monomorphism image of a faithful N-group is also faithful. Moreover, for any N-group isomorphism $f: G \longrightarrow T$, we have (0:G) = (0:T). Therefore, G is faithful if and only if T is faithful.

Theorem 3.5. Assume that (R, h, k) is an (m, n)-near ring. If the R_0 -group G is monogenic by s, then the R-group G is monogenic by s.

Proof. Since the R_0 -group G is monogenic by s, it follows that $G = k(s^{(i-1)}, R_0, s^{(n-i)}) \subseteq k(s^{(i-1)}, R, s^{(n-i)}) \subseteq G$. Thus, $k(s^{(i-1)}, R, s^{(n-i)}) = G$, which implies that the R-group G is monogenic by s.

Acknowledgment

The authors would like to thank the anonymous referees for their constructive comments.

References

- [1] Y. U. Cho, Properties on type of primitive near rings, Commun. Korean Math. Soc. 19 (2004) 601-618.
- [2] J. Clay, Near-Rings: Geneses and Applications, Oxford, New York, 1992.
- [3] M. Holcombe, A class of 0-primitive near-rings, *Math. Z.* **131** (1973) 251–268.
- [4] W. B. V. Kandasamy, Smarandache Near-Rings, American Research Press, Rehoboth, 2002.
- [5] R. Lockhart, The Theory of Near-Rings, Springer, Cham, 2021.
- [6] G. Pilz (Ed.), Near-Rings: The Theory and its Applications, Revised Edition, North-Holland, Amsterdam, 1983.
- [7] S. Uma, R. Balakrishnan, T. T. Chelvam, α₁, α₂-Near-rings, Int. J. Algebra 4 (2010) 71–79.
- [8] G. Wendt, Left ideals in 1-primitive near-rings, Math. Jannaonica 16 (2005) 145-151.
- [10] G. Wendt, 1-primitive near-rings, Math. Pannon. 24 (2013) 269–287.
- [11] G. Wendt, 0-primitive near-rings, minimal ideals and simple near-rings, Taiwanese J. Math. 19 (2015) 875-905.