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Abstract

An (m,n)-near ring is an algebraic structure similar to an (m, n)-ring but satisfying fewer axioms. More precisely, the notion
of (m, n)-near rings generalizes the concepts of rings, near rings, and (m, n)-rings. In this article, we define the notions of
i-(m, n)-near ring, N-group, N-ideal, n-primitive, constant (m, n)-near ring, modular j-ideal, and n-modular, and investigate
their properties.
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1. Introduction

Let A be a non-empty set. The sequence z;, z;11,. .., 2y of elements of A is indicated by z!* where 1 < i < m. For each
1 < i < j < m, the phrase h(z1, 29, .. .,zi,kiﬂ, .. ._,l_cj,le, ...yl is represented as h(zi,kfﬂ,lﬁl); in the case when
kiy1 = kizo = -+ = k; = k, we simply write h(z}, kG=0), 7.1)- An m-ary groupoid (A, h) is said to be an m-ary semigroup

. . c e L. — i— _ i—1 i1 _
if  is associative; that is, if h(z{", h(z]"T71), 2201 = h(z] 7' R(2]"TY), 22001 for each 21,22, 22m—1 € A, where

1 <i < j < m. An m-ary semigroupoid (A, h) is said to be an m-ary group if for all ¢\, citq,b € A, there exists 21" € A,
such that h(c{™", z;, ;) = bfor every 1 < i < m. We say that h is commutative if h(z1, 22, ..., zm) = h(z,1), Zp(2)s -+ 5 Zn(m))s
for every permutation n of {1,2,...,m} and z1,29,...,2,, € A.

2. The (m,n)-near ring

We recommend that readers familiarize themselves with the basic concepts of near rings by consulting [2,4,5,7]; we do not
define such notions in this article. In this section, we define the notion of (m, n)-near rings and provide some examples. We
also present definitions of the N-group, N-ideal, n-primitive, and constant (m, n)-near ring. Moreover, we assert theorems

related to these concepts.

Definition 2.1. Assume that A is a non-empty set. Let h and k be the m-ary and n-ary operations on A, respectively. In this
case, (A, h, k) is said to be an i-(m,n)-near ring if the following conditions are met:

(1) (A,h)isan m-ary group (not necessarily abelian);
(2) (A,k) is an n-ary semigroup;
(3) The n-ary operation k is i-distributive with respect to the m-ary operation h,
where the definition of i-distributive condition is as follows: for every cy,ca,...,cp, di,ds ..., dy, € A, if i = n, then
k(e h(dy,da, ... dy)) = h(k(E dy), k(<P do), .o k(<P d)).

If i = 1 then
k(h(dy,da, ... dn),c8) = h(k(dy,c5), k(da,ch), ..., k(dm,cy)).

If 1 <i < nthen

k(T h(dy, da, .. di), cy) = B(E(cT ! di, cfyy) k(T day ), e k(ST di, €2yy)).
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In the rest of the paper, for simplicity, we write (m,n)-near ring instead of i-(m,n)-near ring. We remark here that
every (m,n)-ring is an (m, n)-near ring.

Example 2.1. Consider the additive group Z...,. Then (Zyn,h) is a group, where h(s1,82,...,8m) = $1+ S2 4+ -+ + S
We define k on Zy, by k(s1,52,...,8,) = 81, for all s1,82,...,8, € Zmn. Note that (Zyn, h, k) is an (m,n)-near ring. For
1< < n and 5?;]“17” € Z’mn: we have k(51782a .- '75i—1ah(flaf2a .- '7f7n)78i+1a .- -7571) =81 and

h(k(Sl, 89500y 8i—1, f17 Si+1, ey Sn), ey k(sl, S2,...,8i—-1, fm, 87;+1, ey Sn)) = h(sgm)) = msi.
If mn=m — 1, thenm =1 € Zy,,,. Hence, for all 1 < i < n, (Zyn_1,h, k) is i-distributive. For i = 1, we have

k(h(flvf%---7fm)7827~-~78n):h(fl,f%---vfm):fl+f2+"'+fm and
h’(k(f1752a"'7Sn)7k(f2a327"'asn)a'--7k(f’m’<927~'~75n)):h(f17f2a'--7fm):f1+f2+"'+f71’L'

Consequently, for i = 1, (Zyn—1, h, k) is 1-distributive.

Assume that 7 is a non-empty subgroup of an (m, n)-near ring (A, h, k). Then I is said to be a normal subgroup of A if
for each a; € A, 5], s, € Aand 1 < 1,5 < m there is b; € I such that h(s{ ", a;, s7%,) = h(s] ', b, sTy).

Definition 2.2. Assume that I is a non-empty subset of an (m,n)-near ring (A, h,l). The set I is said to be an ideal of A if
(1) Iis a normal subgroup of the m-ary group (A, h), (I,h) is an m-ary group,
(2) forevery ay,az,...,a, € A, 1(at 11, al,,) C I

(3) For all rlf_l,rﬂrl,w{;l,wﬁl € Aand 1 < k <mn, d € I, there exists o € I so that l(w] ', h(rF~',d, Thy1), Wiy ) equals

h(l(w{fl,rl,wyﬂ), I(wl ™, T2, W)y, I(wl™, Th—1,W} 1), 0, l(w{fl,rkﬂ,w;ﬁrl), (T Ty Wit q))-
The set I is called an i-ideal of A if it satisfies (1) and (2). The set I is called a j-ideal of A for j # i if it satisfies (1)
and (3).

If J is an i-ideal for each 1 < i < n, then J is referred to as an ideal of A.

Definition 2.3. A proper ideal J of an (m,n)-near ring (A, h,l) is said to be prime if for any ideals Ay, As,..., A, of A,
(A1, As, ..., A,) C Jimplies Ay C Jor Ao C Jor...or A, CJ.

Definition 2.4. Assume that (N, h, k) is an (m,n)-near ring, (G, h) is an m-group and

f:GxGEx - XGXNXGxGEx--xG— G

i—1 n—i

is a mapping (f(gfl,n,ggﬂrl) = k(gi™, n,9iy1)). In this case, (G, f) is an N-group if for all g7 € G and for all n{*,a} € N,
the following conditions hold:

(D k(gi " h(na,n2, .. onm), %) = h(k(gi " na, g0 1) k(g nas g0 ), - k(91 e, 914 1)-
(2) Forall2<j<i—1land2<1<n,

. 1 . s . - i
k(gi 1,k(a’f),g?+1) :k(g{ ,k(; 17a'1l Z+])aa2—i+j+1’g?+l) :k(gi 1’a1 1,]6(@?,91-1; 1)’gln+i)-

Example 2.2. In Example 2.1, if we let N = Zyn—1, i@ # 1 and G = Zp,—1, then (Zy—1,k) is @ Zyyn—1-8roup. For all
2P € Lm1,2 € L1, we have k(2171 2, 2 1) =21 € Lp—1 = G.

(1) We note that k(gifl, h(ni,na,...;Nm), g7 1) = g1 = mgy = h(k(glfl,nl,g{ﬁirl)7 e k(giflmm,g{;l)).
(2) Forall2<j<i—1and?2<1<n,we have
g = k(g7 k(@) gly) = k(g k(g al ™) an s gi) = kgl b kar, g ) gt
Definition 2.5. Assume that (N, h,k) is an (m,n)-near ring, G is an N-group, & # A C G and & # B C G. We define
(A:B)x ={ne N | k(BOY n BM=9) C A}

The set (0: B)n is called the i-annihilator of B in N.
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Example 2.3. In Example 2.1, if we let N = Z,,—1, G = Z and A = 37Z, and B = 6Z, then
(A:B)y = (3Z:6Z)z,,, , = {5 € Zpn_1 | K(6ZUV 5,62V C3Z} = {s € Zpyn_1 | 6Z C 32} = Ly 1.
For i # 1, we have (0:6Z) = {s € Z | k(6Z(~1D 5,6Z" ) =0} ={s€Z | 6Z =0}, and fori =1, we have
(0:6Z)={scZ|k(s,6Z"V)=0={s€Z | s=0}={0}.
Definition 2.6. An N-group B is said to be faithful if k(si™*, 0, sp1) =0, forall st € Band o € N, then o = 0.
Example 2.4. In Example 2.1, if i = 1, N = Zy—1, and B = 7Z, then

(0:B)N=(0:Z)={5€ Zmn_1 | k(5,Z"V) =0} ={s € Zyn_1 | s =0} =0z

mn—1"°

Definition 2.7. Assume that M is an O-group and Q is a subgroup of M. In this case Q is said to be an O-subgroup of M
if k(QU=1,0,Q"9) C Q and M is said to be O-simple if the only O-subgroups of M are k:(Os\Z[l), O., 05\7}171)) and M.

Example 2.5. In Example 2.1, if we take O = Zypyn_1, t # 1, and M = Z, and let Q be a subgroup of Z, then the relation
EQUY, Zpn_1,Q"D) = Q C Q holds. Thus, every subgroup of Z.is a Z,,,1-subgroup of Z.

Definition 2.8. Assume that (M, h) is an m-group, H C M, and that M is an O-group for the (m,n)-near ring (O, h,l). In
this case, H is an O-ideal of M if the following conditions hold:

(1) (H,h)is a normal subgroup of (M,h),
(2) for all r{_l,rg’jrl e M, s{_l,s?H €0, 1<k#i<m,1<j#i<nandd € H, there exists z € H such that
l(s{ilvh(ﬂfflvda 7'211),5;}“)
= h(l(s1 ", 5501)s (s 7y, S51)se s s ey, 87115 25 st g, SH1)se s 1(sT™ o, 5541))-
The O-group M is said to be a simple O-group if 0 and M are the only O-ideals of M.

Example 2.6. In Example 2.1, if we let H = 27, O = Zypn—1, i = 1, and M = 7Z, then (2Z,h) is a normal subgroup of (Z, h),
and for all r{;l, T €L, s{'*l, 871 € Lmn—1, and 1 < k <n, d € 2Z, the following relation holds:

h(rE= Y d, e ) = k(h(rE Y dyr ), s3) = h(k(ry, s3), k(ra, s8), o k(rke1, 830, L k(Fiy1, 3, -, k(i 53)).-
If we let | = d, then there exists | € 27 such that the second condition of the definition is valid. Now, we conclude that 27 is
a Zoypn—1-ideal of Z

Definition 2.9. Assume that (M, h,l) is an (m,n)-near ring and (W,l) is an M-group. In this case, W is said to be a
monogenic M-group if there is w € W such that [(w(—1, M, w®=9) = W.

Example 2.7. In Example 2.1, if we let M = Zyp,—1, W = {0}, and w = 0, then k(00— Z,,,,_1,00"=9) = 0 = W. Hence,
W = {0} is @ monogenic Z,,—1-group.

Example 2.8. In Example 2.1, if we let M = W = Z,,,_1, then for all w € W, k(Zpn_1, 0" ) = Zyn_1 = W. So, we
conclude that Z,,,_1 is a monogenic Z,, _1-group.

Assume that (A, h, k) is an (m,n)-near ring, I is an ideal, (A, h) is a group, and [ is a normal subgroup. Then the
quotient group (?, H, K) is defined. An m-ary operation H on the cosets is defined by the m-ary operation h given below:

H(h(dy,,d1,y,....dv, D), h(day doy,. .. do 1)y Bdmy s s o s oy s 1))
= h(h(dy,,dv,, ... d1, . h(da,,day,. .. do,  h(ds,,ds,, ... d5, ...
(11> Aim—1)2 - - s A1y, (s s s <y i3 T) o)

m—17

An n-ary operation K on cosets is defined by the n-ary operation k given below:

K(h(dy,,dv,,....dv, D), h(do,,doy, ... do. 1), h(dn, dny, .. dn, . T))
= h(k(h(dy, drgs - dry, D)oo h(dGty, dotygs - o1y oy 1)s i
W1y, g 1)as -5 g1y s D)) ooy By digs ooy, 3 1))y K(R(dny day,s
diyy o D)y h(dg1ys s d1yss s o1y s D)y iy s B(diig 1y diisnys - oy diisnyn s D)) oo s (diy sy ydp 1)), )
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Theorem 2.1. If I is an ideal in an (m,n)-near ring (A, h, k), then (4, H, K) has the structure of an (m,n)-near ring, where
the operations H and K are defined after Example 2.8.

Proof. We prove that H is well defined. Assume that h(d;,,d;,,...,d;,_,,I) = h(w;,wiy,...,w;,,_,,I), for 1 <i <m. Then
H(h(d1,,d1yy.. - d1,, 1, D), h(da,, doys - yda, 1 1), s h(dmy s Ay - v oy Ay 1y 1))

= h(h(dy,,dr, ... d1, . h(do,,day,... do. . h(ds,, ds,,....ds .,
e dim 1)y dim1)s -+ A1y sy 1 D))

= h(dy,,dvys. .. dv, h(day,doy, ... do . h(ds, . ds,, ... ds
h(d(mfl)lad(mfl)ga R d(mfl)mfl ) h(wml s Wmygs - - ’wmmfwl) ce ))

m—17 """

= h(dy,,day,...,d1,,_,, h(da,,doy, ... do, _ h(ds,,ds,,...,ds, _|\...
h(d(mfl)l,d(mfl)z, ey d(mfl)mfl 5 h([, wm17wm27 e ’wmm—l) e ))

= h(dy,,du,, .. hdy, ) M(day doy,s ooy da,,,  0(ds,,dsy, o da,, s
R(R(dm—1),> Aim—1)a> -+ s Am—1)m—1 s L)s B(Winy s Wingy s+ o oy Winr 1) -+ )

= h(dy,,d1y,...,d1,,_,, h(da,,doy, ... da, _ h(ds,,dsy,y. .. ds, |y

h(h(w(m,l)l,w(m,l)z, . aw(mfl)m7171>vwm17wm27 ce 7wm(m—l)) ce ))

== h(dll,db,-~-,d1,,n,1,h(h(d21,d227~--7d2m,1,1),w31,w32,~--,wsm,l),---

h(w(m,l)l,w(m,l)z, ey w(mfl)mflvh(wmuwmz» . ,wmm7171) . ))

= h(dll 5 dlza <. ,d177171,h(h(IU21,w22, s ’w27n—1?1)? W3, , W35, - - - 7w3m—1)’

RN h(w(m,1)1 5 w(m,1)2, e ,w(m,l)mil,h(wml,wmz, ey Wy g I) ce ))

= h(dllvdlz, ce ,d177171,h(h([, W2, , W2y« - ,wgmil), W3y ,w37%1), ceey
h(w(m,l)l,w(m,l)z, N w(m71)m,17h(wm1 s Wmg s+ - ,wmm7171) PN )

= h(h(d117d127 ce ,d17n71,[), W2, W2y -+« wgmil), h(wgl,wgz, e W3, e
h(w(m,l)l,w(m,l)z, N w(mfl)mflvh(wmuwmz» ce ,wmm7171) PN ))

= h(wll,wlz, N ,wlmfl,h(wgl,wgz, c. ,wgmfl,h(w?,l,w?,?, e W3, e
h(w(m,l)l,w(m,l)z, N w(mfl)mflvh(wMN'wmz» ce ,wmm7171) PN ))

= H(h(wy,,wiyy .. oywi,, D)y MWy s Wing s ooy Win, 15 ).

A
T
group. Furthermore, since (A, k) is an n-ary semigroup, it follows that (?, K) is an n-ary semigroup. The n-ary operation

k is i-distributive with respect to the m-ary operation h. Thus, the n-ary operation K is i-distributive with respect to the

Since I is an ideal, it follows that the operator K is well defined and since (A, ) is an m-ary group so (4, H) is an m-ary
m-ary operation H. O
Definition 2.10. Assume that (M, h, k) is an (m,n)-near ring. In this case, a monogenic M-group W (W # 0) is of

(1) type 0if W has no M-ideals except 0 and W,

(2) type 1if W is of type 0 and for all w € W either k(wY, M, w™9) = W or k(w1 , M,w ) = k(()g,_l), M,,0\),

(3) type 2 if W has no M-subgroups except 0 and W (particularly, W is My-simple),

(4) type 3 if W is of type 2 and for all s € M, k(a{™",s,al ;) = k(w}™', s,wl ) implies a; = w; forall i € {1,2,...,n}.
Example 2.9. In Example 2.1, if we let M = Z,,—1 and W = {0}, then Z,,—1-group {0} is of type 0.

Example 2.10. In Example 2.1, if we let M = W = Zy,,_1 and i = 1, then Z,,,,_1-group Z,,_1 is of type 1.
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Primitive near rings play a particular role in the structure theory of near rings because of the applications of primitive
rings in ring theory [3,8-11]. In the case of (m, n)-near rings, we can consider several kinds of primitives.

Definition 2.11. Let (W, h, k) be an (m,n)-near ring. Then W is said to be n-primitive, for n € {0,1,2, 3}, if there exists a
group S such that S is a faithful W-group of type 1.

An ideal I of an (m, n)-near ring (M, h, k) is an n-primitive ideal of M if and only if % is an p-primitive.
Definition 2.12. T'is said to be strongly monogenic if k(TU~1 N, T("=9) =£ {0} and for all s € T either k(s N, s(=9) =T
or k(=1 N, s=) = {0}.
Example 2.11. In Example 2.7, W = {0} is a strongly monogenic Z,,,—1-group.
Definition 2.13. Assume that (W, h, k) is an (m,n)-near ring and 0 is the identity element of (W, h). Then

Wo={we W | k06" w0 %))=0,1<s<n}

is called the zero symmetric part of W. In addition, W. = {w € W | k(06~1 w,0"=*)) = w, 1 < s < n} is called the resistant

part of W. An (m,n)-near ring W is said to be a zero symmetric near ring if W = Wy. An (m,n)-near ring W is said to be a
constant (m,n)-near ring if W = W..

Example 2.12. In Example 2.1, if we let W = Z,,,,_1, © # 1, then

Z(m,nfl = {U) € Zmn-1 | k(o(s—l)7w70(n—s)) =0,1<s< ’I’L} = Zomn—1,
which implies that Z(mp—1y, = {w € Zyn—1 | k(w, 0=y = w, 1 < s < n} = Zynn_1. Therefore, Z,,,_1 is a constant
(m,n)-near ring.
Lemma 2.1. Ay and A, are i-(m,n)-subnear rings of the i-(m,n)-near ring (A, ¢l) fori=1n.
Proof. We show that Ag is a subgroup of A. If 21, za,...,2,, € Ay, then l( -1 xj,O(”*i)) =0forl<j<mandl<i<n.
Now, if i = n, then 1(00~V) ¢(21,29,...,2,),0" D) = c(l(O(’ D2y, 00 =0) 100D g 0= 1007 2, 007 7)) = 0.
Therefore, c(z1,22,...2,) € Ag. Since (A, h) is an m-group, for all 27",y € Aj there is s € A such that for all 1 < j < m,

c(xj1 ts, 2% 1) = y. It is enough to show s € Aq. Here, we have

0 = l(()(“_l),y, 0(n=1) = 1(06=1), c(:nj1 ;8,2 ), O("’i)) . _ _ . _
= (100~ 1, 00—, l(O(Z‘l),xl 1,0=0) 1(0G=D 5, 0=D) (06D ;0 1,0=D), . 100Dz, 007 —9)))
= ¢(0U=D,1(06=1), 5,0(=1)), 0lm=1)),
Hence, 0 = ¢(0U=1 (00— s 0=9) 0(m=7)), Since (A, c) is an m-group, it follows that 0 = 1(0¢~1),s,0("=9), Thus, s € Ao,
which implies that (Ag, ¢) is a subgroup of (4, ¢,1). Next, if we take s1, s2,...,8, € Ag, thenforalll1 <i<nand1<j<n,
we have 1(00~1 s, 0"=0) = 0. If i = n, then [(0"~ V), I(sy, 59,...,5,)) equals I(1(0" "1 51),89,...,58,) = 1(0, 59,83, ..,8,) =
(

l(l(O(")),SQ,s;),,.. ySn) = 100,101 55), 53, ..., 5,) =1(0,0, 83,54, ...,5,) =---=1(0""D 5,)=0.If i = 1, then
1(1(51,82,...,50),0 D) =1(s1,80,...,80-1,0(5,,0" D)) =1(51,80,...,8,_1,0) = (51,52, ..., 80_1,1(00™))
=1(s1, 82, .., Sn—2,(s2, 0("_1)),0) =1(s1,592,...,8,-2,0,0) = -+ = (51, 0(”_1)) =0.
Therefore, I(s1, s2,...,5,) € Ag. So, we get l( ) C Ap. This indicates that (Ag,c,!) is an (m,n)-subnear ring of (m,n)-

near ring (A4, c, ). We show that A, is a subgroup of A. Let z;,z2,...,2,, € Ag. Then, we have (00~ z;,0")) = x, for
1<j<mand1<i<n. Now, we obtain

Z(O(i_l), (X1, T, ... T), 0("_i)) = C(Z(O(i_l),xl, O("_i))7 l(O(i_l)wg,O(”_i)), o l(O(i_1)7xm70("_i))) =1(21,Z2, ..., Tm).

This yields that c¢(z1, z2,...2m) € A.. as (A, h) is an m-group, for all 27",y € A, there is s € A such that forall 1 < j <m,
c(zl™!) s, 2% 1) = y. It is enough to show that s € A.. We know that

i—1
ez

(ST ) =Y = l(o(ifl)’%o(nfi)) — l(o(iil)vc(fcji_l,S,xﬁl),O(”*“)
= c(1(00, 2y, 0D, 1007, zyy,007D), 1007, 5,007D), 1007, 24,0070, L 1007, 2, 07D
:C(Iifl,l(o(’b 1) , S, 0(n 1)) j+1)

So, we obtain c(z] ', 5,27 ) = c(z] 1, 1007V, 5,0"7D) 2™ ). As (A, c) is an m-group, we get s = [(00~1),5,00"9), and so

s € A.. Hence, (A, c) is a subgroup of (4, c,1). Next, if s1,s2,...,5, € A, then [(00~1) 5;,00""9) = 5, forall 1 <i < n,

1 < j < n. This gives that if i = n, then (0"~ (51, 52,...,5,)) = 110D s1),52,...,8,) = (51,52, ...,5,). On the other
hand, if i = 1, then we have I(I(s1, S, ..., 5,),0" ") = I(s1,89,...,1(5,,0" D)) = (51, 59,...,5,).

Therefore, I(s1, s2,...,8,) € A, and l(A,(:”)) C A.. Hence, (A., ¢, 1) is an (m,n)-subnear ring of (m,n)-near ring (4, ¢,1).

O
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Theorem 2.2. If T is a monogenic M-group (by yo) and an My-simple (T can be considered as an My-group), then either
k(6D M, 1) =0 or T is an M-group strongly monogenic.

Proof. For all s € T, k(s(~1, M, s("=9) <, T implies k(s0~1, M, s"=9) = {0} or k(sO~D, M,s"=D) =T. O
Theorem 2.3. Assume that I is an ideal of (2,2)-near ring (S, h,z), I' is a group, and n € {1,2, 3} (see [6]).

(1) IfT is an S-group with I C (0:T) then z(h(ni,I),v1) = z(n1,v1) makes I an $-group.
If T is an S-group of type n, then I" is an ?-group of type .
If T is a faithful S-group, then T is a faithful %group.

(2) If T is an 5-group, then z(h(n1,I),71) = z(n1,7), so I is an S-group with I C (0: T).
IfTisan %-group of type n, then T is an S-group of type 1.
If T is a faithful % group, then T is a faithful S-group.

Proof. We prove the result for i = 1. The proof for i = 2 is similar to the proof concerning i = 1. We have z(h(n,I),7) =
h(z(n,7),2(I,7)) = z(n,7) € I, and so z(h(n,I),v) € T. Hence, I'is an 2-group. Let I be an S-group of type 0. So, I has no
S-ideals except 0 and I'. Assume that L is an %-ideal of I',foralld e L,r € T, and h(l,I) € %; so, there is s € L such that

2(h(d, r), h(1, 1)) = h(s, 2(r, h(1, 1)), (L, h(d, 7)) = 2(h(1, 1), h(d,r)) = h(s, 2(h(1, I),)) = h(s, 2(1,7)).

This implies that L is an S-ideal of I'. Thus, L = 0 or L = I', and consequently, I" is an %-group of type 0.

If T is an S-group of type 1, then for all g € T, 2(S,g) = I or (5, g) = 2(S,0r). Also, 2(3,9) = 2(h(S,I),9) = (S, 9).
Thus, z(%,9) =T or 2(%, g) = 2(S.,0r) = 2(h(S., I),0r) = z(%, Or). Therefore, I is an 2-group of type 1.

If ' is an S-group of type 2, then I' has no S-subgroups except 0 and I". Assume that H is an %-subgroup of I'. So,
2(5,H) C H and 2(5,H) = z(h(S,1),H) = h(2(S, H),2(I,H)) = (S, H). It means that z(S, H) C H, which implies that H
is an S-subgroup of I'. Therefore, H = 0 or H = I'. Consequently, I is an %-group of type 2.

Assume that I' is a faithful S-group, (0 : I')g = 0. If h(n,I) € (0 : 1“)%, then 0= z(h(n,I),v) = 2(n,v). Therefore,
n € (0:v) = 0, which implies that n = 0, and hence (0 : v) = O% So, we deduce that I is a faithful %-group.

Next, we prove (2). If T' is an £-group and z(n1,v1) = z(h(n1,1),71) €T, then I is an S-group.

s s

Assume that I' is an +-group of type 0 so I has no 7-ideals except 0 and I'. Assume that S is an S-ideal of I'. Then, for

allde L,r e T"and [ € S there is s € L such that
z(l,h(d,r)) = h(s,z(l,7)), z(h(1,I),h(d,r)) = z(I, h(d, 7)) = h(s,z(l,r)) = h(s, z(h(l,I),r)).
This yields that L is an %-ideal of I', and hence L. = 0 or L = I'. Therefore, I" is an S-group of type 0.

IfTis an %-group of type 1, then for all g € ', we have z(%g) =Tor z(%,g) = z(%,Op), z(%,g) =2z(h(S,1I),9) = 2(S, g).
Thus, 2(S,g9) =T or z(S, g) = 2(S¢,0r) = 2(h(S., I),0r) = z(%, Or). Hence, we conclude that I is an S-group of type 1

If T is an ?—group of type 2, then I' has no ?—subgroups except 0 and I". Assume that H is an S-subgroup of I', so
2(S,H) C H and 2($,H) = 2(h(S,1),H) = h(z(S,H),z(I,H)) = 2(S, H). Thus, z(£, H) C H, which implies that H is an
?—subgroup of I'. Therefore, we have H = 0 or H = I'. Consequently, I" is an S-group of type 2.

Assume that T is a faithful %—group, so (0: F)% = 0. Assume that n ¢ T and n € (0:T')s. So, z2(h(n,I),v) = z(n,v) = 0.
This implies that h(n,I) € (0 : 7); = 0. Hence, h(n,I) = 0s and so n = 0. This yields that (0 : v)s = 0. Therefore, we
conclude that I is a faithful S-group. O

We note that (%)0 = % Each S-group I" can be viewed as an Sy-group as well as an S.-group [6].

Theorem 2.4. If T is a faithful N-group, then N.and Ny are faithful N-groups (see [6])

Theorem 2.5. Assume that I is an ideal of a (2,2)-near ring (N, h, k). The following statements are equivalent:
(1) Iis an n-primitive.
(2) thereis an #-group I such that T is faithful and of type 1.

Proof. (1) < (2) By the definition of n-primitive ideal, I is n-primitive if and only if % is an n-primitive near ring if and
only if there exists an %-group I" such that % is n-primitive on %-group I' if and only if there exists an %-group I' such
that I is faithful and of type 7. O
Theorem 2.6. If (M, h, k) is a simple (m,n)-near ring and T is an M-group of type n, then M is an n-primitive on T.

Proof. We only need to prove that I is faithful. Since (0 : I') is a normal subgroup of M, we have (0: I") = {0}. Hence M
is an n-primitive on I" (see [6]). O
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3. Modular j-ideals

Definition 3.1. For i # j, a j-ideal of the (m,n)-near ring (N, h, k) is modular if there are some e\~ ", el | € N such that for
all | € N, there are j* € J satisfying | = h(j] ", k(ei_l,l,eﬁrl),jﬁl).

Assume that (A, h, k) is an (m,n)-near ring. An element e € A is said to be an i-identity element if k(e("=1), 2, ("=9)) = 2.
Iffor all 1 <7 < n, e € Ais an i-identity element, then ¢ is called an identity element.

Remark 3.1. (1) If A; and A; are j-ideals (i # j) of N with A; C As and A, is modular by 63717 ei, 1 then Ay is modular
by e\ ', er, ..

(2) {0} is modular if N contains an identity element.
(3) Every normal subgroup of (N, h) is a modular j-ideal (i # j ) of N. (by any element of N.).
(4) If L is modular by €}, e}, in an (m,n)-near ring N, then ¢{"*,e?', | € Lif and only if L = N.
Theorem 3.1. Each modular j-ideal (i # j) S # N = Ny is contained in a maximal one (which is modular, too).

Proof. Let S be modular by ¢!~ *, ei, 1. By applying Zorn’s Lemma to the set of all j-ideals S C I with et ef 1 ¢ I and
using Remark 3.1(1), we obtain the desired conclusion. O

Theorem 3.2. Assume that (N,h, k) is an i-(m,n)-near ring and L is an j-ideal (i # j) of N. If L is modular, then
(L:N)C L.

Proof. We consider a monogenic N-group I' (by ) with L = (0: 7). Then (L: N) = (0: %)= (0:T) C (0:v) = L. O
Theorem 3.3. If (M, h,l) is an (m,2)-near ring and H is modular by ey, then
(H : M) = (H : (e, M, el,.))
and this is the greatest ideal of M contained in H.
Proof. If n € (H : M) and i = 1, then I(n, M) C H. So, we have
I(n,l(M,e1)) =1(l(n,M),e1) Cl(H,e1) C H.

Hence, we get (H : M) C (H : I(M,e1). If n € (H : I(M,e1)), then I(n,l(M,e;) € H. So, for all m € M, we have
l(n,l(m,e1)) € H. On the other hand, since H is modular, it follows that

I(n,m) = h(l]~", 1(1(n,m), e1),17%) = h(1{~ ", U(n,1(m, 1)), 17%,) € H.

Thus, n € (H : M), which implies that (H : {(M,e;)) C (H : M),and so (H : I{(M,e;)) = (H : M).
Ifne(H:M)andi=2,theni(M,n) C H. So, we have

I(l(er, M),n) =l(e1,l(M,n)) Cl(e1, H) C H.
Hence, we obtain
(H:M)C (H:l(er, M)).
Ifn e (H :l(er,M)), then I(I(e1, M),n) C H. So, for all m € M, we have [(I(e1,m),n) € H. On the other hand, since H is
modular, it follows that

l(m,n) = h(l{_la 1(61, l(m,n)), lﬂl) = h(l{_lv l(l(elvm)vn%lﬁl) €H.

So, we get n € (H : M), and hence (H : l(e;, M)) C (H : M), which implies that (H : l(e;, M)) = (H : M).
Since H is a j-ideal, it follows that (H : M) is an ideal of M and hence (H : M) C H by Theorem 3.2. If J is a normal
subgroup of M with J C H then trivially J C (H : M). O

Definition 3.2. Assume thatn € {1,2,3} and i # j. A j-ideal L of (m,n)-near ring S is said to be n-modular if L is modular
and ? is an S-group of type 1.
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The next theorem is stated for (2, 2)-near ring (R, +,.) in [1].

Theorem 3.4. Let (M, h, k) be an i-(m,n)-near ring and S be an M-group.

(1) If I is a j-ideal of M such that j # i, then k(M2 1, M{" ) C I.

(2) If B is an M-ideal of S, then B is an My-subgroup of S.
Proof. The result follows straightforwardly from the definitions of the ideal and M-ideal. O
Lemma 3.1. Assume that (M, h, k) is an (m,n)-near ring. The following conditions are equivalent:

(1) M is a zero symmetric near ring.

(2) Every j-ideal of M, j # i, is an M-subgroup of M.

Proof. (1) = (2). It follows from Lemma 3.4.
(2) = (1). Suppose that every j-ideal of M is an M-subgroup of M. Since 0 is clearly a j-ideal of M, it follows that 0 is
an M-subgroup of M. Consequently, k(00— M,0(»=7)) = 0. This shows that M = M. O

Lemma 3.2. If S is an M-group, then for all z € S and n =2, k(z"~Y, M, z("=9) is an M-subgroup of S.

Proof. If i = 1, then
k(M,k(M,z)) = k(k(M,M),z) = k(M, z),

so k(M, x) is an N-subgroup of S.
If ; = 2, then
k(k(z, M), M) = k(x,k(M,M)) = k(x, M),

so k(x, M) is an M-subgroup of S. O

Definition 3.3. Assume that (M, h,k) is an (m,n)-near ring. M is said to have the i-cancellation property if and only if
whenever r,s,7," ', 1P € M, r; £ 0 fori € {1,2,....n}, and k(ri"", 7,77 ) = k(r{" ' r 1l ), then v = s.

Lemma 3.3. Assume that S is an M-group and O is a subgroup of S.
(1) If O is an M-ideal of S, then O is an My-ideal of S.
(2) If O is an M-subgroup of S, then O is an My-subgroup of S.

Proof. (1) Assume that O is an M-ideal of S. Since My C M, it follows that O is an Mj-ideal of S.
(2) Assume that O is an M-subgroup of S. then, k(O M, 0"=9) C O. Thus, we get

k(OU=1, My, 0=9) C k(06D M,0"=9) C O.
This yields that O is an Mj-subgroup of S. O
Lemma 3.4. Assume that (M, h,l) is an i-(m,n)-near ring, S is an M-group, and H,, Hy are subsets of S.
(1) If Hy be a normal subgroup of S, then (H;y : Hs) is a normal subgroup of the (m,n)-near ring M.
(2) If n =2 and H; is an M-subgroup of S, then (H; : Hy) is an M-subgroup of M. (It is also valid for an M-group.)
(3) If n =2, Hy is an M-ideal of S, and Hs is an M-subset of S, then (H; : Hs) is an i-ideal of M.

Proof. (1) Since H; is a normal subgroup of S, it follows that for all a; € H; and s’f‘l, sph1 € 8,1 < k,j < m, there
is b; € H, such that h(s"', ay, sph1) = h(s{_l,bj,sﬁl). Since (M, h) is an m-group of S, it follows that for all z; € M
and d'ﬁ‘l,dﬁl € N, 1 <4i,j < m, there is ¢; € M such that h(d’fl,zi,dﬁl) = h(d{_l,qj,dg’il). It is enough to prove that
g; € (Hy : Hz). We have

l(HQ(iil)v h(dlf_lﬁ Ziy d?—&-l)a H;Lii)) = l(HQ(iil)v h(djll_lﬂ 4j, dﬂ—l% Hénii))'
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Hence, we have

hHS™ dy JHS Y, EHSTY dyey, B 0HSTY, 2 BT UHS Y dpgy, HSD), L 1(HS Y dy, HSTYY)
= h’(l(HQ(Z_l)y dla Hén_l))v R Z(H2(Z_1)7 dj—17 HQ(TL_Z))) Z(HQ(l_l)a qj, HQ(n_Z))7 Z(HQ(’L_l)? dj+1a HQ(n_l))7 e 7Z(H2(z_1)7 dma HQ(n_l)))
We know that l(Héi_1)7df, Hg_i)) C Sforall f € {1,2,...,m} and l(HQ(i_l)7 zi,Hén_i)) C H,. Since H; is a normal subgroup

of S, it follows that l(Héi_l)7qj, Hé”_i)) C H;. Thus, ¢; € (H; : Hz), which implies that (H; : H>) is a normal subgroup of
the (m,n)-near ring M.

(2) If i = 2 then I(H;,N) C H; since H; is an M-subgroup of S. Assume that z € (H; : Hy). Then, I(Hy,z) C H;. We
have I(H2,l((H; : H2),N)) CI(Hy,N) C Hy, and so H; is an M-subgroup of S.
Ifi = 1 then (M, H,) C H; since H; is an M-subgroup of S. Assume that x € (H; : Hs). Then I(z, Hy) C H;. We have

l(l(M, (Hl : HQ)),HQ) Q Z(M, Hl) Q Hl.

Consequently, Hs is an M-subgroup of S.
Recall that H; is an M-group of S. If i = 2 then for all ¢,, 9o € Hy, and ny,no,...,n, € M, we have

(D (g1, M(n1,n2,...,nm)) = h(U(g1,n1),1(g91,12), .., (g1, m))-
(D) (g1,U(a1,az)) = (I(g1,a1), az).
Hence, for all S1,82 € (Hl : HQ), te Hy,ni,ng,...,nym € M, cmdk(Hg,si) C Hq, we have
(4)
U(t,(s1,h(n1,ne,...,nm))) =11, s1), h(n1,na,...,10m))

= h’(l(l(tv 31),77,1), l(l(tv 81),712)7 e 7l(l(t7 51)5 nm))
= h(l(t,l(s1,m1)),1(t,1(s1,n2),..., L(t,1(s1,mm))
=1(t, h(l(s1,m1),1(s1,m2), ..., 1(s1,m)).

Consequently, we obtain I(s1, h(ni,na,...,nm)) = h(l(s1,n1),1(s1,n2),...,1(s1,nm)). Also,
(i)
I(t,1(s1,l(a1,a2))) = U(I(t, s1),l(a1,a2)) = L(I(I(t, s1),a1), az),

which gives I(s1, (a1, a2)) = l({(s1,a1), az).
Thus, we deduce that (H; : Hy) is an M-group of S.
Again, we recall that H; is an M-group of S. So, if i = 1 then for all g1, 9> € H; and all ny,ns,...,n,, € M, we have

(D I(h(n1,n2, .. snm), 91) = h(l(n1, 91), U(na, g1), - - -, Unim, 91)),
(ID l(l(al,az),gz) = l(al,l(a2792))-
Thus, for all S1,82 € (H1 : HQ), t e Hy, ny,ne,...,Mm € M, and l(Si,HQ) - H1, we have
(4)

l{I(h(n1,ng,...,0m),51),t) = l(h(n1,n2,...,nm),(s1,1))

= h(l(n1,1(s1,t)),l(na, 1(s1,t), .., L(Nm, 1(s1,1)))
= h(l(l(ny,s1),t),l(l(n2,81),%), ..., l(l{(nm, $1),1))
=1U(h(l(n1,81),l(n2,82), .., l(npm, Sm)), t)

Hence, we obtain I(h(n1,n2,...,7m), $1) = h(l(n1, $1),1(n2,51), ..., 1(nm, s1)). Also, we have
(i)
1(t,1(s1,l(ar,a2))) = Ut s1), (a1, a2)) = 1(I(1(E, s1),a1), az),
which implies that I(s1,1(a1,a2)) = 1(I(s1,a1), az). Thus, we deduce that (H; : Hs) is an M-group of S.
(3) If n = 2 and ¢ = 1, then using the statement (1), we conclude that (H; : H,) is a normal subgroup of M. If
a € (Hy : Hy) then l(a, Hy) C H;.
If i = 1, then for every as € M, we have [(I((H; : H2),a2), Ha) = [((H; : H2),l(a2, Hs)) = I((H; : H2), Hy) C H;.
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Thus, we have [((H; : Hs),a2) C (Hy : Hs). If i = 2, then a € (H; : Hs), and hence I(Hs,a) C Hy; for every a; € M, we
have [(Hy, (I(ay, (Hy : Hz)) = [(I(H2,a1), (Hy : Ha)) = I(Ha, (Hy : He),) C Hy. Therefore, (a1, (Hy : H)) C (Hy : Hy). O

Remark 3.2. For any N-group homomorphism f : G — T, it holds that (0 : G) C (0: f(G)). Hence, every monomorphism
image of a faithful N-group is also faithful. Moreover, for any N-group isomorphism f: G — T, we have (0: G) = (0: T).
Therefore, G is faithful if and only if T is faithful.

Theorem 3.5. Assume that (R,h,k) is an (m,n)-near ring. If the Ry-group G is monogenic by s, then the R-group G is
monogenic by s.

Proof. Since the Ro-group G is monogenic by s, it follows that G = k(s(~1, Ry, s("=) C k(s~V R,s("=9) C G. Thus,
k(s¢~V, R, s"Y) = @, which implies that the R-group G is monogenic by s. O
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