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Abstract
An (m,n)-near ring is an algebraic structure similar to an (m,n)-ring but satisfying fewer axioms. More precisely, the notion
of (m,n)-near rings generalizes the concepts of rings, near rings, and (m,n)-rings. In this article, we define the notions of
i-(m,n)-near ring,N -group,N -ideal, η-primitive, constant (m,n)-near ring, modular j-ideal, and η-modular, and investigate
their properties.
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1. Introduction

Let A be a non-empty set. The sequence zi, zi+1, . . . , zm of elements of A is indicated by zmi where 1 ≤ i ≤ m. For each
1 ≤ i ≤ j ≤ m, the phrase h(z1, z2, . . . , zi, ki+1, . . . , kj , lj+1, . . . , lm) is represented as h(zi1, k

j
i+1, l

m
j+1); in the case when

ki+1 = ki+2 = · · · = kj = k, we simply write h(zi1, k
(j−i), lmj+1). An m-ary groupoid (A, h) is said to be an m-ary semigroup

if h is associative; that is, if h(zi−1
1 , h(zm+i−1

i ), z2m−1
m+i ) = h(zj−1

1 , h(zm+j−1
j ), z2m−1

m+j ) for each z1, z2, . . . , z2m−1 ∈ A, where
1 ≤ i ≤ j ≤ m. An m-ary semigroupoid (A, h) is said to be an m-ary group if for all ci−1

1 , cmi+1, b ∈ A, there exists zm1 ∈ A,
such that h(ci−1

1 , zi, c
m
i+1) = b for every 1 ≤ i ≤ m. We say that h is commutative if h(z1, z2, . . . , zm) = h(zη(1), zη(2), . . . , zη(m)),

for every permutation η of {1, 2, . . . ,m} and z1, z2, . . . , zm ∈ A.

2. The (m,n)-near ring

We recommend that readers familiarize themselves with the basic concepts of near rings by consulting [2,4,5,7]; we do not
define such notions in this article. In this section, we define the notion of (m,n)-near rings and provide some examples. We
also present definitions of the N -group, N -ideal, η-primitive, and constant (m,n)-near ring. Moreover, we assert theorems
related to these concepts.

Definition 2.1. Assume that A is a non-empty set. Let h and k be the m-ary and n-ary operations on A, respectively. In this
case, (A, h, k) is said to be an i-(m,n)-near ring if the following conditions are met:

(1) (A, h) is an m-ary group (not necessarily abelian);

(2) (A, k) is an n-ary semigroup;

(3) The n-ary operation k is i-distributive with respect to the m-ary operation h,

where the definition of i-distributive condition is as follows: for every c1, c2, . . . , cn, d1, d2 . . . , dm ∈ A, if i = n, then

k(cn−1
1 , h(d1, d2, . . . , dm)) = h(k(cn−1

1 , d1), k(cn−1
1 , d2), . . . , k(cn−1

1 , dm)).

If i = 1 then
k(h(d1, d2, . . . , dm), cn2 ) = h(k(d1, c

n
2 ), k(d2, c

n
2 ), . . . , k(dm, c

n
2 )).

If 1 < i < n then

k(ci−1
1 , h(d1, d2, . . . , dm), cni+1) = h(k(ci−1

1 , d1, c
n
i+1), k(ci−1

1 , d2, c
n
i+1), . . . , k(ci−1

1 , dm, c
n
i+1)).
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In the rest of the paper, for simplicity, we write (m,n)-near ring instead of i-(m,n)-near ring. We remark here that
every (m,n)-ring is an (m,n)-near ring.

Example 2.1. Consider the additive group Zmn. Then (Zmn, h) is a group, where h(s1, s2, . . . , sm) = s1 + s2 + · · · + sm.
We define k on Zmn by k(s1, s2, . . . , sn) = s1, for all s1, s2, . . . , sn ∈ Zmn. Note that (Zmn, h, k) is an (m,n)-near ring. For
1 < i 6 n and sn1 , fm1 ∈ Zmn, we have k(s1, s2, . . . , si−1, h(f1, f2, . . . , fm), si+1, . . . , sn) = s1 and

h(k(s1, s2, . . . , si−1, f1, si+1, . . . , sn), . . . , k(s1, s2, . . . , si−1, fm, si+1, . . . , sn)) = h(s
(m)
1 ) = ms1.

If mn = m− 1, then m = 1 ∈ Zmn. Hence, for all 1 < i 6 n, (Zmn−1, h, k) is i-distributive. For i = 1, we have

k(h(f1, f2, . . . , fm), s2, . . . , sn) = h(f1, f2, . . . , fm) = f1 + f2 + · · ·+ fm and
h(k(f1, s2, . . . , sn), k(f2, s2, . . . , sn), . . . , k(fm, s2, . . . , sn)) = h(f1, f2, . . . , fm) = f1 + f2 + · · ·+ fm.

Consequently, for i = 1, (Zmn−1, h, k) is 1-distributive.

Assume that I is a non-empty subgroup of an (m,n)-near ring (A, h, k). Then I is said to be a normal subgroup of A if
for each ai ∈ A, si−1

1 , smi+1 ∈ A and 1 ≤ i, j ≤ m there is bj ∈ I such that h(si−1
1 , ai, s

m
i+1) = h(sj−1

1 , bj , s
m
j+1).

Definition 2.2. Assume that I is a non-empty subset of an (m,n)-near ring (A, h, l). The set I is said to be an ideal of A if

(1) I is a normal subgroup of the m-ary group (A, h), (I, h) is an m-ary group,

(2) for every a1, a2, . . . , an ∈ A, l(ai−1
1 , I, ani+1) ⊆ I.

(3) For all rk−1
1 , rmk+1, w

j−1
1 , wnj+1 ∈ A and 1 ≤ k ≤ n, d ∈ I, there exists o ∈ I so that l(wj−1

1 , h(rk−1
1 , d, rmk+1), wnj+1) equals

h(l(wj−1
1 , r1, w

n
j+1), l(wj−1

1 , r2, w
n
j+1), . . . , l(wj−1

1 , rk−1, w
n
j+1), o, l(wj−1

1 , rk+1, w
n
j+1), . . . , l(wj−1

1 , rm, w
n
j+1)).

The set I is called an i-ideal of A if it satisfies (1) and (2). The set I is called a j-ideal of A for j 6= i if it satisfies (1)
and (3).

If J is an i-ideal for each 1 ≤ i ≤ n, then J is referred to as an ideal of A.

Definition 2.3. A proper ideal J of an (m,n)-near ring (A, h, l) is said to be prime if for any ideals A1, A2, . . . , An of A,
l(A1, A2, . . . , An) ⊆ J implies A1 ⊆ J or A2 ⊆ J or . . . or An ⊆ J .

Definition 2.4. Assume that (N,h, k) is an (m,n)-near ring, (G, h) is an m-group and

f : G×G× · · · ×G︸ ︷︷ ︸
i−1

×N ×G×G× · · · ×G︸ ︷︷ ︸
n−i

−→ G

is a mapping (f(gi−1
1 , n, gni+1) = k(gi−1

1 , n, gni+1)). In this case, (G, f) is an N -group if for all gn1 ∈ G and for all nm1 , an1 ∈ N ,
the following conditions hold:

(1) k(gi−1
1 , h(n1, n2, . . . , nm), gni+1) = h(k(gi−1

1 , n1, g
n
i+1), k(gi−1

1 , n2, g
n
i+1), . . . , k(gi−1

1 , nm, g
n
i+1)).

(2) For all 2 ≤ j ≤ i− 1 and 2 ≤ l ≤ n,

k(gi−1
1 , k(an1 ), gni+1) = k(gj−1

1 , k(gi−1
j , an−i+j1 ), ann−i+j+1, g

n
i+1) = k(gi−1

1 , al−1
1 , k(anl , g

l+i−1
i+1 ), gnl+i).

Example 2.2. In Example 2.1, if we let N = Zmn−1, i 6= 1 and G = Zm−1, then (Zm−1, k) is a Zmn−1-group. For all
zn1 ∈ Zm−1, z ∈ Zmn−1, we have k(zi−1

1 , z, zni+1) = z1 ∈ Zm−1 = G.

(1) We note that k(gi−1
1 , h(n1, n2, . . . , nm), gni+1) = g1 = mg1 = h(k(gi−1

1 , n1, g
n
i+1), . . . , k(gi−1

1 , nm, g
n
i+1)).

(2) For all 2 ≤ j ≤ i− 1 and 2 ≤ l ≤ n, we have

g1 = k(gi−1
1 , k(an1 ), gni+1) = k(gj−1

1 , k(gi−1
j , an−i+j1 ), ann−i+j+1, g

n
i+1) = k(gi−1

1 , al−1
1 , k(anl , g

l+i−1
i+1 ), gnl+i).

Definition 2.5. Assume that (N,h, k) is an (m,n)-near ring, G is an N -group, ∅ 6= A ⊆ G and ∅ 6= B ⊆ G. We define

(A : B)N = {n ∈ N | k(B(i−1), n,B(n−i)) ⊆ A}.

The set (0 : B)N is called the i-annihilator of B in N .
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Example 2.3. In Example 2.1, if we let N = Zmn−1, G = Z and A = 3Z, and B = 6Z, then

(A : B)N = (3Z : 6Z)Zmn−1
= {s ∈ Zmn−1 | k(6Z(i−1), s, 6Z(n−i)) ⊆ 3Z} = {s ∈ Zmn−1 | 6Z ⊆ 3Z} = Zmn−1.

For i 6= 1, we have (0 : 6Z) = {s ∈ Z | k(6Z(i−1), s, 6Z(n−i)) = 0} = {s ∈ Z | 6Z = 0}, and for i = 1, we have

(0 : 6Z) = {s ∈ Z | k(s, 6Z(n−1)) = 0} = {s ∈ Z | s = 0} = {0}.

Definition 2.6. An N -group B is said to be faithful if k(si−1
1 , o, sni+1) = 0, for all sn1 ∈ B and o ∈ N , then o = 0.

Example 2.4. In Example 2.1, if i = 1, N = Zmn−1, and B = Z, then

(0 : B)N = (0 : Z) = {s ∈ Zmn−1 | k(s,Z(n−1)) = 0} = {s ∈ Zmn−1 | s = 0} = 0Zmn−1
.

Definition 2.7. Assume that M is an O-group and Q is a subgroup of M . In this case Q is said to be an O-subgroup of M
if k(Q(i−1), O,Q(n−i)) ⊆ Q and M is said to be O-simple if the only O-subgroups of M are k(0

(i−1)
M , Oc, 0

(n−i)
M ) and M .

Example 2.5. In Example 2.1, if we take O = Zmn−1, i 6= 1, and M = Z, and let Q be a subgroup of Z, then the relation
k(Q(i−1),Zmn−1, Q

(n−i)) = Q ⊆ Q holds. Thus, every subgroup of Z is a Zmn−1-subgroup of Z.

Definition 2.8. Assume that (M,h) is an m-group, H ⊆ M , and that M is an O-group for the (m,n)-near ring (O, h, l). In
this case, H is an O-ideal of M if the following conditions hold:

(1) (H,h) is a normal subgroup of (M,h),

(2) for all rj−1
1 , rmj+1 ∈M , sj−1

1 , snj+1 ∈ O, 1 ≤ k 6= i ≤ m, 1 ≤ j 6= i ≤ n and d ∈ H, there exists z ∈ H such that

l(sj−1
1 , h(rk−1

1 , d, rmk+1), snj+1)

= h(l(sj−1
1 , r1, s

n
j+1), l(sj−1

1 , r2, s
n
j+1), . . . , l(sj−1

1 , rk−1, s
n
j+1), z, l(sj−1

1 , rk+1, s
n
j+1), . . . , l(sj−1

1 , rn, s
n
j+1)).

The O-group M is said to be a simple O-group if 0 and M are the only O-ideals of M .

Example 2.6. In Example 2.1, if we let H = 2Z, O = Zmn−1, i = 1, and M = Z, then (2Z, h) is a normal subgroup of (Z, h),
and for all rj−1

1 , rmj+1 ∈ Z, sj−1
1 , snj+1 ∈ Zmn−1, and 1 ≤ k ≤ n, d ∈ 2Z, the following relation holds:

h(rk−1
1 , d, rmk+1) = k(h(rk−1

1 , d, rmk+1), sn2 ) = h(k(r1, s
n
2 ), k(r2, s

n
2 ), . . . , k(rk−1, s

n
2 ), l, k(rk+1, s

n
2 ), . . . , k(rn, s

n
2 )).

If we let l = d, then there exists l ∈ 2Z such that the second condition of the definition is valid. Now, we conclude that 2Z is
a Zmn−1-ideal of Z

Definition 2.9. Assume that (M,h, l) is an (m,n)-near ring and (W, l) is an M -group. In this case, W is said to be a
monogenic M -group if there is w ∈W such that l(w(i−1),M,w(n−i)) = W .

Example 2.7. In Example 2.1, if we let M = Zmn−1, W = {0}, and w = 0, then k(0(i−1),Zmn−1, 0
(n−i)) = 0 = W . Hence,

W = {0} is a monogenic Zmn−1-group.

Example 2.8. In Example 2.1, if we let M = W = Zmn−1, then for all w ∈ W , k(Zmn−1, w
n−1) = Zmn−1 = W . So, we

conclude that Zmn−1 is a monogenic Zmn−1-group.

Assume that (A, h, k) is an (m,n)-near ring, I is an ideal, (A, h) is a group, and I is a normal subgroup. Then the
quotient group (AI , H,K) is defined. An m-ary operation H on the cosets is defined by the m-ary operation h given below:

H(h(d11 , d12 , . . . , d1m−1 , I), h(d21 , d22 , . . . , d2m−1 , I), . . . , h(dm1 , dm2 , . . . , dmm−1 , I))

= h(h(d11
, d12

, . . . , d1m−1
, h(d21

, d22
, . . . , d2m−1

, h(d31
, d32

, . . . , d3m−1
, . . .

h(d(m−1)1 , d(m−1)2 , . . . , d(m−1)m−1
h(dm1

, dm2
, . . . , dmm−1

, I) . . . .)).

An n-ary operation K on cosets is defined by the n-ary operation k given below:

K(h(d11
, d12

, . . . , d1m−1
, I), h(d21

, d22
, . . . , d2m−1

, I), . . . , h(dn1
, dn2

, . . . , dnm−1
, I))

= h(k(h(d11 , d12 , . . . , d1m−1 , I), . . . , h(d(i−1)1 , d(i−1)2 , . . . , d(i−1)(m−1)
, I), di1 ,

h(d(i+1)1 , d(i+1)2 , . . . , d(i+1)m−1
, I)) . . . , h(dn1 , dn2 , . . . , dnm−1 , I)), . . . , k(h(d11 , d12 , . . . ,

d1m−1
, I), . . . , h(d(i−1)1 , d(i−1)2 , . . . , d(i−1)m−1

, I), dim−1
, h(d(i+1)1 , d(i+1)2 . . . , d(i+1)m−1

, I)) . . . , h(dn1
, dn2

, . . . , dnm−1
, I)), I).
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Theorem 2.1. If I is an ideal in an (m,n)-near ring (A, h, k), then (AI , H,K) has the structure of an (m,n)-near ring, where
the operations H and K are defined after Example 2.8.

Proof. We prove that H is well defined. Assume that h(di1 , di2 , . . . , dim−1
, I) = h(wi1 , wi2 , . . . , wim−1

, I), for 1 ≤ i ≤ m. Then
H(h(d11

, d12
, . . . , d1m−1

, I), h(d21
, d22

, . . . , d2m−1
, I), . . . , h(dm1

, dm2
, . . . , dmm−1

, I))

= h(h(d11 , d12 . . . , d1m−1 , h(d21 , d22 , . . . , d2m−1 , h(d31 , d32 , . . . , d3m−1 ,

. . . h(d(m−1)1 , d(m−1)2 , . . . , d(m−1)m−1
h(dm1

, . . . , dmm−1
, I) . . . .))

= h(d11
, d12

, . . . , d1m−1
, h(d21

, d22
, . . . , d2m−1

, h(d31
, d32

, . . . , d3m−1
, . . .

h(d(m−1)1 , d(m−1)2 , . . . , d(m−1)m−1
, h(wm1

, wm2
, . . . , wmm−1

, I) . . . ))

= h(d11
, d22

, . . . , d1m−1
, h(d21

, d22
, . . . , d2m−1

, h(d31
, d32

, . . . , d3m−1
, . . .

h(d(m−1)1 , d(m−1)2 , . . . , d(m−1)m−1
, h(I, wm1

, wm2
, . . . , wmm−1

) . . . ))

= h(d11 , d12 , . . . , h(d1(m−1)
, h(d21 , d22 , . . . , d2m−1 , h(d31 , d32 , . . . , d3m−1 , . . .

h(h(d(m−1)1 , d(m−1)2 , . . . , d(m−1)m−1
, I), h(wm1 , wm2 , . . . , wmm−1) . . . ))

= h(d11
, d12

, . . . , d1m−1
, h(d21

, d22
, . . . , d2m−1

, h(d31
, d32

, . . . , d3m−1
, . . .

h(h(w(m−1)1 , w(m−1)2 , . . . , w(m−1)m−1
, I), wm1

, wm2
, . . . , wm(m−1)

) . . . ))

= · · · = h(d11 , d12 , . . . , d1m−1 , h(h(d21 , d22 , . . . , d2m−1 , I), w31 , w32 , . . . , w3m−1), . . .

h(w(m−1)1 , w(m−1)2 , . . . , w(m−1)m−1
, h(wm1

, wm2
, . . . , wmm−1

, I) . . . ))

= h(d11
, d12

, . . . , d1m−1
, h(h(w21

, w22
, . . . , w2m−1

, I), w31
, w32

, . . . , w3m−1
),

. . . h(w(m−1)1 , w(m−1)2 , . . . , w(m−1)m−1
, h(wm1

, wm2
, . . . , wmm−1

, I) . . . ))

= h(d11
, d12

, . . . , d1m−1
, h(h(I, w21

, w22
, . . . , w2m−1

), w31
, . . . , w3m−1

), . . . ,

h(w(m−1)1 , w(m−1)2 , . . . , w(m−1)m−1
, h(wm1

, wm2
, . . . , wmm−1

, I) . . . ))

= h(h(d11 , d12 , . . . , d1m−1 , I), w21 , w22 , . . . , w2m−1), h(w31 , w32 , . . . , w3m−1 , . . .

h(w(m−1)1 , w(m−1)2 , . . . , w(m−1)m−1
, h(wm1 , wm2 , . . . , wmm−1 , I) . . . ))

= h(w11
, w12

, . . . , w1m−1
, h(w21

, w22
, . . . , w2m−1

, h(w31
, w32

, . . . , w3m−1
, . . .

h(w(m−1)1 , w(m−1)2 , . . . , w(m−1)m−1
, h(wm1

, wm2
, . . . , wmm−1

, I) . . . ))

= H(h(w11 , w12 , . . . , w1m−1 , I), . . . , h(wm1 , wm2 , . . . , wmm−1 , I)).

Since I is an ideal, it follows that the operatorK is well defined and since (A, h) is anm-ary group so (AI , H) is anm-ary
group. Furthermore, since (A, k) is an n-ary semigroup, it follows that (AI ,K) is an n-ary semigroup. The n-ary operation
k is i-distributive with respect to the m-ary operation h. Thus, the n-ary operation K is i-distributive with respect to the
m-ary operation H.

Definition 2.10. Assume that (M,h, k) is an (m,n)-near ring. In this case, a monogenic M -group W (W 6= 0) is of

(1) type 0 if W has no M -ideals except 0 and W ,

(2) type 1 if W is of type 0 and for all w ∈W either k(w(i−1),M,w(n−i)) = W or k(w(i−1),M,w(n−i)) = k(0
(i−1)
W ,Mc, 0

(n−i)
W ),

(3) type 2 if W has no M -subgroups except 0 and W (particularly, W is M0-simple),

(4) type 3 if W is of type 2 and for all s ∈M , k(ai−1
1 , s, ani+1) = k(wi−1

1 , s, wni+1) implies ai = wi for all i ∈ {1, 2, . . . , n}.

Example 2.9. In Example 2.1, if we let M = Zmn−1 and W = {0}, then Zmn−1-group {0} is of type 0.

Example 2.10. In Example 2.1, if we let M = W = Zmn−1 and i = 1, then Zmn−1-group Zmn−1 is of type 1.
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Primitive near rings play a particular role in the structure theory of near rings because of the applications of primitive
rings in ring theory [3,8–11]. In the case of (m,n)-near rings, we can consider several kinds of primitives.

Definition 2.11. Let (W,h, k) be an (m,n)-near ring. Then W is said to be η-primitive, for η ∈ {0, 1, 2, 3}, if there exists a
group S such that S is a faithful W -group of type η.

An ideal I of an (m,n)-near ring (M,h, k) is an η-primitive ideal of M if and only if MI is an η-primitive.

Definition 2.12. Γ is said to be strongly monogenic if k(Γ(i−1), N,Γ(n−i)) 6= {0} and for all s ∈ Γ either k(s(i−1), N, s(n−i)) = Γ

or k(s(i−1), N, s(n−i)) = {0}.

Example 2.11. In Example 2.7, W = {0} is a strongly monogenic Zmn−1-group.

Definition 2.13. Assume that (W,h, k) is an (m,n)-near ring and 0 is the identity element of (W,h). Then

W0 = {w ∈W | k(0(s−1), w, 0(n−s)) = 0, 1 ≤ s ≤ n}

is called the zero symmetric part ofW . In addition,Wc = {w ∈W | k(0(s−1), w, 0(n−s)) = w, 1 ≤ s ≤ n} is called the resistant
part of W . An (m,n)-near ring W is said to be a zero symmetric near ring if W = W0. An (m,n)-near ring W is said to be a
constant (m,n)-near ring if W = Wc.

Example 2.12. In Example 2.1, if we let W = Zmn−1, i 6= 1, then

Z(mn−1)0
= {w ∈ Zmn−1 | k(0(s−1), w, 0(n−s)) = 0, 1 ≤ s ≤ n} = Zmn−1,

which implies that Z(mn−1)c
= {w ∈ Zmn−1 | k(w, 0(n−1)) = w, 1 ≤ s ≤ n} = Zmn−1. Therefore, Zmn−1 is a constant

(m,n)-near ring.

Lemma 2.1. A0 and Ac are i-(m,n)-subnear rings of the i-(m,n)-near ring (A, c, l) for i = 1, n.

Proof. We show that A0 is a subgroup of A. If x1, x2, . . . , xm ∈ A0, then l(0(i−1), xj , 0
(n−i)) = 0 for 1 ≤ j ≤ m and 1 ≤ i ≤ n.

Now, if i = n, then l(0(i−1), c(x1, x2, . . . , xm), 0(n−i)) = c(l(0(i−1), x1, 0
(n−i)), l(0(i−1), x2, 0

(n−i)), . . . , l(0(i−1), xm, 0
(n−i))) = 0.

Therefore, c(x1, x2, . . . xm) ∈ A0. Since (A, h) is an m-group, for all xm1 , y ∈ A0 there is s ∈ A such that for all 1 ≤ j ≤ m,
c(xj−1

1 , s, xmj+1) = y. It is enough to show s ∈ A0. Here, we have

0 = l(0(i−1), y, 0(n−i)) = l(0(i−1), c(xj−1
1 , s, xmj+1), 0(n−i))

= c(l(0(i−1), x1, 0
(n−i)), . . . , l(0(i−1), xi−1, 0

(n−i)), l(0(i−1), s, 0(n−i)), l(0(i−1), xi+1, 0
(n−i)), . . . , l(0(i−1), xm, 0

(n−i)))
= c(0(j−1), l(0(i−1), s, 0(n−i)), 0(m−j)).

Hence, 0 = c(0(j−1), l(0(i−1), s, 0(n−i)), 0(m−j)). Since (A, c) is an m-group, it follows that 0 = l(0(i−1), s, 0(n−i)). Thus, s ∈ A0,
which implies that (A0, c) is a subgroup of (A, c, l). Next, if we take s1, s2, . . . , sn ∈ A0, then for all 1 ≤ i ≤ n and 1 ≤ j ≤ n,
we have l(0(i−1), sj , 0

(n−i)) = 0. If i = n, then l(0(n−1), l(s1, s2, . . . , sn)) equals l(l(0(n−1), s1), s2, . . . , sn) = l(0, s2, s3, . . . , sn) =

l(l(0(n)), s2, s3, . . . , sn) = l(0, l(0(n−1), s2), s3, . . . , sn) = l(0, 0, s3, s4, . . . , sn) = · · · = l(0(n−1), sn) = 0. If i = 1, then

l(l(s1, s2, . . . , sn), 0(n−1)) = l(s1, s2, . . . , sn−1, l(sn, 0
(n−1))) = l(s1, s2, . . . , sn−1, 0) = l(s1, s2, . . . , sn−1, l(0

(n)))
= l(s1, s2, . . . , sn−2, l(s2, 0

(n−1)), 0) = l(s1, s2, . . . , sn−2, 0, 0) = · · · = l(s1, 0
(n−1)) = 0.

Therefore, l(s1, s2, . . . , sn) ∈ A0. So, we get l(A(n)
0 ) ⊆ A0. This indicates that (A0, c, l) is an (m,n)-subnear ring of (m,n)-

near ring (A, c, l). We show that Ac is a subgroup of A. Let x1, x2, . . . , xm ∈ A0. Then, we have l(0(i−1), xj , 0
(n−i)) = xj for

1 ≤ j ≤ m and 1 ≤ i ≤ n. Now, we obtain

l(0(i−1), c(x1, x2, . . . xm), 0(n−i)) = c(l(0(i−1), x1, 0
(n−i)), l(0(i−1), x2, 0

(n−i)), . . . , l(0(i−1), xm, 0
(n−i))) = l(x1, x2, . . . , xm).

This yields that c(x1, x2, . . . xm) ∈ Ac. as (A, h) is an m-group, for all xm1 , y ∈ Ac there is s ∈ A such that for all 1 ≤ j ≤ m,
c(xj−1

1 , s, xmj+1) = y. It is enough to show that s ∈ Ac. We know that

c(xj−1
1 , s, xmj+1) = y = l(0(i−1), y, 0(n−i)) = l(0(i−1), c(xj−1

1 , s, xmj+1), 0(n−i))

= c(l(0(i−1), x1, 0
(n−i)), ..., l(0(i−1), xi−1, 0

(n−i)), l(0(i−1), s, 0(n−i)), l(0(i−1), xi+1, 0
(n−i)), ..., l(0(i−1), xm, 0

(n−i)))

= c(xj−1
1 , l(0(i−1), s, 0(n−i)), xmj+1).

So, we obtain c(xj−1
1 , s, xmj+1) = c(xj−1

1 , l(0(i−1), s, 0(n−i)), xmj+1). As (A, c) is an m-group, we get s = l(0(i−1), s, 0(n−i)), and so
s ∈ Ac. Hence, (Ac, c) is a subgroup of (A, c, l). Next, if s1, s2, . . . , sn ∈ Ac, then l(0(i−1), sj , 0

(n−i)) = sj , for all 1 ≤ i ≤ n,
1 ≤ j ≤ n. This gives that if i = n, then l(0(n−1), l(s1, s2, . . . , sn)) = l(l(0(n−1), s1), s2, . . . , sn) = l(s1, s2, . . . , sn). On the other
hand, if i = 1, then we have l(l(s1, s2, . . . , sn), 0(n−1)) = l(s1, s2, . . . , l(sn, 0

(n−1))) = l(s1, s2, . . . , sn).

Therefore, l(s1, s2, . . . , sn) ∈ Ac and l(A(n)
c ) ⊆ Ac. Hence, (Ac, c, l) is an (m,n)-subnear ring of (m,n)-near ring (A, c, l).
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Theorem 2.2. If Γ is a monogenic M -group (by y0) and an M0-simple (Γ can be considered as an M0-group), then either
k(Γ(i−1),M,Γ(n−i)) = 0 or Γ is an M -group strongly monogenic.

Proof. For all s ∈ Γ, k(s(i−1),M, s(n−i)) ≤M0
Γ implies k(s(i−1),M, s(n−i)) = {0} or k(s(i−1),M, s(n−i)) = Γ.

Theorem 2.3. Assume that I is an ideal of (2, 2)-near ring (S, h, z), Γ is a group, and η ∈ {1, 2, 3} (see [6]).

(1) If Γ is an S-group with I ⊆ (0 : Γ) then z(h(n1, I), γ1) = z(n1, γ1) makes Γ an S
I -group.

If Γ is an S-group of type η, then Γ is an S
I -group of type η.

If Γ is a faithful S-group, then Γ is a faithful SI -group.

(2) If Γ is an S
I -group, then z(h(n1, I), γ1) = z(n1, γ1), so Γ is an S-group with I ⊆ (0 : Γ).

If Γ is an S
I -group of type η, then Γ is an S-group of type η.

If Γ is a faithful SI -group, then Γ is a faithful S-group.

Proof. We prove the result for i = 1. The proof for i = 2 is similar to the proof concerning i = 1. We have z(h(n, I), γ) =

h(z(n, γ), z(I, γ)) = z(n, γ) ∈ Γ, and so z(h(n, I), γ) ∈ Γ. Hence, Γ is an S
I -group. Let Γ be an S-group of type 0. So, Γ has no

S-ideals except 0 and Γ. Assume that L is an S
I -ideal of Γ, for all d ∈ L, r ∈ Γ, and h(l, I) ∈ S

I ; so, there is s ∈ L such that

z(h(d, r), h(l, I)) = h(s, z(r, h(l, I))), z(l, h(d, r)) = z(h(l, I), h(d, r)) = h(s, z(h(l, I), r)) = h(s, z(l, r)).

This implies that L is an S-ideal of Γ. Thus, L = 0 or L = Γ, and consequently, Γ is an S
I -group of type 0.

If Γ is an S-group of type 1, then for all g ∈ Γ, z(S, g) = Γ or z(S, g) = z(Sc, 0Γ). Also, z(SI , g) = z(h(S, I), g) = z(S, g).

Thus, z(SI , g) = Γ or z(SI , g) = z(Sc, 0Γ) = z(h(Sc, I), 0Γ) = z(Sc

I , 0Γ). Therefore, Γ is an S
I -group of type 1.

If Γ is an S-group of type 2, then Γ has no S-subgroups except 0 and Γ. Assume that H is an S
I -subgroup of Γ. So,

z(SI , H) ⊆ H and z(SI , H) = z(h(S, I), H) = h(z(S,H), z(I,H)) = z(S,H). It means that z(S,H) ⊆ H, which implies that H
is an S-subgroup of Γ. Therefore, H = 0 or H = Γ. Consequently, Γ is an S

I -group of type 2.
Assume that Γ is a faithful S-group, (0 : Γ)S = 0. If h(n, I) ∈ (0 : Γ)S

I
, then 0 = z(h(n, I), γ) = z(n, γ). Therefore,

n ∈ (0 : γ) = 0, which implies that n = 0, and hence (0 : γ) = 0S
I
. So, we deduce that Γ is a faithful SI -group.

Next, we prove (2). If Γ is an S
I -group and z(n1, γ1) = z(h(n1, I), γ1) ∈ Γ, then Γ is an S-group.

Assume that Γ is an S
I -group of type 0 so Γ has no S

I -ideals except 0 and Γ. Assume that S is an S-ideal of Γ. Then, for
all d ∈ L, r ∈ Γ and l ∈ S there is s ∈ L such that

z(l, h(d, r)) = h(s, z(l, r)), z(h(l, I), h(d, r)) = z(l, h(d, r)) = h(s, z(l, r)) = h(s, z(h(l, I), r)).

This yields that L is an S
I -ideal of Γ, and hence L = 0 or L = Γ. Therefore, Γ is an S-group of type 0.

If Γ is an S
I -group of type 1, then for all g ∈ Γ, we have z(SI , g) = Γ or z(SI , g) = z(Sc

I , 0Γ), z(SI , g) = z(h(S, I), g) = z(S, g).

Thus, z(S, g) = Γ or z(S, g) = z(Sc, 0Γ) = z(h(Sc, I), 0Γ) = z(Sc

I , 0Γ). Hence, we conclude that Γ is an S-group of type 1

If Γ is an S
I -group of type 2, then Γ has no S

I -subgroups except 0 and Γ. Assume that H is an S-subgroup of Γ, so
z(S,H) ⊆ H and z(SI , H) = z(h(S, I), H) = h(z(S,H), z(I,H)) = z(S,H). Thus, z(SI , H) ⊆ H, which implies that H is an
S
I -subgroup of Γ. Therefore, we have H = 0 or H = Γ. Consequently, Γ is an S-group of type 2.

Assume that Γ is a faithful SI -group, so (0 : Γ)S
I

= 0. Assume that n /∈ I and n ∈ (0 : Γ)S . So, z(h(n, I), γ) = z(n, γ) = 0.
This implies that h(n, I) ∈ (0 : γ)S

I
= 0. Hence, h(n, I) = 0S

I
and so n = 0. This yields that (0 : γ)S = 0. Therefore, we

conclude that Γ is a faithful S-group.

We note that (SI )0 = S0

I . Each S-group Γ can be viewed as an S0-group as well as an Sc-group [6].

Theorem 2.4. If Γ is a faithful N -group, then Nc and N0 are faithful N -groups (see [6])

Theorem 2.5. Assume that I is an ideal of a (2, 2)-near ring (N,h, k). The following statements are equivalent:

(1) I is an η-primitive.

(2) there is an N
I -group Γ such that Γ is faithful and of type η.

Proof. (1)⇐⇒ (2) By the definition of η-primitive ideal, I is η-primitive if and only if NI is an η-primitive near ring if and
only if there exists an N

I -group Γ such that N
I is η-primitive on N

I -group Γ if and only if there exists an N
I -group Γ such

that Γ is faithful and of type η.

Theorem 2.6. If (M,h, k) is a simple (m,n)-near ring and Γ is an M -group of type η, then M is an η-primitive on Γ.

Proof. We only need to prove that Γ is faithful. Since (0 : Γ) is a normal subgroup of M , we have (0 : Γ) = {0}. Hence M
is an η-primitive on Γ (see [6]).
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3. Modular j-ideals

Definition 3.1. For i 6= j, a j-ideal of the (m,n)-near ring (N,h, k) is modular if there are some ei−1
1 , eni+1 ∈ N such that for

all l ∈ N , there are jm1 ∈ J satisfying l = h(jj−1
1 , k(ei−1

1 , l, eni+1), jmj+1).

Assume that (A, h, k) is an (m,n)-near ring. An element e ∈ A is said to be an i-identity element if k(e(i−1), z, e(n−i)) = z.
If for all 1 6 i 6 n, e ∈ A is an i-identity element, then e is called an identity element.

Remark 3.1. (1) If A1 and A2 are j-ideals (i 6= j) of N with A1 ⊆ A2 and A1 is modular by ei−1
1 , eni+1 then A2 is modular

by ei−1
1 , eni+1.

(2) {0} is modular if N contains an identity element.

(3) Every normal subgroup of (Nc, h) is a modular j-ideal (i 6= j ) of Nc (by any element of Nc).

(4) If L is modular by ei−1
1 , eni+1 in an (m,n)-near ring N , then ei−1

1 , eni+1 ∈ L if and only if L = N .

Theorem 3.1. Each modular j-ideal (i 6= j ) S 6= N = N0 is contained in a maximal one (which is modular, too).

Proof. Let S be modular by ei−1
1 , eni+1. By applying Zorn’s Lemma to the set of all j-ideals S ⊆ I with ei−1

1 , eni+1 /∈ I and
using Remark 3.1(1), we obtain the desired conclusion.

Theorem 3.2. Assume that (N,h, k) is an i-(m,n)-near ring and L is an j-ideal (i 6= j) of N . If L is modular, then
(L : N) ⊆ L.

Proof. We consider a monogenic N -group Γ (by γ) with L = (0 : γ). Then (L : N) = (0 : NL ) = (0 : Γ) ⊆ (0 : γ) = L.

Theorem 3.3. If (M,h, l) is an (m, 2)-near ring and H is modular by e1, then

(H : M) = (H : l(ei−1
1 ,M, eni+1))

and this is the greatest ideal of M contained in H.

Proof. If n ∈ (H : M) and i = 1, then l(n,M) ⊆ H. So, we have

l(n, l(M, e1)) = l(l(n,M), e1) ⊆ l(H, e1) ⊆ H.

Hence, we get (H : M) ⊆ (H : l(M, e1). If n ∈ (H : l(M, e1)), then l(n, l(M, e1) ⊆ H. So, for all m ∈ M , we have
l(n, l(m, e1)) ∈ H. On the other hand, since H is modular, it follows that

l(n,m) = h(lj−1
1 , l(l(n,m), e1), lmj+1) = h(lj−1

1 , l(n, l(m, e1)), lmj+1) ∈ H.

Thus, n ∈ (H : M), which implies that (H : l(M, e1)) ⊆ (H : M), and so (H : l(M, e1)) = (H : M).
If n ∈ (H : M) and i = 2, then l(M,n) ⊆ H. So, we have

l(l(e1,M), n) = l(e1, l(M,n)) ⊆ l(e1, H) ⊆ H.

Hence, we obtain

(H : M) ⊆ (H : l(e1,M)).

If n ∈ (H : l(e1,M)), then l(l(e1,M), n) ⊆ H. So, for all m ∈ M , we have l(l(e1,m), n) ∈ H. On the other hand, since H is
modular, it follows that

l(m,n) = h(lj−1
1 , l(e1, l(m,n)), lmj+1) = h(lj−1

1 , l(l(e1,m), n), lmj+1) ∈ H.

So, we get n ∈ (H : M), and hence (H : l(e1,M)) ⊆ (H : M), which implies that (H : l(e1,M)) = (H : M).
Since H is a j-ideal, it follows that (H : M) is an ideal of M and hence (H : M) ⊆ H by Theorem 3.2. If J is a normal

subgroup of M with J ⊆ H then trivially J ⊆ (H : M).

Definition 3.2. Assume that η ∈ {1, 2, 3} and i 6= j. A j-ideal L of (m,n)-near ring S is said to be η-modular if L is modular
and S

I is an S-group of type η.
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The next theorem is stated for (2, 2)-near ring (R,+, .) in [1].

Theorem 3.4. Let (M,h, k) be an i-(m,n)-near ring and S be an M -group.

(1) If I is a j-ideal of M such that j 6= i, then k(M
(j−1)
0 , I,M

(n−j)
0 ) ⊆ I.

(2) If B is an M -ideal of S, then B is an M0-subgroup of S.

Proof. The result follows straightforwardly from the definitions of the ideal and M -ideal.

Lemma 3.1. Assume that (M,h, k) is an (m,n)-near ring. The following conditions are equivalent:

(1) M is a zero symmetric near ring.

(2) Every j-ideal of M , j 6= i, is an M -subgroup of M .

Proof. (1)⇒ (2). It follows from Lemma 3.4.
(2)⇒ (1). Suppose that every j-ideal of M is an M -subgroup of M . Since 0 is clearly a j-ideal of M , it follows that 0 is

an M -subgroup of M . Consequently, k(0(j−1),M, 0(n−j)) = 0. This shows that M = M0.

Lemma 3.2. If S is an M -group, then for all x ∈ S and n = 2, k(x(i−1),M, x(n−i)) is an M -subgroup of S.

Proof. If i = 1, then
k(M,k(M,x)) = k(k(M,M), x) = k(M,x),

so k(M,x) is an N -subgroup of S.
If i = 2, then

k(k(x,M),M) = k(x, k(M,M)) = k(x,M),

so k(x,M) is an M -subgroup of S.

Definition 3.3. Assume that (M,h, k) is an (m,n)-near ring. M is said to have the i-cancellation property if and only if
whenever r, s, ri−1

1 , rni+1 ∈M , rj 6= 0 for i ∈ {1, 2, . . . , n}, and k(ri−1
1 , r, rni+1) = k(ri−1

1 , r, rni+1), then r = s.

Lemma 3.3. Assume that S is an M -group and O is a subgroup of S.

(1) If O is an M -ideal of S, then O is an M0-ideal of S.

(2) If O is an M -subgroup of S, then O is an M0-subgroup of S.

Proof. (1) Assume that O is an M -ideal of S. Since M0 ⊆M , it follows that O is an M0-ideal of S.
(2) Assume that O is an M -subgroup of S. then, k(O(i−1),M,O(n−i)) ⊆ O. Thus, we get

k(O(i−1),M0, O
(n−i)) ⊆ k(O(i−1),M,O(n−i)) ⊆ O.

This yields that O is an M0-subgroup of S.

Lemma 3.4. Assume that (M,h, l) is an i-(m,n)-near ring, S is an M -group, and H1, H2 are subsets of S.

(1) If H1 be a normal subgroup of S, then (H1 : H2) is a normal subgroup of the (m,n)-near ring M .

(2) If n = 2 and H1 is an M -subgroup of S, then (H1 : H2) is an M -subgroup of M . (It is also valid for an M -group.)

(3) If n = 2, H1 is an M -ideal of S, and H2 is an M -subset of S, then (H1 : H2) is an i-ideal of M .

Proof. (1) Since H1 is a normal subgroup of S, it follows that for all ai ∈ H1 and sk−1
1 , smk+1 ∈ S, 1 ≤ k, j ≤ m, there

is bj ∈ H1 such that h(sk−1
1 , ak, s

m
k+1) = h(sj−1

1 , bj , s
m
j+1). Since (M,h) is an m-group of S, it follows that for all zi ∈ M

and di−1
1 , dmi+1 ∈ N , 1 ≤ i, j ≤ m, there is qj ∈ M such that h(di−1

1 , zi, d
m
i+1) = h(dj−1

1 , qj , d
m
j+1). It is enough to prove that

qj ∈ (H1 : H2). We have

l(H
(i−1)
2 , h(dk−1

1 , zi, d
m
k+1), H

n−i)
2 ) = l(H

(i−1)
2 , h(dj−1

1 , qj , d
m
j+1), H

(n−i)
2 ).
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Hence, we have

h(l(H
(i−1)
2 , d1, H

(n−i)
2 ), . . . , l(H

(i−1)
2 , dk−1, H

(n−i)
2 ), l(H

(i−1)
2 , zi, H

(n−i)
2 ), l(H

(i−1)
2 , dk+1, H

(n−i)
2 ), . . . , l(H

(i−1)
2 , dm, H

(n−i)
2 ))

= h(l(H
(i−1)
2 , d1, H

(n−i)
2 ), . . . , l(H

(i−1)
2 , dj−1, H

(n−i)
2 ), l(H

(i−1)
2 , qj , H

(n−i)
2 ), l(H

(i−1)
2 , dj+1, H

(n−i)
2 ), . . . , l(H

(i−1)
2 , dm, H

(n−i)
2 )).

We know that l(H(i−1)
2 , df , H

n−i)
2 ) ⊆ S for all f ∈ {1, 2, . . . ,m} and l(H(i−1)

2 , zi, H
(n−i)
2 ) ⊆ H1. SinceH1 is a normal subgroup

of S, it follows that l(H(i−1)
2 , qj , H

(n−i)
2 ) ⊆ H1. Thus, qj ∈ (H1 : H2), which implies that (H1 : H2) is a normal subgroup of

the (m,n)-near ring M .

(2) If i = 2 then l(H1, N) ⊆ H1 since H1 is an M -subgroup of S. Assume that x ∈ (H1 : H2). Then, l(H2, x) ⊆ H1. We
have l(H2, l((H1 : H2), N)) ⊆ l(H1, N) ⊆ H1, and so H2 is an M -subgroup of S.

If i = 1 then l(M,H1) ⊆ H1 since H1 is an M -subgroup of S. Assume that x ∈ (H1 : H2). Then l(x,H2) ⊆ H1. We have

l(l(M, (H1 : H2)), H2) ⊆ l(M,H1) ⊆ H1.

Consequently, H2 is an M -subgroup of S.
Recall that H1 is an M -group of S. If i = 2 then for all g1, g2 ∈ H1, and n1, n2, . . . , nm ∈M , we have

(I) l(g1, h(n1, n2, . . . , nm)) = h(l(g1, n1), l(g1, n2), . . . , l(g1, nm)).

(II) l(g1, l(a1, a2)) = l(l(g1, a1), a2).

Hence, for all s1, s2 ∈ (H1 : H2), t ∈ H2, n1, n2, . . . , nm ∈M , andk(H2, si) ⊆ H1, we have
(i)

l(t, l(s1, h(n1, n2, . . . , nm))) = l(l(t, s1), h(n1, n2, . . . , nm))

= h(l(l(t, s1), n1), l(l(t, s1), n2), . . . , l(l(t, s1), nm))

= h(l(t, l(s1, n1)), l(t, l(s1, n2), . . . , l(t, l(s1, nm))

= l(t, h(l(s1, n1), l(s1, n2), . . . , l(s1, nm)).

Consequently, we obtain l(s1, h(n1, n2, . . . , nm)) = h(l(s1, n1), l(s1, n2), . . . , l(s1, nm)). Also,
(ii)

l(t, l(s1, l(a1, a2))) = l(l(t, s1), l(a1, a2)) = l(l(l(t, s1), a1), a2),

which gives l(s1, l(a1, a2)) = l(l(s1, a1), a2).
Thus, we deduce that (H1 : H2) is an M -group of S.
Again, we recall that H1 is an M -group of S. So, if i = 1 then for all g1, g2 ∈ H1 and all n1, n2, . . . , nm ∈M , we have

(I) l(h(n1, n2, . . . , nm), g1) = h(l(n1, g1), l(n2, g1), . . . , l(nm, g1)),

(II) l(l(a1, a2), g2) = l(a1, l(a2, g2)).

Thus, for all s1, s2 ∈ (H1 : H2), t ∈ H2, n1, n2, . . . , nm ∈M , and l(si, H2) ⊆ H1, we have
(i)

l(l(h(n1, n2, . . . , nm), s1), t) = l(h(n1, n2, . . . , nm), l(s1, t))

= h(l(n1, l(s1, t)), l(n2, l(s1, t)), . . . , l(nm, l(s1, t)))

= h(l(l(n1, s1), t), l(l(n2, s1), t), . . . , l(l(nm, s1), t))

= l(h(l(n1, s1), l(n2, s2), . . . , l(nm, sm)), t).

Hence, we obtain l(h(n1, n2, . . . , nm), s1) = h(l(n1, s1), l(n2, s1), . . . , l(nm, s1)). Also, we have
(ii)

l(t, l(s1, l(a1, a2))) = l(l(t, s1), l(a1, a2)) = l(l(l(t, s1), a1), a2),

which implies that l(s1, l(a1, a2)) = l(l(s1, a1), a2). Thus, we deduce that (H1 : H2) is an M -group of S.
(3) If n = 2 and i = 1, then using the statement (1), we conclude that (H1 : H2) is a normal subgroup of M . If

a ∈ (H1 : H2) then l(a,H2) ⊆ H1.
If i = 1, then for every a2 ∈M , we have l(l((H1 : H2), a2), H2) = l((H1 : H2), l(a2, H2)) = l((H1 : H2), H2) ⊆ H1.
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Thus, we have l((H1 : H2), a2) ⊆ (H1 : H2). If i = 2, then a ∈ (H1 : H2), and hence l(H2, a) ⊆ H1; for every a1 ∈ M , we
have l(H2, (l(a1, (H1 : H2)) = l(l(H2, a1), (H1 : H2)) = l(H2, (H1 : H2), ) ⊆ H1. Therefore, l(a1, (H1 : H2)) ⊆ (H1 : H2).

Remark 3.2. For any N -group homomorphism f : G −→ T , it holds that (0 : G) ⊆ (0 : f(G)). Hence, every monomorphism
image of a faithful N -group is also faithful. Moreover, for any N -group isomorphism f : G −→ T , we have (0 : G) = (0 : T ).
Therefore, G is faithful if and only if T is faithful.

Theorem 3.5. Assume that (R, h, k) is an (m,n)-near ring. If the R0-group G is monogenic by s, then the R-group G is
monogenic by s.

Proof. Since the R0-group G is monogenic by s, it follows that G = k(s(i−1), R0, s
(n−i)) ⊆ k(s(i−1), R, s(n−i)) ⊆ G. Thus,

k(s(i−1), R, s(n−i)) = G, which implies that the R-group G is monogenic by s.
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