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Abstract

A vertex u in a graphG totally dominates a vertex v if v is adjacent to u. A set S of vertices in a graphG is a total dominating
set for G if every vertex of G is totally dominated by at least one vertex of S. If S is a total dominating set of a graph G,
then σS(v) denotes the number of vertices in S that totally dominate v. A total dominating set S in a graph G is called a
proper total dominating set if σS(u) 6= σS(v) for every two adjacent vertices u and v of G. Not all graphs possess a proper
total dominating set. For each graph G with a proper total dominating set S, the numbers in the set {σS(v) : v ∈ V (G)}
give rise to a proper vertex coloring of G. The number |{σS(v) : v ∈ V (G)}| is called the proper total chromatic number
χpt(G,S) of G with respect to S, while the proper total chromatic number χpt(G) of G is defined as the minimum value of
χpt(G,S) among all proper total dominating sets S of G. Therefore, for every graph G with a proper total dominating set,
χpt(G) is at least as large as the chromatic number χ(G) of G. The proper total chromatic number is investigated for trees
and complete multipartite graphs. It is shown that for every pair a, b of positive integers with 2 ≤ a ≤ b, there is a graph G
with χ(G) = a and χpt(G) = b.
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1. Introduction

In recent decades, domination in graphs has grown in popularity in graph theory. While this area evidently began with the
work of Berge [2] in 1958 and Ore [9] in 1962, it did not become an active area of research until 1977 with the appearance of
a survey paper by Cockayne and Hedetniemi [6]. Since then, a large number of variations and applications of domination
have surfaced. A vertex u in a graph G is said to dominate a vertex v if either v = u or v is adjacent to u in G. That is, u
dominates itself and all vertices in its neighborhood N(u). A set S of vertices in G is a dominating set of G if every vertex
of G is dominated by some vertex in S. In their 2023 book, Haynes, Hedetniemi, and Henning [7] presented the major
results that have been obtained on what they refer to as the core concepts of graph domination. One of these core concepts
is total domination, introduced by Cockayne, Dawes and Hedetniemi [5] in 1977. A vertex u in a graph G totally dominates
a vertex v if v is adjacent to u. A set S of vertices in a graph G is a total dominating set for G if every vertex of G is totally
dominated by at least one vertex of S. Therefore, a graph G has a total dominating set if and only if G contains no isolated
vertices. The 2013 book by Henning and Yeo [8] deals exclusively with total domination in graphs.

For a total dominating set S and a vertex v of G, the number of vertices in S that totally dominate v is denoted by σS(v).
Thus, 1 ≤ σS(v) ≤ deg v for each vertex v of G. While there is no total dominating set S for which σS(u) 6= σS(v) for every
two vertices u and v of G, it is possible that σS(u) 6= σS(v) for every pair u, v of adjacent vertices of G (see [4]). A total
dominating set with this property is a proper total dominating set. Not only is S a proper total dominating set of G but σS
is a proper coloring of G. Thus, a proper total dominating set S of G gives rise to a σS-coloring of G. A σS-coloring of G is
referred to as a proper total coloring or a pt-coloring of G. For every proper total dominating set S in a graph G, there is a
resulting proper (vertex) coloring of G with colors in the set

ΣS(G) = {σS(v) : v ∈ V (G)}.

If a graph G has maximum degree ∆(G), then ΣS(G) ⊆ {1, 2, . . . ,∆(G)}. For example, the set S = {u, v, w, y} of vertices
the graph H of Figure 1.1 is a proper total dominating set for H, where σS(u) = σS(w) = σS(y) = 1, σS(x) = σS(z) = 2,
and σS(v) = 3. For a graph G, let D(G) = {degG v : v ∈ V (G)} be the degree set of G. Thus, for the proper total dominating
set S given for the graph H of Figure 1.1, it follows that ΣS(H) = D(H).
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Figure 1.1: A graph with a proper total dominating set.

For a graphGwith a proper total dominating set S, the proper total chromatic number or pt-chromatic number χpt(G,S)

of G with respect to S is defined as χpt(G,S) = |ΣS(G)|, while the proper total chromatic number or pt-chromatic number
χpt(G) of G is defined as

χpt(G) = min{χpt(G,S) : S is a proper total dominating set of G}.

Consequently, χ(G) ≤ χpt(G) for every graph G with a proper total dominating set, where χ(G) is the chromatic number
of G. The proper total dominating set S given for the graph H of Figure 1.1 shows that χpt(H) ≤ 3. Since χ(H) = 2, it
follows that 2 ≤ χpt(H) ≤ 3. We show that χpt(H) = 3. Assume, to the contrary, that χpt(H) = 2. Then there must be
a proper total dominating set S such that ΣS(H) = {1, 2} since u and z are adjacent vertices of degree 2 in H; in fact, it
must occur that {σS(u), σS(z)} = {1, 2}. Without loss of generosity, we can assume that σS(u) = 2 and σS(z) = 1. Since
σS(u) = 2, it follows that v, z ∈ S. Necessarily, σS(v) = 1 and σS(w) = 2. Thus, x ∈ S. Since {v, x, z} ⊆ S, it follows that
σS(y) = 3, which is impossible. Therefore, χpt(H) = 3 and so χpt(H) > χ(H).

In [4], all paths and cycles possessing a proper total dominating set were determined.

Proposition 1.1. [4] For an integer n ≥ 2, the path Pn of order n has a proper total dominating set if and only if

n ≡ 3 (mod 4).

Proposition 1.2. [4] For an integer n ≥ 3, the cycle Cn of order n has a proper total dominating set if and only if

n ≡ 0 (mod 4).

By Propositions 1.1 and 1.2, if G = Pn where n ≡ 3 (mod 4) or if G = Cn where n ≡ 0 (mod 4), then G has a proper
total dominating set S with ΣS(G) = {1, 2}. Therefore, χ(G) = χpt(G) = 2.

The clique number ω(G) of a graph G is the maximum order of a complete subgraph of G. It is well known that
χ(G) ≥ ω(G) for every graph G. The British mathematician Rowland Brooks proved that if G is a connected graph of order
n, then χ(G) ≤ ∆(G) unless G = Kn or n ≥ 3 is odd and G = Cn. Furthermore, if S is a proper total dominating set of G,
then 1 ≤ σS(v) ≤ ∆(G) for every vertex v of G and so χpt(G,S) ≤ ∆(G). Hence, χpt(G) ≤ ∆(G). Neither odd cycles nor
complete graphs of order at least 3 have a proper total dominating set (see [4]). Consequently, if G is a connected graph
having a proper total dominating set, then

ω(G) ≤ χ(G) ≤ χpt(G) ≤ ∆(G). (1)

All graphs under consideration are nontrivial connected graphs. We refer to the books [3,7] for notation and terminology
not defined here.

2. The pt-chromatic number of a graph

Graphs in which every two adjacent vertices have different degrees have been referred to as locally irregular graphs by
some (see [1], for example). The graphs K1,2 and K1,3 are the only locally irregular graphs of orders 3 and 4, respectively.
While each graphKs,t with s 6= t is locally irregular, so too are the graphs shown in Figure 2.1 where each vertex is labeled
with its degree. If G is a locally irregular graph, then S = V (G) is a proper total dominating set of G. In this case, ΣS(G)

is the degree set D(G) of the graph G.
The following lemma will be useful in what follows. For a vertex u in a graph, let N [u] = {u} ∪N(u) denote the closed

neighborhood of u.

Lemma 2.1. LetG be a graph containing an end-vertex adjacent to a vertex u of degree 2. IfG has a proper total dominating
set S, then N [u] ⊆ S.
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Figure 2.1: Locally irregular graphs.

Proof. Let N [u] = {u, v, w} where v is an end-vertex of G. Since v is only totally dominated by u, it follows that u ∈ S.
Since u is only totally dominated by either v or w, at least one of v and w must belong to S. However, if exactly one of v and
w belongs to S, then σS(u) = σS(v) = 1, which is a contradiction. Therefore, N [u] ⊆ S.

Let G be a nontrivial connected graph. For each vertex v and edge e of G, it is known that χ(G)− 1 ≤ χ(G− v) ≤ χ(G)

and χ(G) − 1 ≤ χ(G − e) ≤ χ(G). This, however, is not true in general for the pt-chromatic number of a graph. For
example, consider the graphs G and H in Figure 2.2 where v ∈ V (G) and e ∈ E(H). By Lemma 2.1, the vertex set is the
only proper total dominating set for each of these four graphs G, G − v, H, and H − e. Hence, χpt(G) = χpt(H) = 3 and
χpt(G− v) = χpt(H − e) = 4. Consequently, χpt(G− v) = χpt(G) + 1 and χpt(H − e) = χpt(H) + 1
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Figure 2.2: Graphs G and H such that χpt(G− v) = χpt(G) + 1 and χpt(H − e) = χpt(H) + 1.

While χ(F ) ≤ χ(G) for a subgraph F of a graph G, we saw that it is possible that χpt(F ) = χpt(G) + 1. In fact,
χpt(F )− χpt(G) can be an arbitrarily large positive integer, which we show next. For a graph G, the subdivision S(G) of G
is obtained by subdividing each edge of G exactly once.

Theorem 2.1. For each positive integer k, there exists a tree T containing a subtree T ′ such that χpt(T
′) = χpt(T ) + k.

Proof. For a given integer k, we first construct the tree T . We begin with the star T0 = K1,k+1 of size k + 1 with central
vertex w and end-vertices w1, w2, . . . , wk+1. For each integer i with 1 ≤ i ≤ k + 1, let Ti = S(K1,4k) with central vertex vi.
The tree T is obtained from T0, T1, T2, . . . , Tk+1 by identifying the vertex wi in T0 and the vertex vi in Ti for 1 ≤ i ≤ k + 1.
The tree T is shown in Figure 2.3 for k = 1 and k = 2.

w

w

Figure 2.3: The trees T for k = 1 and k = 2.
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We show that χpt(T ) = 3 if k = 1 and χpt(T ) = 4 if k ≥ 2. By Lemma 2.1, the tree T has exactly two proper total
dominating sets, namely S1 = V (T )−{w} and S2 = V (T ). Since ΣS1

(T ) = {1, 2, k+ 1, 4k} and ΣS2
(T ) = {1, 2, k+ 1, 4k+ 1},

it follows that χpt(T ) = 3 if k = 1 and χpt(T ) = 4 if k ≥ 2.
Next, we construct a subtree T ′ of T . For each integer i with 1 ≤ i ≤ k + 1, let T ′i = S(K1,4k−i+1) with central vertex v′i.

The tree T ′ is obtained from T0, T
′
1, T

′
2, . . . , T

′
k+1 by identifying the vertex wi in T0 and the vertex v′i in T ′i for 1 ≤ i ≤ k + 1.

Then T ′ is a subtree of T . This tree T ′ is shown in Figure 2.4 for k = 1 and k = 2, respectively.

w

w

Figure 2.4: The trees T ′ for k = 1 and k = 2.

We show that χpt(T
′) = 3 + k if k = 1 and χpt(T

′) = 4 + k if k ≥ 2. By Lemma 2.1, the tree T ′ has exactly two proper
total dominating sets, namely S1 = V (T ′) − {w} and S2 = V (T ′). Then ΣS1

(T ′) = {1, 2, k + 1, 4k, 4k − 1, 4k − 2, . . . , 3k}
and ΣS2

(T ′) = {1, 2, k + 1, 4k + 1, 4k, 4k − 1, . . . , 3k + 1}. Therefore, χpt(T
′) = 3 + k if k = 1 and χpt(T

′) = 4 + k if k ≥ 2.
Consequently, χpt(T

′) = χpt(T ) + k.

By (1), if G is a connected graph with χ(G) = a and χpt(G) = b, then 2 ≤ a ≤ b. The difference of these two numbers
can be arbitrarily large. For example, while the chromatic number of every nontrivial tree is 2, the proper total chromatic
number of a tree can be any integer 2 or more.

Theorem 2.2. For each integer k ≥ 2, there is a connected graph G such that

χ(G) = 2 and χpt(G) = k.

Proof. Every nontrivial tree has chromatic number 2. Thus, we show that for each integer k ≥ 2 there exists a tree T with
χpt(T ) = k. We have seen that if T = Pn where n ≡ 3 (mod 4), then T has a proper total dominating set and χpt(T ) = 2.
Thus, we may assume that k ≥ 3. Suppose first that k = 3. Let T = S(K1,3) be the tree obtained by subdividing each edge
of K1,3 exactly once. Since T is locally irregular, V (T ) is a proper total dominating set. By Lemma 2.1, every proper total
dominating set of T must contain V (T ) and so V (T ) is the unique proper total dominating set of T . Since the degree set
of T is D(T ) = {1, 2, 3}, it follows that χpt(T ) = 3.

We may now assume that k ≥ 4. Suppose first that k = 4. Let T be the tree of order 13 obtained from two copies T1
and T2 of the tree S(K1,3) by identifying an end-vertex of T1 with the central vertex of T2. Since T is locally irregular, T has
a proper total dominating set S. By Lemma 2.1, a proper total dominating set of T must contain every vertex of T except
possibly the vertex v of degree 2 whose neighbors have degrees 3 and 4. However, if v /∈ S, then the vertex u ∈ N(v) of
degree 3 has σS(u) = σS(v) = 2, which is impossible. Thus, v ∈ S and so S = V (T ) is the unique proper total dominating
set of T . Since ΣS(G) = D(G) = {1, 2, 3, 4}, it follows that χpt(T ) = 4. This is illustrated in Figure 2.5 where each vertex v
of T is labeled by σS(v).
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Figure 2.5: The tree in the proof of Theorem 2.2 for k = 4.
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Next, let k ≥ 5. Let T ′ = K1,k−2 where v is the central vertex of T ′ and v1, v2, . . ., vk−2 are the end-vertices of T ′. For
each integer i with 2 ≤ i ≤ k − 2, let Ti = S(K1,i+1) if i + 3 ≥ k and let Ti = S(K1,i) if i + 3 < k. The tree T is constructed
by placing a pendant edge at v1 and identifying the central vertex of Ti and the vertex vi of T ′ for 2 ≤ i ≤ k − 2. Then T

is a locally irregular tree with degree set D(T ) = {1, 2, . . . , k}. By Lemma 2.1, the unique proper total dominating set of T
is S = V (T ). Hence, ΣS(T ) = D(T ) and so χpt(T ) = k. The tree T is illustrated in Figure 2.6 for k = 5, 6, 7, where some
vertices v of T are labeled by σS(v).
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Figure 2.6: The trees in the proof of Theorem 2.2 for k = 5, 6, 7.

By (1), if G is a connected graph possessing a proper total dominating set, then χpt(G) ≤ ∆(G). The trees T constructed
in the proof of Theorem 2.2 have the property that χpt(T ) = ∆(T ). Hence, the following is a consequence of the proof of
Theorem 2.2.

Corollary 2.1. For each integer k ≥ 2, there is a connected graph G such that

χpt(G) = ∆(G) = k.

While Theorem 2.2 states that there are connected graphs G for which χpt(G)−χ(G) can be arbitrarily large, there are
connected graphs G for which χpt(G) and χ(G) are the same prescribed number at least 2. To illustrate this, we determine
those complete multipartite graphs that possess a proper total dominating set.

Theorem 2.3. For an integer k ≥ 2, let G = Kn1,n2,...,nk
be a complete k-partite graph of order 3 or more where

n1 ≤ n2 ≤ · · · ≤ nk.

Then G has a proper total dominating set if and only if ni ≥ i − 1 for 2 ≤ i ≤ k. Furthermore, if G has a proper total
dominating set, then χpt(G) = χ(G) = k.

Proof. Let U1, U2, . . . , Uk be the partite sets of G where |Ui| = ni for 1 ≤ i ≤ k. First, suppose that ni ≥ i − 1 for each
integer i with 2 ≤ i ≤ k. Let Si ⊆ Ui such that |Si| = i− 1 for 2 ≤ i ≤ k. Then

k∑
i=2

|Si| =
(
k

2

)
.

Let S =
⋃k

i=1 Si. For each vertex v ∈ Ui (1 ≤ i ≤ k), it follows that

σS(v) =

(
k

2

)
− (i− 1).

Therefore, S is a proper total dominating set of G. This is shown in Figure 2.7 for the complete 4-partite graph K1,1,2,3

where each vertex in S is indicated by a solid vertex and each vertex v is labeled by σS(v). Therefore, χpt(G,S) = k and so
χpt(G) ≤ k. Since k = χ(G) ≤ χpt(G), it follows that χpt(G) = k.

For the converse, assume, to the contrary, that G has a proper total dominating set S and there is an integer j with
2 ≤ j ≤ k such that nj ≤ j − 2. Then k ≥ 3. Suppose that ri vertices of Ui belong to S for 1 ≤ i ≤ k. Thus, 0 ≤ ri ≤ ni for
1 ≤ i ≤ k. If 1 ≤ i ≤ j, then ri ≤ ni ≤ nj ≤ j − 2. Consequently, ri ∈ {0, 1, . . . , j − 2} for 1 ≤ i ≤ j. Hence, there are two
distinct integers s and t with 1 ≤ s, t ≤ j such that rs = rt. Let x ∈ Us and y ∈ Ut. Then

σS(x) =

(
k∑

i=1

ri

)
− rs =

(
k∑

i=1

ri

)
− rt = σS(y).

Since xy ∈ E(G), it follows that S is not a proper total dominating set of G, a contradiction.
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Figure 2.7: A proper total dominating set of K1,1,2,3.

By (1), for every connected graph possessing a proper total dominating set, it follows that ω(G) ≤ χpt(G). If G is a
complete k-partite graph of order 3 or more, then ω(G) = k. Thus, the following is a consequence of Theorem 2.3.

Corollary 2.2. For each integer k ≥ 2, there is a connected graph G such that

ω(G) = χpt(G) = k.

Another consequence of Theorem 2.3 and its proof is the following.

Corollary 2.3. For every integer k ≥ 4, there exists a connected graph G with χ(G) = χpt(G) = k where there is a proper
coloring of G using the colors 1, 2, . . . , k, of course, but no pt-coloring of G that uses any of the colors 1, 2, . . . , k.

3. Connected graphs with prescribed chromatic and pt-chromatic numbers

We are now prepared to show that every pair a, b of integers with 2 ≤ a ≤ b can be realized as the chromatic number and
proper total chromatic number, respectively, of some connected graph.

Theorem 3.1. For every pair a, b of integers with 2 ≤ a ≤ b, there exists a connected graph G such that χ(G) = a and
χpt(G) = b.

Proof. By Theorem 2.3, we may assume that 2 ≤ a < b. We consider three cases.
Case 1. a = 2. By Theorem 2.2, there is a tree T with χ(T ) = 2 and χpt(T ) = b.
Case 2. b = a + 1 ≥ 4. Let G be the graph obtained from Ka where V (Ka) = {v1, v2, . . . , va} by adding i pendant edges

at the vertex vi of Ka for 1 ≤ i ≤ a. Then χ(G) = a. It remains to show that χpt(G) = a + 1. Since G is locally irregular,
S0 = V (G) is a proper total dominating set of G with |ΣS0

(G)| = a+ 1. Thus, χpt(G) ≤ a+ 1. Next, let S be any proper total
dominating set of G. Since σS(u) = 1 for each end-vertex u of G and each vertex of Ka is adjacent to at least one end-vertex
of G, it follows that σS(vi) ≥ 2 for 1 ≤ i ≤ a. Furthermore, σS(vi) 6= σS(vj) for each pair i, j of integers with 1 ≤ i < j ≤ a.
Hence, χpt(G,S) ≥ a+ 1 for every proper total dominating set S of G. Therefore, χpt(G) ≥ a+ 1 and so χpt(G) = a+ 1.

Case 3. b ≥ a + 2 ≥ 5. We construct a connected graph G with χ(G) = a and χpt(G) = b by first constructing two
graphs G1 and G2.

? To construct the graph G1, we begin with H = Ka where V (H) = {u1, u2, . . . , ua}. For 1 ≤ i ≤ a, let H1 = S(K1,3) and
let Hi = iP3 for 2 ≤ i ≤ a. The graph G1 is obtained from H and the graphs Hi (1 ≤ i ≤ a) by (1) joining u1 to the
central vertex of H1 and (2) joining ui to exactly one end-vertex in each copy of P3 in Hi for 2 ≤ i ≤ a. For a = 3, 4, the
graph G1 is shown in Figure 3.1.

Let S1 = V (G1)−V (H) and S′1 = [V (G1)− (V (H)]∪{u1}. Then S1 and S′1 are proper total dominating sets of G1 such
that

ΣS1(G1) = {1, 2, . . . , a} and ΣS′
1
(G1) = {1, 2, . . . , a+ 1}.

We claim that S1 and S′1 are only proper total dominating sets of G1. Let S be any proper total dominating set of G1.
By Lemma 2.1, it follows that S1 ⊆ S. Furthermore, ui /∈ S for every integer i with 2 ≤ i ≤ a, for otherwise, say
uj ∈ S where 2 ≤ j ≤ a. Let x be the neighbor of uj in Hj and let y be the neighbor of x in Hj . Then σS(x) = σ(y) = 2,
which is impossible. Therefore, as claimed, S1 and S′1 are only proper total dominating sets of G1. This also shows
that χpt(G1) = χ(G1) = a.
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Figure 3.1: Graphs G1 in the proof of Theorem 3.1 for a = 3, 4.

? Let G2 be the tree constructed in the proof of Theorem 2.2 for k = b ≥ 5. Thus, χpt(G2) = b and S2 = V (G2) is the
unique proper total dominating set of G2 with ΣS2

(G2) = {1, 2, . . . , b}.

We now construct the graph G from G1 and G2. Using the vertex labeling of G2 as in the proof of of Theorem 2.2, let
u be the end-vertex of G2 that is adjacent to v1. The graph G is constructed by G1 and G2 by adding the edge uua. Then
χ(G) = a. It remains to show that χpt(G) = b.

First, let S = S1∪S2 = (V (G1)−V (Ka))∪V (G2). Then σS(x) = σS1(x) if x ∈ V (G1)−{ua}, σS(ua) = σS1(ua) + 1 = a+ 1,
and σS(x) = σS2

(x) if x ∈ V (G2). Furthermore, if y ∈ NG(ua), then σS(y) ∈ {1, 2, . . . , a − 1}. It follows that S is a proper
total dominating set of G with ΣS(G) = {1, 2, . . . , b}. For (a, b) ∈ {(3, 5), (4, 6)}, the graphs G are shown in Figure 3.2,
where each vertex of S is indicated by a solid vertex and a vertex v of G is labeled by σS(v). Similarly, it can be shown that
S′ = S ∪ {u1} is also a proper total dominating sets of G and ΣS′(G) = {1, 2, . . . , b}.
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Figure 3.2: The graphs in the proof of Theorem 3.1 for (a, b) ∈ {(3, 5), (4, 6)}.

Next, we show that that S and S′ are the only proper total dominating sets of G. Let X be any proper total dominating
set of G. By Lemma 2.1, it follows that V (G1)− V (Ka) ⊆ X and V (G2)− {u, v1, v} ⊆ S′. Furthermore, as described above,
ui /∈ S for every integer i with 2 ≤ i ≤ a. We show that {u, v1, v} ⊆ X.

? Since u is only totally dominated by ua and v1 and ua /∈ X, it follows that v1 ∈ X.

? Since v1 is only totally dominated by u and v, at least one of u and v must belong to S. If u /∈ X, then v ∈ X and
σX(u) = σX(v1) = 1, a contradiction. If v /∈ X, then u ∈ X and σX(u) = σX(v1) = 1, a contradiction.

Thus, {u, v1, v} ⊆ X, implying that X = S or X = S′. Therefore, χpt(G) = b.
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By (1), for every connected graph possessing a proper total dominating set ω(G) ≤ χ(G) ≤ χpt(G) ≤ ∆(G). The
graphs G1 constructed in Case 3 of the proof of Theorem 3.1 have the property that ω(G) = χ(G) = χpt(G) = ∆(G) ≥ 3.
Hence, the following is a consequence of Theorem 2.2 and the proof of Theorem 3.1.

Corollary 3.1. For each integer k ≥ 2, there is a connected graph G such that

ω(G) = χ(G) = χpt(G) = ∆(G) = k.

We conclude with the following two natural questions.

Problem 3.1. Is there a characterization of connected graphs G (having proper total dominating sets) such that ω(G) =

χ(G) = χpt(G) = ∆(G)?

Problem 3.2. Is there a characterization of connected graphs G (having proper total dominating sets) such that χ(G) =

χpt(G)?
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