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Abstract

Let G = (V, E) be a graph. Define M (G; «, 8) := aD + A, where D and A are the diagonal matrix and adjacency matrix of
G, respectively, and «, 3, are real numbers such that (o, 8) # (0,0). Using the largest and smallest eigenvalues of M (G; ., )
with « > 8 > 0, sufficient conditions for the Hamiltonian and traceable graphs are presented.
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1. Introduction

We consider only finite undirected graphs without loops and multiple edges. Notation and terminology not defined here
follow those in [1]. For a graph G = (V(G), E(G)), we use n and e to denote its order and size, respectively. The minimum
degree and maximum degree of G are denoted by §(G) and A(G), respectively. We use N(u) to denote the set of all vertices
adjacent to u in G. A set of vertices in a graph G is independent if the vertices in the set are pairwise nonadjacent. A
maximum independent set in a graph G is an independent set with the largest possible size. The independence number,
denoted as v(G), of a graph G is the cardinality of a maximum independent set in G. For disjoint vertex subsets X and YV’
of V(G), we define E(X,Y)as{f: f=ayc E,z € X,y €Y }. Acycle C in a graph G is said to be a Hamiltonian cycle of G
if C contains all the vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is
said to be a Hamiltonian path of G if P contains all the vertices of G. A graph G is called traceable if G has a Hamiltonian
path.

For a graph G, we define M (G;«, ) :== aD + A, where D and A are the diagonal matrix and adjacency matrix of G,
respectively, and «a, 3, are real numbers such that (a, 8) # (0,0). If « = 0 and 8 = 1 (respectively, « = 1 and 8 = 1), then
M(G;a, p) is the same as the adjacency matrix (respectively, the signless Laplacian matrix) of G. Thus, M (G;a, ) is a
generalization of both adjacency matrix and signless Laplacian matrix of G. We use A\, .1, Aa,8;2, -, Aa,8;n t0 denote the
eigenvalues of M (G; «, §) and assume that A\, 5.1 > Aa g2 > -+ > Mg g;n. Since M(G;«, §) is symmetric, its eigenvalues
Aa,Bi15 AaB:2, > Aa,8:n are real numbers. In this article, using the largest and smallest eigenvalues of M (G; «, 8) with
a > 8 > 0, we present sufficient conditions for the Hamiltonian and traceable graphs. Now, we state the main results of
the present article.

Theorem 1.1. Let G be a k-connected graph with n > 3 vertices and e edges, where k > 2. Let « > § > 0. Set A\ := Ao 5:1
and A, = A B;n-

(i). If the inequality

A s (Oé—i_ﬁ)\/(kj +n1)62 + n(n _ejc— 1)

holds then G is Hamiltonian or G is Ky, j+1.

(ii). If the inequality

A > (a+5>\/(n — kn_ 2 n(k:ejr )

holds then G is Hamiltonian or G is Ky, j11.
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Theorem 1.2. Let G be a k-connected graph with n > 9 vertices and e edges, where k > 1. Let a > 3 > 0. Set A\i := Ao ;1
and Ay, = Ao B;n-

(i). If the inequality

(k+2)62 2
Alg(a+ﬂ)\/ n +n(n—k—2)’

holds then G is traceable or G is Ky, 42

(ii). If the inequality

A\, > (a+6)\/(n—k7l— 2)A2 N n(keim’

holds then G is traceable or G is Ky, j+2.

2. Lemmas

This section gives the known results that are used to prove Theorem 1.1 and Theorem 1.2.
Lemma 2.1 (see [2]). Let G be a k-connected graph of order n > 3. If v < k, then G is Hamiltonian.
Lemma 2.2 (see [2]). Let G be a k-connected graph of order n. If v < k + 1, then G is traceable.

Lemma 2.3 (see [6]). Let G be a balanced bipartite graph of order 2n with bipartition (A, B). If d(z) + d(y) > n+ 1 for any
x € Aand any y € B with vy ¢ E, then G is Hamiltonian.

Lemma 2.4 (see [4]). Let G be a 2-connected bipartite graph with bipartition (A, B), where |A| > |B|. If each vertex in A has
degree at least s and each vertex in B has degree at least t, then G contains a cycle of length at least 2min(|B|,s+t—1,2s—2).

The following result is the well-known Rayleigh-Ritz theorem:
Lemma 2.5 (see the theorem on Page 176 in [3]). Let M be an n x n Hermitian matrix with the largest eigenvalue \; and
the smallest eigenvalue \,,. Suppose X is any non-zero n-dimensional row vector. Then

XMX* o

M2 5 2

Y

where X* is the transpose conjugate of X.

3. Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. Let G be a k-connected (k > 2) graph with n > 3 vertices and e edges. Suppose G is not Hamil-
tonian. Then Lemma 2.1 implies that v > k£ + 1. Also, we have that n > 26 + 1 > 2k + 1, otherwise 6 > k£ > n/2 and
G is Hamiltonian. Let I; := {ui,us,...,uy } be a maximum independent set in G. Then I := {u;,u2,...,upy1 } is an
independent set in G. Thus,

> dw) =BV -1 < Y dv).

uel veV -1

Since

Zd(u) + Z d(v) = 2e,

uel veV -1
we have that

ddu)y<e< Y d(v).

uel veV -1
Let V —1I = {vi,v2,...,0_(k41) }.- From Cauchy-Schwarz inequality, we have

n—(k+1)  n—(kt1 n—(k+1) 2

)
Z 12 Z d*(v,) > Z d(v,) | > e
r=1

r=1 r=1
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Consequently, it holds that
2

> Pz

veV—I
Therefore, ,
= (k+ 1)+ ———= < ;dz(u) + vw;[dQ(U) = v;/dQ(v)
with equality if and only if d(u) = § for each v € I, )~ ,_;d(v) = e (implying ) _; d(u) = e and thereby G is bipartite
with partition sets of I and V — I), and A = d(v) foreachv € V —I.
From Cauchy-Schwarz inequality again, we have

k41 k1 k+1 2
> 12y dP(uy) < (Zd(uﬂ) < e
r=1 r=1 r=1

Thus,

l\?

PRLAC)

uel

Therefore,
2

:kiljt(n—kfl)AzZZdz(u)Jr S )= d*v)

uel veV -1 veV

with equality if and only if d(v) = A foreachv € V —1,3 _;d(u) = e (implying ) _,,_; d(v) = e and thereby G is bipartite
with partition sets of I and V' — I), and § = d(u) for each u € I.
For any real row vector X = (z1, o, ..., z,), we have

M(G;a, B)XT = Z:r +B8 ) (dl 2>,

uwveE

where X7 is the transpose of X. Thus, M (G;a, 3) is positive semidefinite and therefore,
A= A1 2 Aagi2 200 2 Aagin = An 2 0.

Hence A} = A2, 5., > A2 5.0 > -+ > A2 5., = \; > 0 are the eigenvalues of M?*(G;a, §).

Since M?(G;a, 3) = a2D2 +aBDA + aBAD + B2 A2, the sum of all the entries in the uth row of M?(G;a, 3) is equal to
the sum of all the entries in the uth rows of a?>D?, aDA, aSAD, and 5%2A2, where u is any vertex in G. Notice that the
sums of all the entries of the uth rows of D?, DA, AD, and A® are equal to d*(u), d*(u), 3, ¢ n(u) d(v), and 35,y d(v),

respectively (see Page 805 in [5]). Hence, the sum of all the entries in the uth row, denoted as RS(u), in M?(G;a, 3) is

ala+ B)d*(u) + Bla+B) Y d).

vEN (u)

Let Y = (1,1,...,1) be an n-dimensional row vector. Applying Lemma 2.5 to M?(G; «, 3), we have

5 _ YM(G;a,8)Y* 9
> > .
AT 2 YY* Z An
Notice that
M(G;a, B)Y* = RS(u
ueV
ala+B) Y d*(u)+Ba+p)> > d
ueV u€V veN (u)
ala+B) Y d*(u)+Bla+B) Y d*(u)
uev ueV
=(a+8))  d’(u)

ueV
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Hence, the following chain of inequalities holds:

2> (ot g Zuer T 5

n — N

(i). From the given condition, we have

o (((k+ 1) e? 2
(a+ B) ( - +n(nk1))2/\1
> (Ot—|—,6)2 ZuGV d2(u)
>(a+/3)2%
—(a o (k4 1)82 e?
=(a+h) ( n +n(n—k‘—1)>'

Thus, each of the above inequalities becomes an equality. Therefore, d(u) = 0 for each uw € I, Y _,_;d(v) = e (implying
> uer d(u) = e and thereby G is bipartite with partition sets of I and V' — I), and A = d(v) for each v € V — I. Hence,

(k+1)8=|E(L,V-I)|=A(n—k—1)>8(n—Fk—1).

Therefore, 2k +2 > n > 2k + 1. If n = 2k + 2, then § = A. Lemma 2.3 implies G is Hamiltonian, a contradiction. If
n = 2k + 1, then G is K}, +1. This completes the proof of Theorem 1.1(i).

(ii). From the given condition, we have

o [((n—k—1)A2 e? 9
(a+p) < - +n(k+1))g/\”
< (ot g Zue P
< (a+6)2%

“o o (M ).

Thus, each of the above inequalities becomes an equality. Therefore, d(v) = A foreachv € V -1, _; d(u) = e (implying
> wev_r1d(v) = e and thereby G is bipartite with partition sets of / and V' — I), and § = d(u) for each u € I. Hence,

(k+1)5=|E(L,V -I)|=A(n—k—1) > 8(n—Fk — 1).

Therefore, 2k+2 > n > 2k+1. If n = 2k+2, then § = A. Lemma 2.3 implies that G is Hamiltonian, which is a contradiction.
If n = 2k + 1, then G is K}, i41. This completes the proof of Theorem 1.1(ii). O

Although the proof of Theorem 1.2 is similar to the proof of Theorem 1.1, we present here a proof of Theorem 1.2 for the
sake of completeness.

Proof of Theorem 1.2. Let G be a k-connected (k > 1) graph with n > 9 vertices and e edges. Suppose that G is not
traceable. Then, Lemma 2.2 implies that v > k + 2. Also, we have that n > 26 + 2 > 2k + 2, otherwise 6 > k > (n —1)/2
and G is traceable. Using the ideas in the proof of Theorem 1.1, we have an independent set I of size k + 2 in G such that

M, = (k+2)52+ﬁ <MY Ew+ Y E) =Y P

uel veV—-I veV

with equality if and only if d(u) = § for each v € I, )~ _,_;d(v) = e (implying ), d(u) = e and thereby G is bipartite
with partition sets of / and V — I), and A = d(v) for each v € V — I, and

2

e
k+2

Ny = +(n—k=2)A*>> dw)+ Y d(v)=> d*(v)

uel veV -1 veV

with equality if and only if d(v) = A foreachv € V — 1,3 ., d(u) = e (implying ) _,,_; d(v) = e and thereby G is bipartite
with partition sets of  and V — I), and § = d(u) for each u € I.
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Using the ideas in the proof of Theorem 1.1 again, we have the following chain of inequalities:

ey @ (u)

n

> \2

— \n-

A > (a+ B)?

(i). By the given condition, we have

(a+B)> ((k +n2)62 P ) > 22

nn—k—2)/) —
> (o pye e 0
> (a+ W%
B (k +2)62 e?
(a+6)2< n +n(n—k—2)>'

Thus, each of the above inequalities becomes an equality. Therefore, d(u) = 0 for each v € I, ) _\,_;d(v) = e (implying
> ucr d(u) = e and thereby G is bipartite with partition sets of / and V' — I), and A = d(v) for each v € V' — I. Hence,

(k+2)8=|E(L,V -I)|=A(n—k—2)>8(n—Fk—2).

Thus, 2k + 4 > n > 2k + 2. Consequently, we have n = 2k +4,n =2k +3,orn =2k + 2. If n =2k +4 > 9, then § = A and
k > 3. Lemma 2.3 implies that G is Hamiltonian and thereby G is traceable, which is a contradiction. If n = 2k + 3 > 9,
then £ > 3. Lemma 2.4 implies that G has a cycle of length at least (n — 1). Hence, G is traceable, which is again a
contradiction. If n = 2k + 2, then G is K}, 2. This completes the proof of Theorem 1.2(i).

(ii). From the given condition, we have

o [((n—k—2)A? e? 9
(a+p) ( ~ +n(k+2))§/\n
< (Oz—|—,3)2 Euex;bd (u)
g(a+ﬂ>2%
B (n—k—2)A2 e?
(a+6)2< - +n(k+2)>'

Thus, each of the above inequalities becomes an equality. Therefore, d(v) = A foreachv € V — 1, ., d(u) = e (implying
> wev_r1d(v) = e and thereby G is bipartite with partition sets of / and V' — I), and § = d(u) for each u € I. Hence,

(k+2)8=|E(I,V -I)|=A(n—k—2)>8(n—Fk —2).

Thus 2k +4 > n > 2k + 2. Therefore, we haven =2k +4,n =2k +3,orn =2k +2. If n =2k +4>9,thend = A and k > 3.
Lemma 2.3 implies that G is Hamiltonian and thereby G is traceable, which is a contradiction. If n = 2k + 3 > 9, then
k > 3. Lemma 2.4 implies that G has a cycle of length at least (n — 1). Hence G is traceable, which is again a contradiction.
If n = 2k + 2, then G is K}, ;+2. This completes the proof of Theorem 1.2(ii). O

From the proof of Theorem 1.1, the next result follows.

Corollary 3.1. Let G be a graph with n vertices and e > 1 edges. Suppose that o > 5 > 0 and let I be any independence set
of Gwith |I| =~. Set A\ := Ao p;1 and A, = Ao g;n. Then

M4y and )\ng(a+5)\/(n_w+€2_

n  n(n—-7y) n ny
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