Research Article

Largest and smallest eigenvalues of matrices and some Hamiltonian properties of graphs

Rao Li[∗](#page-0-0)

Department of Computer Science, Engineering, and Mathematics, University of South Carolina Aiken, Aiken, SC 29801, USA

(Received: 6 August 2024. Received in revised form: 22 October 2024. Accepted: 24 October 2024. Published online: 25 October 2024.)

 \degree 2024 the author. This is an open-access article under the CC BY (International 4.0) license (<www.creativecommons.org/licenses/by/4.0/>).

Abstract

Let $G = (V, E)$ be a graph. Define $M(G; \alpha, \beta) := \alpha D + \beta A$, where D and A are the diagonal matrix and adjacency matrix of G, respectively, and α , β , are real numbers such that $(\alpha, \beta) \neq (0, 0)$. Using the largest and smallest eigenvalues of $M(G; \alpha, \beta)$ with $\alpha > \beta > 0$, sufficient conditions for the Hamiltonian and traceable graphs are presented.

Keywords: matrix; largest eigenvalue; Hamiltonian graph; traceable graph.

2020 Mathematics Subject Classification: 05C45, 05C50.

1. Introduction

We consider only finite undirected graphs without loops and multiple edges. Notation and terminology not defined here follow those in [\[1\]](#page-5-0). For a graph $G = (V(G), E(G))$, we use n and e to denote its order and size, respectively. The minimum degree and maximum degree of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. We use $N(u)$ to denote the set of all vertices adjacent to u in G . A set of vertices in a graph G is independent if the vertices in the set are pairwise nonadjacent. A maximum independent set in a graph G is an independent set with the largest possible size. The independence number, denoted as $\gamma(G)$, of a graph G is the cardinality of a maximum independent set in G. For disjoint vertex subsets X and Y of $V(G)$, we define $E(X, Y)$ as $\{f : f = xy \in E, x \in X, y \in Y\}$. A cycle C in a graph G is said to be a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is said to be a Hamiltonian path of G if P contains all the vertices of G. A graph G is called traceable if G has a Hamiltonian path.

For a graph G, we define $M(G; \alpha, \beta) := \alpha D + \beta A$, where D and A are the diagonal matrix and adjacency matrix of G, respectively, and α , β , are real numbers such that $(\alpha, \beta) \neq (0, 0)$. If $\alpha = 0$ and $\beta = 1$ (respectively, $\alpha = 1$ and $\beta = 1$), then $M(G; \alpha, \beta)$ is the same as the adjacency matrix (respectively, the signless Laplacian matrix) of G. Thus, $M(G; \alpha, \beta)$ is a generalization of both adjacency matrix and signless Laplacian matrix of G. We use $\lambda_{\alpha,\beta;1},\lambda_{\alpha,\beta;2},\cdots,\lambda_{\alpha,\beta;n}$ to denote the eigenvalues of $M(G; \alpha, \beta)$ and assume that $\lambda_{\alpha,\beta;1} \geq \lambda_{\alpha,\beta;2} \geq \cdots \geq \lambda_{\alpha,\beta;n}$. Since $M(G; \alpha, \beta)$ is symmetric, its eigenvalues $\lambda_{\alpha,\beta;1},\lambda_{\alpha,\beta;2},\cdots,\lambda_{\alpha,\beta;n}$ are real numbers. In this article, using the largest and smallest eigenvalues of $M(G;\alpha,\beta)$ with $\alpha \geq \beta > 0$, we present sufficient conditions for the Hamiltonian and traceable graphs. Now, we state the main results of the present article.

Theorem 1.1. Let G be a k-connected graph with $n \geq 3$ vertices and e edges, where $k \geq 2$. Let $\alpha \geq \beta > 0$. Set $\lambda_1 := \lambda_{\alpha,\beta;1}$ *and* $\lambda_n := \lambda_{\alpha,\beta;n}$ *.*

(i). *If the inequality*

$$
\lambda_1 \leq (\alpha + \beta) \sqrt{\frac{(k+1)\delta^2}{n} + \frac{e^2}{n(n-k-1)}}
$$

holds then G *is Hamiltonian or* G *is* $K_{k, k+1}$.

(ii). *If the inequality*

$$
\lambda_n \geq (\alpha + \beta) \sqrt{\frac{(n-k-1)\Delta^2}{n} + \frac{e^2}{n(k+1)}}
$$

holds then G is Hamiltonian or G is $K_{k,k+1}$ *.*

[∗]E-mail address: RaoL@usca.edu

(i). *If the inequality*

$$
\lambda_1 \leq (\alpha + \beta) \sqrt{\frac{(k+2)\delta^2}{n} + \frac{e^2}{n(n-k-2)}},
$$

holds then G is traceable or G is $K_{k, k+2}$ *.*

(ii). *If the inequality*

$$
\lambda_n \geq (\alpha + \beta) \sqrt{\frac{(n-k-2)\Delta^2}{n} + \frac{e^2}{n(k+2)}},
$$

holds then G is traceable or G is $K_{k, k+2}$ *.*

2. Lemmas

This section gives the known results that are used to prove Theorem [1.1](#page-0-1) and Theorem [1.2.](#page-1-0)

Lemma 2.1 (see [\[2\]](#page-5-1)). Let G be a k-connected graph of order $n \geq 3$. If $\gamma \leq k$, then G is Hamiltonian.

Lemma 2.2 (see [\[2\]](#page-5-1)). *Let* G *be a* k-connected graph of order n. If $\gamma \leq k + 1$, then G is traceable.

Lemma 2.3 (see [\[6\]](#page-5-2)). Let G be a balanced bipartite graph of order 2n with bipartition (A, B). If $d(x) + d(y) \ge n + 1$ for any $x \in A$ and any $y \in B$ with $x \in E$, then G is Hamiltonian.

Lemma 2.4 (see [\[4\]](#page-5-3)). Let G be a 2-connected bipartite graph with bipartition (A, B), where $|A| \geq |B|$. If each vertex in A has *degree at least* s *and each vertex in* B *has degree at least* t*, then* G *contains a cycle of length at least* 2 min(|B|, s+t−1, 2s−2)*.*

The following result is the well-known Rayleigh-Ritz theorem:

Lemma 2.5 (see the theorem on Page 176 in [\[3\]](#page-5-4)). Let M be an $n \times n$ Hermitian matrix with the largest eigenvalue λ_1 and *the smallest eigenvalue* λ_n . Suppose X is any non-zero *n*-dimensional row vector. Then

$$
\lambda_1 \ge \frac{XMX^*}{XX^*} \ge \lambda_n,
$$

where X[∗] *is the transpose conjugate of* X*.*

3. Proofs of Theorem [1.1](#page-0-1) and Theorem [1.2](#page-1-0)

Proof of Theorem [1.1.](#page-0-1) Let G be a k-connected ($k \geq 2$) graph with $n \geq 3$ vertices and e edges. Suppose G is not Hamil-tonian. Then Lemma [2.1](#page-1-1) implies that $\gamma \geq k+1$. Also, we have that $n \geq 2\delta + 1 \geq 2k+1$, otherwise $\delta \geq k \geq n/2$ and G is Hamiltonian. Let $I_1 := \{u_1, u_2, \ldots, u_{\gamma}\}\$ be a maximum independent set in G. Then $I := \{u_1, u_2, \ldots, u_{k+1}\}\$ is an independent set in G. Thus,

$$
\sum_{u \in I} d(u) = |E(I, V - I)| \le \sum_{v \in V - I} d(v).
$$

Since

$$
\sum_{u \in I} d(u) + \sum_{v \in V - I} d(v) = 2e,
$$

we have that

$$
\sum_{u \in I} d(u) \le e \le \sum_{v \in V - I} d(v).
$$

Let $V - I = \{v_1, v_2, \ldots, v_{n-(k+1)}\}\$. From Cauchy-Schwarz inequality, we have

$$
\sum_{r=1}^{n-(k+1)} 1^2 \sum_{r=1}^{n-(k+1)} d^2(v_r) \ge \left(\sum_{r=1}^{n-(k+1)} d(v_r)\right)^2 \ge e^2.
$$

Consequently, it holds that

$$
\sum_{v \in V - I} d^2(v) \ge \frac{e^2}{n - k - 1}.
$$

Therefore,

$$
M := (k+1)\delta^2 + \frac{e^2}{n-k-1} \le \sum_{u \in I} d^2(u) + \sum_{v \in V-I} d^2(v) = \sum_{v \in V} d^2(v)
$$

with equality if and only if $d(u)=\delta$ for each $u\in I$, $\sum_{v\in V-I}d(v)=e$ (implying $\sum_{u\in I}d(u)=e$ and thereby G is bipartite with partition sets of I and $V - I$), and $\Delta = d(v)$ for each $v \in V - I$.

From Cauchy-Schwarz inequality again, we have

$$
\sum_{r=1}^{k+1} 1^2 \sum_{r=1}^{k+1} d^2(u_r) \le \left(\sum_{r=1}^{k+1} d(u_r)\right)^2 \le e^2.
$$

Thus,

$$
\sum_{u \in I} d^2(u) \le \frac{e^2}{k+1}.
$$

Therefore,

$$
N := \frac{e^2}{k+1} + (n-k-1)\Delta^2 \ge \sum_{u \in I} d^2(u) + \sum_{v \in V-I} d^2(v) = \sum_{v \in V} d^2(v)
$$

with equality if and only if $d(v)=\Delta$ for each $v\in V-I$, $\sum_{u\in I}d(u)=e$ (implying $\sum_{v\in V-I}d(v)=e$ and thereby G is bipartite with partition sets of I and $V - I$, and $\delta = d(u)$ for each $u \in I$.

For any real row vector $X = (x_1, x_2, \ldots, x_n)$, we have

$$
XM(G; \alpha, \beta)X^{T} = (\alpha - \beta)\sum_{i=1}^{n} x_{i}^{2} + \beta \sum_{uv \in E} (d(u) + d(v))^{2} \ge 0,
$$

where X^T is the transpose of X. Thus, $M(G; \alpha, \beta)$ is positive semidefinite and therefore,

$$
\lambda_1 = \lambda_{\alpha,\beta;1} \ge \lambda_{\alpha,\beta;2} \ge \cdots \ge \lambda_{\alpha,\beta;n} = \lambda_n \ge 0.
$$

Hence $\lambda_1^2=\lambda_{\alpha,\beta;\,1}^2\geq\lambda_{\alpha,\beta;\,2}^2\geq\cdots\geq\lambda_{\alpha,\beta;\,n}^2=\lambda_n^2\geq 0$ are the eigenvalues of $M^2(G;\alpha,\beta).$

Since $M^2(G; \alpha, \beta) = \alpha^2 D^2 + \alpha \beta DA + \alpha \beta AD + \beta^2 A^2$, the sum of all the entries in the uth row of $M^2(G; \alpha, \beta)$ is equal to the sum of all the entries in the uth rows of $\alpha^2 D^2$, $\alpha\beta DA$, $\alpha\beta AD$, and $\beta^2 A^2$, where u is any vertex in G. Notice that the sums of all the entries of the uth rows of D^2 , DA , AD , and A^2 are equal to $d^2(u)$, $d^2(u)$, $\sum_{v\in N(u)}d(v)$, and $\sum_{v\in N(u)}d(v)$, respectively (see Page 805 in [\[5\]](#page-5-5)). Hence, the sum of all the entries in the uth row, denoted as $RS(u)$, in $M^2(G; \alpha, \beta)$ is

$$
\alpha(\alpha+\beta)d^{2}(u) + \beta(\alpha+\beta)\sum_{v\in N(u)}d(v).
$$

Let $Y = (1, 1, \ldots, 1)$ be an *n*-dimensional row vector. Applying Lemma [2.5](#page-1-2) to $M^2(G; \alpha, \beta)$, we have

$$
\lambda_1^2 \ge \frac{YM(G;\alpha,\beta)Y^*}{YY^*} \ge \lambda_n^2.
$$

Notice that

$$
YM(G; \alpha, \beta)Y^* = \sum_{u \in V} RS(u)
$$

= $\alpha(\alpha + \beta) \sum_{u \in V} d^2(u) + \beta(\alpha + \beta) \sum_{u \in V} \sum_{v \in N(u)} d(v)$
= $\alpha(\alpha + \beta) \sum_{u \in V} d^2(u) + \beta(\alpha + \beta) \sum_{u \in V} d^2(u)$
= $(\alpha + \beta)^2 \sum_{u \in V} d^2(u).$

Hence, the following chain of inequalities holds:

$$
\lambda_1^2 \ge (\alpha + \beta)^2 \frac{\sum_{u \in V} d^2(u)}{n} \ge \lambda_n^2.
$$

(i). From the given condition, we have

$$
(\alpha + \beta)^2 \left(\frac{(k+1)\delta^2}{n} + \frac{e^2}{n(n-k-1)} \right) \ge \lambda_1^2
$$

$$
\ge (\alpha + \beta)^2 \frac{\sum_{u \in V} d^2(u)}{n}
$$

$$
\ge (\alpha + \beta)^2 \frac{M}{n}
$$

$$
= (\alpha + \beta)^2 \left(\frac{(k+1)\delta^2}{n} + \frac{e^2}{n(n-k-1)} \right)
$$

Thus, each of the above inequalities becomes an equality. Therefore, $d(u)=\delta$ for each $u\in I,$ $\sum_{v\in V-I}d(v)=e$ (implying $\sum_{u\in I}d(u)=e$ and thereby G is bipartite with partition sets of I and $V-I$), and $\Delta=d(v)$ for each $v\in V-I.$ Hence,

$$
(k+1)\delta = |E(I, V - I)| = \Delta(n - k - 1) \ge \delta(n - k - 1).
$$

Therefore, $2k + 2 \ge n \ge 2k + 1$. If $n = 2k + 2$, then $\delta = \Delta$. Lemma [2.3](#page-1-3) implies G is Hamiltonian, a contradiction. If $n = 2k + 1$, then G is $K_{k, k+1}$. This completes the proof of Theorem [1.1\(](#page-0-1)i).

(ii). From the given condition, we have

$$
(\alpha + \beta)^2 \left(\frac{(n-k-1)\Delta^2}{n} + \frac{e^2}{n(k+1)} \right) \le \lambda_n^2
$$

$$
\le (\alpha + \beta)^2 \frac{\sum_{u \in V} d^2(u)}{n}
$$

$$
\le (\alpha + \beta)^2 \frac{N}{n}
$$

$$
= (\alpha + \beta)^2 \left(\frac{(n-k-1)\Delta^2}{n} + \frac{e^2}{n(k+1)} \right)
$$

Thus, each of the above inequalities becomes an equality. Therefore, $d(v)=\Delta$ for each $v\in V-I$, $\sum_{u\in I}d(u)=e$ (implying $\sum_{v\in V-I}d(v)=e$ and thereby G is bipartite with partition sets of I and $V-I$), and $\delta=d(u)$ for each $u\in I$. Hence,

$$
(k+1)\delta = |E(I, V - I)| = \Delta(n - k - 1) \ge \delta(n - k - 1).
$$

Therefore, $2k+2 \ge n \ge 2k+1$. If $n = 2k+2$, then $\delta = \Delta$. Lemma [2.3](#page-1-3) implies that G is Hamiltonian, which is a contradiction. If $n = 2k + 1$, then G is $K_{k, k+1}$. This completes the proof of Theorem [1.1\(](#page-0-1)ii). \Box

Although the proof of Theorem [1.2](#page-1-0) is similar to the proof of Theorem [1.1,](#page-0-1) we present here a proof of Theorem [1.2](#page-1-0) for the sake of completeness.

Proof of Theorem [1.2.](#page-1-0) Let G be a k-connected ($k \ge 1$) graph with $n \ge 9$ vertices and e edges. Suppose that G is not traceable. Then, Lemma [2.2](#page-1-4) implies that $\gamma \geq k+2$. Also, we have that $n \geq 2\delta + 2 \geq 2k+2$, otherwise $\delta \geq k \geq (n-1)/2$ and G is traceable. Using the ideas in the proof of Theorem [1.1,](#page-0-1) we have an independent set I of size $k + 2$ in G such that

$$
M_1 := (k+2)\delta^2 + \frac{e^2}{n-k-2} \le \sum_{u \in I} d^2(u) + \sum_{v \in V-I} d^2(v) = \sum_{v \in V} d^2(v)
$$

with equality if and only if $d(u) = \delta$ for each $u \in I$, $\sum_{v \in V-I} d(v) = e$ (implying $\sum_{u \in I} d(u) = e$ and thereby G is bipartite with partition sets of I and $V - I$, and $\Delta = d(v)$ for each $v \in V - I$, and

$$
N_1 := \frac{e^2}{k+2} + (n-k-2)\Delta^2 \ge \sum_{u \in I} d^2(u) + \sum_{v \in V-I} d^2(v) = \sum_{v \in V} d^2(v)
$$

with equality if and only if $d(v)=\Delta$ for each $v\in V-I$, $\sum_{u\in I}d(u)=e$ (implying $\sum_{v\in V-I}d(v)=e$ and thereby G is bipartite with partition sets of I and $V - I$, and $\delta = d(u)$ for each $u \in I$.

.

.

Using the ideas in the proof of Theorem 1.1 again, we have the following chain of inequalities:

$$
\lambda_1^2 \geq (\alpha + \beta)^2 \frac{\sum_{u \in V} d^2(u)}{n} \geq \lambda_n^2.
$$

(i). By the given condition, we have

$$
(\alpha + \beta)^2 \left(\frac{(k+2)\delta^2}{n} + \frac{e^2}{n(n-k-2)} \right) \ge \lambda_1^2
$$

$$
\ge (\alpha + \beta)^2 \frac{\sum_{u \in V} d^2(u)}{n}
$$

$$
\ge (\alpha + \beta)^2 \frac{M_1}{n}
$$

$$
= (\alpha + \beta)^2 \left(\frac{(k+2)\delta^2}{n} + \frac{e^2}{n(n-k-2)} \right)
$$

Thus, each of the above inequalities becomes an equality. Therefore, $d(u)=\delta$ for each $u\in I,$ $\sum_{v\in V-I}d(v)=e$ (implying $\sum_{u\in I}d(u)=e$ and thereby G is bipartite with partition sets of I and $V-I$), and $\Delta=d(v)$ for each $v\in V-I$. Hence,

$$
(k+2)\delta = |E(I, V-I)| = \Delta(n-k-2) \ge \delta(n-k-2).
$$

Thus, $2k + 4 \ge n \ge 2k + 2$. Consequently, we have $n = 2k + 4$, $n = 2k + 3$, or $n = 2k + 2$. If $n = 2k + 4 \ge 9$, then $\delta = \Delta$ and $k \geq 3$. Lemma [2.3](#page-1-3) implies that G is Hamiltonian and thereby G is traceable, which is a contradiction. If $n = 2k + 3 \geq 9$, then $k \geq 3$. Lemma [2.4](#page-1-5) implies that G has a cycle of length at least $(n-1)$. Hence, G is traceable, which is again a contradiction. If $n = 2k + 2$, then G is $K_{k, k+2}$. This completes the proof of Theorem [1.2\(](#page-1-0)i).

(ii). From the given condition, we have

$$
(\alpha + \beta)^2 \left(\frac{(n-k-2)\Delta^2}{n} + \frac{e^2}{n(k+2)} \right) \le \lambda_n^2
$$

$$
\le (\alpha + \beta)^2 \frac{\sum_{u \in V} d^2(u)}{n}
$$

$$
\le (\alpha + \beta)^2 \frac{N_1}{n}
$$

$$
= (\alpha + \beta)^2 \left(\frac{(n-k-2)\Delta^2}{n} + \frac{e^2}{n(k+2)} \right)
$$

Thus, each of the above inequalities becomes an equality. Therefore, $d(v)=\Delta$ for each $v\in V-I$, $\sum_{u\in I}d(u)=e$ (implying $\sum_{v\in V-I}d(v)=e$ and thereby G is bipartite with partition sets of I and $V-I$), and $\delta=d(u)$ for each $u\in I$. Hence,

$$
(k+2)\delta = |E(I, V-I)| = \Delta(n-k-2) \ge \delta(n-k-2).
$$

Thus $2k + 4 \ge n \ge 2k + 2$. Therefore, we have $n = 2k + 4$, $n = 2k + 3$, or $n = 2k + 2$. If $n = 2k + 4 \ge 9$, then $\delta = \Delta$ and $k \ge 3$. Lemma [2.3](#page-1-3) implies that G is Hamiltonian and thereby G is traceable, which is a contradiction. If $n = 2k + 3 \ge 9$, then $k \geq 3$. Lemma [2.4](#page-1-5) implies that G has a cycle of length at least $(n-1)$. Hence G is traceable, which is again a contradiction. If $n = 2k + 2$, then G is $K_{k, k+2}$. This completes the proof of Theorem [1.2\(](#page-1-0)ii). \Box

From the proof of Theorem [1.1,](#page-0-1) the next result follows.

Corollary 3.1. *Let* G *be a graph with* n *vertices and* $e \ge 1$ *edges. Suppose that* $\alpha \ge \beta > 0$ *and let* I *be any independence set of* G with $|I| = \gamma$ *. Set* $\lambda_1 := \lambda_{\alpha,\beta;1}$ *and* $\lambda_n := \lambda_{\alpha,\beta;n}$ *. Then*

$$
\lambda_1 \geq (\alpha+\beta)\sqrt{\frac{\gamma\delta^2}{n} + \frac{e^2}{n(n-\gamma)}}
$$
 and $\lambda_n \leq (\alpha+\beta)\sqrt{\frac{(n-\gamma)\Delta^2}{n} + \frac{e^2}{n\gamma}}$.

.

.

Acknowledgment

The author would like to thank the referees for their suggestions and comments which lead to the improvements of the initial version of the manuscript.

References

- [1] J. A. Bondy, U. S. R. Murty, *Graph Theory with Applications*, Elsevier, New York, 1976.
- [2] V. Chvátal, P. Erdős, A note on Hamiltonian circuits, *Discrete Math.* 2 (1972) 111-113.
- [3] R. A. Horn, C. R. Johnson, *Matrix Analysis*, Cambridge University Press, Cambridge, 1990.
- [4] B. Jackson, Long cycles in bipartite graphs. *J. Combin. Theory Ser. B* **38** (1985) 118–131.
- [5] J. Li, Y. Pan, Upper bounds for the Laplacian graph eigenvalues, *Acta Math. Sin. (Engl. Ser.)* **20** (2004) 803–806.
- [6] J. Moon, L. Moser, On Hamiltonian bipartite graphs, *Israel J. Math.* **1** (1963) 163–165.