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Abstract

Let G be a simple connected graph with edge set E(G). The concept of the elliptic Sombor index (ESO) was recently
introduced by Gutman, Furtula, and Oz in mathematical chemistry. It is a vertex-degree-based topological index and is
defined as ESO(G) =

∑
vivj∈E(G) (dG(vi) + dG(vj))

√
dG(vi)2 + dG(vj)2 , where dG(vi) is the degree of the vertex vi in G. In

this paper, the bicyclic graph of a given order with the maximal elliptic Sombor index is determined.
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1. Introduction

Let G be a finite, undirected, and simple graph with vertex set V (G) = {v1, v2, · · · , vn} and edge set E(G). The cardinalities
of V (G) and E(G) are called the order and size of G, respectively. The degree of a vertex v in the graph G, denoted by dG(v),
is the number of neighbors of v in G. The c-cyclic graphs are connected graphs with order n and size n− 1 + c; specifically,
for c = 0, 1, 2, the corresponding c-cyclic graphs are called trees, unicyclic graphs, and bicyclic graphs, respectively.

From a geometric perspective, Gutman [1] introduced the following Sombor index and studied its basic properties:

SO(G) =
∑

vivj∈E(G)

√
dG(vi)2 + dG(vj)2.

The extremal properties of the Sombor index has been the subject of many publications, as demonstrated by the numerous
results reported in reference [3].

In 2024, Gutman, Furtula, and Oz [2] introduced a new vertex-degree-based topological index, called the ellipse Sombor
index, using a novel geometric method. The ellipse Sombor index is defined as

ESO(G) =
∑

vivj∈E(G)

(dG(vi) + dG(vj))
√
dG(vi)2 + dG(vj)2.

In [2], several basic mathematical properties of this new index were established, and an extremal problem about this index
for trees was studied. Recently, the maximal value of the elliptic Sombor index of trees with a given diameter or matching
number or number of pendent vertices was determined in [5], and the corresponding extremal graphs were characterized
there. Moreover, the ordering relations in benzenoid systems with respect to the ellipse Sombor index were given in [4].

Let Bn be the set of bicyclic graphs of order n. In this paper, we study an extremal problem for ESO over Bn, and obtain
the following result:

Theorem 1.1. Let n ≥ 7 and G ∈ Bn. Then

ESO(G) ≤ n(n− 4)
√
n2 − 2n + 2 + 2(n + 1)

√
n2 − 2n + 5 + (n + 2)

√
n2 − 2n + 10 + 10

√
13

with equality if and only if
G ∼= Bn(n− 4, 0, 0),

where the graph Bn(n− 4, 0, 0) is shown in Figure 1.1.
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Figure 1.1: The graph Bn(n− 4, 0, 0).

2. Proof of Theorem 1.1

Let K4− e denote the graph obtained from the complete graph K4 by removing an edge. Let Bn(r, s, t) be the bicyclic graph
obtained from K4 − e by attaching r pendent vertices to the vertex u1 ∈ V (K4 − e) of degree 3, s pendent vertices to the
other vertex u3 ∈ V (K4 − e) of degree 3, and t pendent vertices to the vertex u4 ∈ V (K4 − e) of degree 2, where r, s, t ≥ 0

and r + s+ t = n− 4. Let H5 denote the graph of order 5 that is obtained by joining two copies of the cycle graph C3 with a
common vertex. Let B′

n(p, q) be the bicyclic graph obtained from the graph H5 by adding p pendent vertices to the vertex
u ∈ V (H5) of degree 4 and q pendent vertices to another vertex v ∈ V (H5), where p ≥ q ≥ 1 and p + q = n− 5. The graphs
Bn(r, s, t) and B′

n(p, q) are shown in Figure 2.1.
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Figure 2.1: The bicyclic graphs Bn(r, s, t) and B′
n(p, q).

Lemma 2.1 (see [5]). Let f(x, y) = (x + y)
√
x2 + y2 for x, y ≥ 1 and

g(x, y) = (x + 1 + y)
√

(x + 1)2 + y2 − (x + y)
√
x2 + y2

for x, y ≥ 3. Then both the functions f(x, y) and g(x, y) are increasing functions in x and in y.

Lemma 2.2. For any integer n ≥ 7 and r, s, t ≥ 1 with r + s + t = n− 4, the inequality

ESO(Bn(r, s, t)) ≤ ESO(Bn(n− 4, 0, 0))

holds, where the equality holds if and only if Bn(r, s, t) ∼= Bn(n− 4, 0, 0).

Proof. Without loss of generality, we can assume that r ≥ t ≥ 1. By Lemma 2.1, we have

ESO(Bn(r + 1, s, t− 1))− ESO(Bn(r, s, t)) = r[f(r + 4, 1)− f(r + 3, 1)]− (t− 1)[f(t + 2, 1)− f(t + 1, 1)]

+ [f(r + 4, 1)− f(t + 2, 1)] + [f(r + 4, t + 1)− f(r + 3, t + 2)]

+ [f(r + 4, s + 3)− f(r + 3, s + 3)]− [f(t + 2, s + 3)− f(t + 1, s + 3)]

+ [f(r + 4, 2)− f(r + 3, 2)]

> [rg(r + 3, 1)− (t− 1)g(t + 1, 1)] + [f(r + 4, t + 1)− f(r + 3, t + 2)]

+ [g(r + 3, s + 3)− g(t + 1, s + 3)] + g(r + 3, 2). (1)
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On the other hand, we have

[rg(r + 3, 1)− (t− 1)g(t + 1, 1)] + [f(r + 4, t + 1)− f(r + 3, t + 2)]

+ [g(r + 3, s + 3)− g(t + 1, s + 3)] + g(r + 3, 2)

= [rg(r + 3, 1)− (t− 1)g(t + 1, 1)] + [g(r + 3, s + 3)− g(t + 1, s + 3)]

+ (r + t + 5)[
√

r2 + t2 + 8r + 2t + 17−
√
r2 + t2 + 6r + 4t + 13] + g(r + 3, 2) > 0. (2)

From (1) and (2), we have
ESO(Bn(r + 1, s, t− 1)) > ESO(Bn(r, s, t)).

Similarly, we prove that
ESO(Bn(r, s, 0)) < ESO(Bn(r + 1, s− 1, 0))

for r ≥ s ≥ 1.
By applying the above transformations repeatedly, we obtain

ESO(Bn(r, s, t)) ≤ ESO(Bn(n− 4, 0, 0))

with equality if and only if Bn(r, s, t) ∼= Bn(n− 4, 0, 0).

Lemma 2.3. For any integer n ≥ 7 and p ≥ q ≥ 1 with p + q = n− 5, the following inequality holds:

ESO(B′
n(p, q)) < ESO(B′

n(p + 1, q − 1)) < ESO(Bn(n− 4, 0, 0)).

Proof. By Lemma 2.1, we have

ESO(B′
n(p + 1, q − 1))− ESO(B′

n(p, q)) = p[f(p + 5, 1)− f(p + 4, 1)]− (q − 1)[f(q + 2, 1)− f(q + 1, 1)]

+ [f(p + 5, 1)− f(q + 2, 1)] + [f(p + 5, q + 1)− f(p + 4, q + 2)]

+ 3[f(p + 5, 2)− f(p + 4, 2)]− [f(q + 2, 2)− f(q + 1, 2)]

> [pg(p + 4, 1)− (q − 1)g(q + 1, 1)] + [f(p + 5, q + 1)− f(p + 4, q + 2)]

+ [3g(p + 4, 2)− g(q + 1, 2)]

= [pg(p + 4, 1)− (q − 1)g(q + 1, 1)] + [3g(p + 4, 2)− g(q + 1, 2)]

+ (p + q + 6)[
√
p2 + q2 + 10p + 2q + 26−

√
p2 + q2 + 8p + 4q + 20]

> 0.

Thus,
ESO(B′

n(p + 1, q − 1)) > ESO(B′
n(p, q)).

By applying the above transformation repeatedly, we have

ESO(B′
n(p, q)) ≤ ESO(B′

n(n− 5, 0))

with equality if and only if B′
n(p, q) ∼= B′

n(n− 5, 0). By direct calculations, we have

ESO(B′
n(n− 5, 0)) = (n− 5)n

√
(n− 1)2 + 1 + 4(n + 1)

√
(n− 1)2 + 4 + 16

√
2

and
ESO(Bn(n− 4, 0, 0)) = n(n− 4)

√
(n− 1)2 + 1 + 2(n + 1)

√
(n− 1)2 + 4 + (n + 2)

√
(n− 1)2 + 9 + 10

√
13.

Therefore, we have
ESO(B′

n(n− 5, 0)) < ESO(Bn(n− 4, 0, 0)).

This completes the proof.
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Proof of Theorem 1.1. Let ∆ be the maximum degree of G. Let vivj be any edge in G such that dG(vi) ≥ dG(vj). We
discuss three cases.

Case 1. dG(vi) + dG(vj) ≤ n for every edge vivj ∈ E(G). Let h(x) =
√

x2 + (n− x)2. Then h(x) ≤ max{h(n − 3), h(3)} for
3 ≤ x ≤ n− 3. If 3 ≤ ∆ ≤ n− 3, then we have

(dG(vi) + dG(vj))
√

dG(vi)2 + dG(vj)2 ≤ n
√

dG(vi)2 + (n− dG(vi))2

= n · h(dG(vi))

≤ n ·max{h(n− 3), h(3)}

= n
√

(n− 3)2 + 9.

Thus,

ESO(G) =
∑

vivj∈E(G)

(dG(vi) + dG(vj))
√

dG(vi)2 + dG(vj)2

≤ n(n + 1)
√

(n− 3)2 + 9

< ESO(Bn(n− 4, 0, 0)).

If ∆ = n− 2, then G ∼= G1 or G ∼= G2 (see Figure 2.2). By direct calculations, we have

ESO(G1) = (n− 6)(n− 1)
√

(n− 2)2 + 1 + 4n
√

(n− 2)2 + 4 + 24
√

2

< ESO(Bn(n− 4, 0, 0)) and

ESO(G2) = (n− 7)(n− 1)
√

(n− 2)2 + 1 + 5n
√

(n− 2)2 + 4 + 16
√

2 + 3
√

5

< ESO(Bn(n− 4, 0, 0)).

G1 G2

Figure 2.2: The graphs G1 and G2.

Case 2. dG(vi) + dG(vj) = n + 1 for an edge vivj ∈ E(G). Then G is one of G3, G4, . . . , G8 shown in Figure 2.3. We can
assume that r ≥ r3 + 1, s ≥ s3 and r ≥ r4 + 1, s ≥ s4. By Lemma 2.1, we have

ESO(G7) = r3f(r3 + 3, 1) + 2f(r3 + 3, 2) + f(r3 + 3, s3 + 3) + s3f(s3 + 3, 1) + 2f(s3 + 3, 2) + f(2, 2)

< rf(r + 3, 1) + 2f(r + 3, 2) + f(r + 3, s + 3) + sf(s + 3, 1) + 2f(s + 3, 2)

= Bn(r, s, 0)

and

ESO(G8) = (r4 − 1)f(r4 + 3, 1) + 3f(r4 + 3, 2) + f(2, 1) + s4f(s4 + 3, 1) + 2f(s4 + 3, 2) + f(r4 + 3, s4 + 3)

< rf(r + 3, 1) + 2f(r + 3, 2) + f(r + 3, s + 3) + sf(s + 3, 1) + 2f(s + 3, 2)

= Bn(r, s, 0).
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Figure 2.3: The graphs G3 −G8 and Bn(r, s, 0), where r ≥ r3 + 1, s ≥ s3 and r ≥ r4 + 1, s ≥ s4.

By Lemma 2.2, we have
ESO(G7) < ESO(B(r, s, 0)) < ESO(Bn(n− 4, 0, 0)),

ESO(G8) < ESO(B(r, s, 0)) < ESO(Bn(n− 4, 0, 0)),

ESO(G3) < ESO(Bn(n− 4, 0, 0)) and ESO(G4) < ESO(Bn(n− 4, 0, 0)).

Also, by Lemma 2.3, we have

ESO(G5) < ESO(Bn(n− 4, 0, 0)) and ESO(G6) < ESO(Bn(n− 4, 0, 0)).

Case 3. dG(vi) + dG(vj) = n + 2 for an edge vivj ∈ E(G). Then G ∼= Bn(r, s, 0) (see Figure 2.3). By Lemma 2.2, we have

ESO(Bn(r, s, 0)) < ESO(Bn(n− 4, 0, 0)).

Combining the conclusion made in the above three cases, we have the desired result (that is, Theorem 1.1).
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