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Abstract

A facial total-coloring of a plane graph G is a coloring of the vertices and edges such that no facially adjacent edges, no
adjacent vertices, and no edge and its endvertices are assigned the same color. A facial total-coloring of G is odd if, for every
face f and every color c, either no element or an odd number of elements incident with f is colored by c. In this article, it is
shown that every outerplane graph with triangular internal faces admits an odd facial total-coloring with at most 12 colors.
In the case of maximal outerplane graphs, 9 colors are sufficient for such a coloring. It is also shown that every maximal
plane graph has an odd facial total-coloring with 6 or 7 colors. All of the obtained bounds are tight.
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1. Introduction

A drawing of a graph maps each vertex to a point in the plane and each edge to a Jordan arc between its endvertices. A
drawing is planar if no two edges intersect each other, except at their endvertices. A planar graph is a graph that has a
planar drawing. A planar drawing partitions the plane into connected regions, called faces. There are two types of faces.
The bounded faces are internal, while the unbounded face is the outer face. An outerplanar drawing is a planar drawing
such that all the vertices are incident to the outer face. An outerplanar graph is a graph that admits an outerplanar
drawing. A planar (outerplanar) graph is maximal planar (maximal outerplanar) if it is not possible to add an edge such
that the resulting graph is still planar (outerplanar). For convenience, we often use the abbreviation plane (outerplane)
graph for a planar (outerplanar) drawing of a planar (outerplanar) graph. A cactus is a connected outerplane graph in
which any two cycles have at most one vertex in common. A cactus forest is an outerplane graph such that each of its
components is a cactus.

Two edges of a plane graph G are facially adjacent if they are adjacent and consecutive in the cyclic order around
their common endvertex. A facial total-coloring of a plane graph G is a coloring of the vertices and edges such that no
facially adjacent edges, no adjacent vertices, and no edge and its endvertices are assigned the same color. This concept
was introduced in 2016, by Fabrici, Jendrof, and Vrbjarova [8]. Motivated by the above-mentioned concept and by odd facial
vertex-coloring and odd facial edge-coloring of plane graphs (see e.g. [5,6]), in 2021, Czap and Sugerek [7] introduced the
concept odd facial total-coloring. An odd facial total-coloring of a plane graph is a facial total-coloring such that for every
face f and every color ¢, either no element or an odd number of elements incident with f is colored by ¢ (an element incident
with f is a vertex or an edge incident with f). Let x”/(G) denote the minimum number of colors required in an odd facial
total-coloring of a plane graph G. In [7] it is proven that every tree on at least three vertices admits an odd facial total-
coloring with exactly five colors. From this it follows that x//(T) € {3,5} for any nontrivial tree T, moreover it is easy to
check whether x//(T') = 3 or x//(T') = 5. In the case of connected unicyclic plane graphs 10 colors are sufficient for such
a coloring [3]. Moreover, infinitely many unicyclic plane graphs need 10 colors for an odd facial total-coloring. Odd facial
total-coloring of plane graphs with many edge-disjoint cycles were studied in [4]. It is proven that every cactus forest has
an odd facial total-coloring with at most 16 colors. Moreover, this bound is tight.

All of the above mentioned results on odd facial total-coloring concern sparse plane graphs. This article focuses on
dense plane graphs. The odd facial total-coloring of maximal plane and outerplane graphs is investigated. It is shown
that every maximal plane graph admits an odd facial total-coloring with 6 or 7 colors. In the case of maximal outerplane
graphs, 9 colors are sufficient. Moreover, these bounds are tight. It is also shown that every outerplane graph with only
triangular internal faces has an odd facial total-coloring with at most 12 colors. This bound is also tight.
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2. Results

Theorem 2.1. If G is a maximal plane graph on at least 3 vertices, then 6 < x/(G) < 7. Moreover, the bounds are tight.

Proof. If G is a maximal plane graph on at least 3 vertices, then every face of G (including the outer face) is bounded by a
triangle (see Page 248 in [2]). Let C3 denote the cycle on 3 vertices. Clearly, no color can appear more than once on Cj in
any odd facial total-coloring, hence x/(C3) = 6. This implies that x//(G) > 6.

Every plane graph admits a proper vertex-coloring with at most 4 colors [1]. Let ¢ be a proper vertex-coloring of G with
colors 1,2, 3,4. Now, color the edge uv with color

5 if {c(u), c(v)} = {1,2} or {c(u), c(v)} = {3,4},

6 if {c(u),c(v)} = {1,3} or {c(u),c(v)} = {2,4},

7 if {c(u),c(v)} = {1,4} or {c(u),c(v)} = {2,3}.

In such a way, we obtain an odd facial total-coloring which uses 7 colors and hence Y/ (G) < 7.

The upper bound 7 is tight since the triangulation on 4 vertices has no odd facial total-coloring with 6 colors. O

A graph G is called Eulerian if every vertex of G has even degree.
Theorem 2.2. If G is an Eulerian maximal plane graph, then x!!(G) = 6.

Proof. Every Eulerian maximal plane graph has a proper vertex-coloring with 3 colors (see Page 427 in [2]). Let ¢ be
a proper vertex-coloring of G with colors 1,2,3. Now, color the edge uv with color 4 if {c(u), c(v)} = {1,2}, with color 5 if
{c(u),c(v)} = {1, 3}, with color 6 if {c(u),c(v)} = {2,3}. In such a way we obtain an odd facial total-coloring of G with 6
colors. O

Theorem 2.3. If G is a maximal outerplane graph, then x!(G) < 9. Moreover, this bound is tight.

Proof. If G is a maximal outerplane graph, then the boundary of its outer face is a Hamiltonian cycle of G and every inter-
nal face is bounded by a triangle (see Page 264 in [2]). Let C be the boundary of the outer face. Let C = viejvses ... v,e,v1,
where vy, vs,...,v, are the vertices, ej,eq,..., e, are the edges, e¢; = v;v;4; fori = 1,2,...,n — 1 and e,, = v,v;. We
distinguish two cases according to the length of C.

First, assume that the length of C is odd and assume that G has at least 7 vertices. In the following, we define an
edge-coloring ¢’ of C, we color the edges in order e1, s, ..., e,.

If n =6k — 1,k > 2, then we use four times the pattern 1,2 and then 2k — 3 times the pattern 1,2, 3.

If n =6k + 1,k > 1, then we use two times the pattern 1,2 and then 2k — 1 times the pattern 1, 2, 3.

If n = 6k + 3,k > 1, then we use 2k + 1 times the pattern 1,2, 3.

Every maximal outerplane graph admits a proper vertex-coloring with 3 colors (see Page 448 in [2]). Let ¢ be a proper
vertex-coloring of G with colors 4, 5,6. If there is an even number of vertices of color i, then we recolor one of them with
color i + 3.

The colorings ¢’ and ¢ define a partial total-coloring of G with at most 9 colors. Observe that there is no uncolored
element on the outer face, moreover, if a color appears on the outer face, then an odd number of elements are colored with
it. This partial total-coloring of G can be extended to an odd facial total-coloring which uses at most 9 colors. Consider an
internal face f. Since G is maximal, f is incident with 3 vertices and 3 edges. The 3 vertices have mutually distinct colors,
because c is a proper vertex-coloring. Clearly, no uncolored edge of f is incident with the outer face. Consequently, every
uncolored edge is incident with two triangles. This implies that there are at most 8 forbidden colors for every uncolored
edge, hence there is at least 1 admissible color for every such edge. So, we can color the uncolored edges using a greedy
coloring.

Now, assume that the length of C is even and assume that GG has at least 7 vertices. If the length of C is 4k + 2,k > 2,
then we color the edges of C' with colors 1 and 2 such that adjacent edges receive different colors. Then we find a proper
vertex-coloring of G with colors 3,4,5. If there is an even number of vertices of color i, then we recolor one of them with
color i + 3. In such a way we obtain a partial total-coloring of G which can be extended to an odd facial total-coloring as
in the previous case. Now, assume that the length of C is 4k, k > 2. First, we color the edges of C in order eq,es, ..., ¢e,.
We use two times the pattern 1,2,3 and then 2k — 3 times the pattern 1,2. Clearly, exactly two edges have color 3, and
both colors 1 and 2 are used an odd number of times. Now, we find a proper vertex-coloring of G with colors 4,5,6. If at
most three colors are used an even number of times on C, then we choose one element for each such color and recolor them
with new colors 7,8,9. In such a way we obtain an odd total-coloring of C. This coloring can be extended to an odd facial
total-coloring as above. Next, assume that the colors 3,4, 5,6 appear an even number of times on C. There are exactly two
internal faces of G, say fi, f2, which are incident with an edge of color 3. Let v be a vertex of G which is incident with
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neither f; nor f5. Such a vertex exists since G has at least 7 vertices. Without loss of generality, assume that v has color 4.
Now, we recolor v with color 3. After that we choose one vertex of color 5 and recolor it with 7, then choose a vertex of color
6 and recolor it with color 8. We obtain a total-coloring of C' such that every used color appears an odd number of times on
C. Finally, we extend this coloring to an odd facial total-coloring of G using a greedy coloring.

5 2 4 5 2 4 5 2 4
1 1 1 1 1 1
7 6 5 g
9 6« 3| 6 5 »3 6« |4 3 6« 3| 6 3
8 4 6
2 2 2 2 2 2
1 2 3 7 1 8 7 1 8 7 18

Figure 2.1: Odd facial total-colorings of small maximal outerplane graphs.

Figure 2.1 gives all maximal outerplane graphs that have at least 9 elements and fewer than 7 vertices. Each of them
admits an odd facial total-coloring with at most 9 colors. Hence, x”/(G) < 9 for every maximal outerplane graph G. O

In what follows, we investigate outerplane graphs that have only triangular internal faces and are not maximal.

Theorem 2.4. If G is an outerplane graph that has only triangular internal faces, then x!!(G) < 12. Moreover, this bound
is tight.

Proof. First, we prove that every connected outerplane graph which has only triangular internal faces admits a facial
total-coloring with at most 6 colors, such that for every internal face f and every color ¢, either no element or an odd number
of elements incident with f is colored by c. Suppose to the contrary, that H is a counterexample with the minimal number
of vertices. Clearly, it has at least 4 vertices. Every outerplanar graph contains a vertex of degree 2 or less (see Page 264
in [2]). First, assume that H contains a vertex v of degree 1. Let u be the neighbor of v and let ey, e5 be the edges facially
adjacent to wv in H (if the vertex u has degree 2, then ¢; = e3). Let H — v be the graph obtained from H by removing the
vertex v. It has fewer vertices than H, each of its internal faces is triangular, therefore H — v has a facial total-coloring ¢
with at most 6 colors, such that for every internal face f and every color c, either no element or an odd number of elements
incident with f is colored by c. Without loss of generality, we can assume that ¢p(e;) = 1,¢(u) = 2,p(uz2) = 3. We can
extend this coloring of H — v to a required one of H easily. It is sufficient to color uv, v with colors 4,5 (see Figure 2.2 for

e e 1 1
v w - = 2 — 5 4 2
es e 3 3

Figure 2.2: A vertex of degree 1 is a reducible configuration.

illustration).

Now, assume that the minimum degree of H is 2. Let v be a vertex of degree 2 and let v;, v2 be its neighbors.

First, assume that v is incident with no triangular internal face (i.e. the edges incident with v are bridges). Since H
is outerplanar, the vertices v; and v, are not adjacent in H. Let H — v + v1v, be the graph obtained from H by removing
the vertex v and adding the edge v,vs. This graph has fewer vertices than H so it has a required coloring . Without loss
of generality, we can assume that ¢(v1) = 1, p(v1v2) = 2, p(v2) = 3. Let ¢ be a total-coloring defined in the following way:
P(u) = ¢(u) for every vertex u € V(H) — v, ¢(e) = ¢(e) for every edge e € E(H) — {vv1,vva}, ¥(vv1) = p(v1v2), ¥(v) = 4 and
P(vve) € {1,5,6} — {w(e1), p(e2)}, where ey, e2 are the edges facially adjacent to vu, different from vv,. It is easy to see that
1) is a required coloring of H (see Figure 2.3 for illustration).

Figure 2.3: A vertex of degree 2 incident with two bridges is a reducible configuration.
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Now, assume that v is incident with a triangular internal face. We distinguish some cases according to the degrees of
its neighbors. At least one of the vertices v1, v> has degree at least 3, since H has at least 4 vertices.

Case 1: Without loss of generality assume that deg(v;) = 2 and deg(vz2) > 3.

Case 1.1: First, assume that deg(vy) = 3. Let v3 be the third neighbor of v5. Let H — {v, v} be the graph obtained from
H by removing the vertices v and v;,. It has fewer vertices than H so it admits a required coloring . Without loss of
generality, we can assume that ¢(v2) = 1, p(vav3) = 2,(vs) = 3. We extend this coloring to a required one by setting
o(v) =2,0(v1) = 3,p(vvr) = 4, p(vuy) = 5, and p(vivs) = 6 (see Figure 2.4 for illustration).

U1 36

2 2
%% S T S S S 4%
v 2

Figure 2.4: A triangle incident with two vertices of degree 2 and a vertex of degree 3 is a reducible configuration.

Case 1.2: Now, assume that deg(vs) > 4. Let e; be the edge facially adjacent to vyvy different from vuvy, vvy. Let es be
the edge facially adjacent to vv, different from vvq, v1v2. The graph H — {v,v1} has fewer vertices than H so it admits a
required coloring ¢. Without loss of generality, we can assume that p(e;) = 1, p(v2) = 2, p(e2) = 3. We extend this coloring
to a required one by setting p(v) = 1, p(v1) = 3, p(vv1) = 4, p(vvy) = 5, and ¢(vivs) = 6 (see Figure 2.5 for illustration).

V1 e e 1 3
(%) - (%) = 2 — 4
v €2 €2 3 1

Figure 2.5: A triangle incident with two vertices of degree 2 and a vertex of degree at least 4 is a reducible configuration.

Case 2: Finally, assume that deg(v;) > 3 and deg(vz) > 3. Let e; be the edge facially adjacent to vv; different from vvs, v1v9
and let e; be the edge facially adjacent to vv, different from vvy,v1v9. The graph H — v has fewer vertices than H so it
admits a required coloring ¢. Without loss of generality, we can assume that ¢(v1) = 1, p(viv2) = 2, ¢(v2) = 3. We extend
this coloring of H — v to a required one of H in the following way. First, we color the edge vv; with a color different from
1,2,3,¢(e1). Then we color the edge vvy. There are at most five forbidden colors for vve, namely the colors 1,2, 3, ¢(e2) and
the color of the edge vv;. This implies that there is an admissible color for vv,. Finally, we color the vertex v with a color
that does not appear on the edges vvy, vvs, v1v2 and on the vertices vy, vs.

Hence, the minimal counterexample does not exist, which means that every connected outerplane graph which has only
triangular internal faces admits a facial total-coloring with at most 6 colors, such that for every internal face f and every
color ¢, either no element or an odd number of elements incident with f is colored by c. Now, we take such a coloring of
each component of G. If some color ¢ appears an odd number of times on the outer face of G, then we choose one element
of color ¢ and recolor it with a new color. Since we recolor at most 6 elements, the new coloring uses at most 12 colors.
Clearly, the obtained coloring is an odd facial total-coloring.

The bound 12 is tight since the outerplane graph consisting of two cycles on three vertices needs 12 colors in every odd
facial total-coloring. O

We finish the paper with two open problems.

Problem 2.1. Is there a connected outerplane graph G with only triangular internal faces such that x!(G) = 12¢

If the bound 12 from Theorem 2.4 can be improved for connected outerplane graphs with triangular internal faces, then
only by one. The connected graphs G and H depicted in Figure 2.6 need 11 colors in every odd facial total-coloring.

> P>

G H

Figure 2.6: Graphs with x//(G) = xJ(H) = 11.
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Problem 2.2. Characterize all graphs attaining the bounds given in Theorem 2.1, Theorem 2.3, and Theorem 2.4.
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