
Contributions to Mathematics
www.shahindp.com/locate/cm

Contrib. Math. 10 (2024) 1–10
DOI: 10.47443/cm.2024.041

Research Article

Spectral properties of the atom-bond sum-connectivity matrix

Jiangtong Liu1, Yarong Hu2, Xiangyu Ren1,∗

1School of Mathematics and Statistics, Shanxi University, Taiyuan 030006, P.R. China
2School of Mathematics and Information Technology, Yuncheng University, Yuncheng 044000, P.R. China

(Received: 3 July 2024. Received in revised form: 2 August 2024. Accepted: 5 August 2024. Published online: 9 August 2024.)

© 2024 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

The atom-bond sum-connectivity index (ABS index) is a topological index introduced in 2022. For a graph G, this index is
defined as ABS(G) =

∑
vivj∈E(G)

√
(di + dj − 2)/(di + dj), where di is the degree of a vertex vi of G and E(G) is the set of

edges of G. The ABS-matrix is defined as S(G) = [aij ]n×n, where aij equals
√

(di + dj − 2)/(di + dj) when vivj ∈ E(G) and
aij = 0 otherwise. Furthermore, the Laplacian ABS-matrix is defined as L̃(G) = D̃(G)−S(G), where D̃(G) = [d̃ij ]n×n is the
ABS-diagonal matrix with d̃ij =

∑n
k=1 aik when i = j and d̃ij = 0 when i 6= j. In this paper, we first present several bounds

on the ABS index. We then explore several properties of the eigenvalues of the ABS-matrix and Laplacian ABS-matrix.
Finally, inspired by the definition of the convex linear combination of the adjacency matrix and diagonal matrix proposed
by Nikiforov, we also define the convex linear combination of the ABS-matrix and ABS-diagonal matrix, and present some
of its fundamental properties.
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1. Introduction

Let G = (V (G), E(G)) be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G). We use the notation
i ∼ j to indicate that the vertices vi and vj are adjacent; that is, vivj ∈ E(G). For vi ∈ V (G), the degree of vi, denoted by di,
is the number of edges incident with vi. The maximum and minimum degrees of G are denoted by ∆ and δ, respectively.

The study of chemical structures using graphs is known as chemical graph theory. Atoms and bonds are replaced
with vertices and edges, respectively, to represent a chemical structure as a graph. This makes it feasible to explore the
properties of chemical structures using the concepts of graph theory. In chemical graph theory, the graph invariants that
take quantitative values are commonly referred to as topological indices.

In the 1970s, Randić [10] put forward a topological index for studying molecular branching and named it the “branching
index”, which is now referred to as the Randić index. For a graph G, the Randić index is defined as

R(G) =
∑

vivj∈E(G)

1√
didj

.

The Randić index is one of the most-studied and most-applied topological indices. The atom-bond connectivity (ABC)
index [5] and the sum-connectivity (SC) index [12] are the variants of the Randić index. These indices have the following
definitions for a graph G:

ABC(G) =
∑

vivj∈E(G)

√
di + dj − 2

didj

and
SC(G) =

∑
vivj∈E(G)

1√
di + dj

.

In [1], by amalgamating the main idea of the ABC and SC indices, a new topological index, namely the atom-bond sum-
connectivity index (ABS index), was proposed. This index is defined as

ABS(G) =
∑

vivj∈E(G)

√
di + dj − 2

di + dj
.
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The graphs with the maximum and minimum values of the ABS index were found in [1] over particular classes of graphs
and (chemical) trees. Unicyclic graphs with extremum ABS index were studied in [3], where chemical uses of the ABS
index were also reported. The problems of finding graphs that achieve the minimum ABS index among all trees of a
(i) specific number of pendent vertices,
(ii) fixed order and a specific number of pendent vertices,
were addressed in [4]; see also [8], where one of these two problems was addressed independently. For further details
about the ABS index, the reader is referred to [2].

We define the ABS-matrix as S(G) = [aij ]n×n, where

aij =


√
di + dj − 2

di + dj
if vivj ∈ E(G),

0, otherwise.

The eigenvalues of S(G) are called theABS eigenvalues ofG and are denoted by ξ1(G), ξ2(G), . . . , ξn(G) with the assumption
that ξ1(G) ≥ ξ2(G) ≥ · · · ≥ ξn(G). We define the LaplacianABS-matrix ofG as L̃(G) = D̃(G)−S(G), where D̃(G) = [d̃ij ]n×n

is the ABS-diagonal matrix with

d̃ij =


n∑
k=1

aik if i = j,

0, otherwise.

The eigenvalues of L̃(G) are called the Laplacian ABS eigenvalues of G and are denoted by µ1(G), µ2(G), . . . , µn(G) such
that µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G).

For any real number α ∈ [0, 1], Nikiforov [9] defined the matrix

Aα(G) = αD(G) + (1− α)A(G), (1)

where A(G) and D(G) are the adjacency and diagonal matrices, respectively. Inspired by (1), for α ∈ [0, 1], we define the
following matrix:

Sα(G) = αD̃(G) + (1− α)S(G).

The eigenvalues of the matrix Sα(G) are denoted by λ1(G), λ2(G), . . . , λn(G) provided that λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G). It
is easy to see S(G) = S0(G), D̃(G) = S1(G), Q̃(G) = 2S 1

2
(G), where Q̃(G) = S(G) + D̃(G).

The rest of this paper is organized as follows. In Section 2, some preliminary results are presented. Section 3 pro-
vides some bounds for the ABS index. Section 4 explores some properties of the ABS eigenvalues and Laplacian ABS

eigenvalues. In Section 5, some basic properties of the matrix Sα(G) are obtained.

2. Preliminaries

This section gives some preliminary results that will be used in the subsequent sections.

Theorem 2.1 (see [7,11]). Let A and B be Hermitian matrices of order n. Let ξi(M) denote the i-th largest eigenvalue of the
matrix M ∈ {A,B,A+B}. For 1 ≤ i ≤ n and 1 ≤ j ≤ n, the following inequalities hold:

ξi(A) + ξj(B)

≤ ξi+j−n(A+B) when i+ j ≥ n+ 1,

≥ ξi+j−1(A+B) when i+ j ≤ n+ 1.

In either of these inequalities, equality holds if and only if a nonzero n-vector exists that is an eigenvector to each of the three
eigenvalues involved. The two inequalities given above yield

ξk(A) + ξn(B) ≤ ξk(A+B) ≤ ξk(A) + ξ1(B).

Lemma 2.1. Let G be a graph with n vertices and Mk be the k-th spectral moment of the ABS-matrix S = S(G); that is,

Mk =

n∑
i=1

(ξki (G)) = tr((S)k).

Then M0 = n, M1 = 0, and M2 = 2
∑
vivj∈E(G)
1≤i,j≤n

di+dj−2
di+dj

.
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Proof. Note that M0 =
∑n
i=1(ξ0

i (G)) = n and M1 =
∑n
i=1 ξi(G) = tr(S) = 0. Next, we consider M2. We observe that

(S2)ij =

n∑
k=1

akiakj =
∑

k∼i,k∼j
1≤k≤n

akiakj =
∑

k∼i,k∼j
1≤k≤n

√
di + dk − 2

di + dk

√
dj + dk − 2

dj + dk
,

for any 1 ≤ i, j ≤ n and i 6= j, where aij =
√

di+dj−2
di+dj

. If 1 ≤ i ≤ n, then

(S2)ii =

n∑
j=1

aijaji =
∑

vivj∈E(G)
1≤j≤n

a2
ij =

∑
vivj∈E(G)

1≤j≤n

di + dj − 2

di + dj
.

Thus, we have

M2 = tr(S2) =

n∑
i=1

 ∑
vivj∈E(G)

1≤j≤n

di + dj − 2

di + dj

 = 2
∑

vivj∈E(G)
1≤i,j≤n

di + dj − 2

di + dj
.

In what follows, we provide two obvious lemmas without proof.

Lemma 2.2. Let f(x, y) =
√

x+y−2
x+y . If x, y ≥ 0 and x+ y ≥ 2, then f(x, y) is an increasing function for x and y.

We denote the eigenvalues of the adjacency matrix ofG by η1(G), η2(G), . . . , ηn(G) such that η1(G) ≥ η2(G) ≥ · · · ≥ ηn(G).

Lemma 2.3. Let G be an r-regular graph with m edges, n ≥ 3 vertices, and no isolated vertices. Then

ξi(G) =

√
r − 1

r
ηi(G), for i = 1, 2, . . . , n.

Also, for any real number α ∈ [0, 1], it holds that

λi(G) = α
√
r(r − 1) + (1− α)ξi(G) = α

√
r(r − 1) + (1− α)

√
r − 1

r
ηi(G).

3. Bounds for the ABS index

This section is concerned with determining some bounds for the ABS index.

Lemma 3.1. Let G be a nontrivial graph with n vertices. Then

ABS(G) ≤ n

2

√
(n− 1)(n− 2),

where the equality holds if and only if G = Kn.

Theorem 3.1. Let G be a graph with m ≥ 1 edges and M2 be the 2nd spectral moment of the ABS-matrix. Then√
1

2
M2 +m(m− 1)

δ − 1

δ
≤ ABS(G) ≤

√
1

2
M2 +m(m− 1)

4− 1

4
,

where either of the equalities holds if and only if G is a regular graph.

Proof. By Lemmas 2.1 and 2.2, we have

(ABS(G))2 =

 ∑
vivj∈E(G)

√
di + dj − 2

di + dj

2

=
∑

vivj∈E(G)

di + dj − 2

di + dj
+

∑
i∼j,k∼l
vivj 6=vkvl

√
di + dj − 2

di + dj

√
dk + dl − 2

dk + dl

≤ 1

2
M2 +m(m− 1)

4− 1

4
.

3
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Thus,

ABS(G) ≤

√
1

2
M2 +m(m− 1)

4− 1

4
,

with equality if and only if G is a regular graph. Similarly, we have√
1

2
M2 +m(m− 1)

δ − 1

δ
≤ ABS(G),

where the equality holds if and only if G is a regular graph.

Theorem 3.2. Let G be a graph with minimum degree at least 2 and M2 be the 2nd spectral moment of the ABS-matrix.
Then

1

2

√
4
4− 1

M2 ≤ ABS(G) ≤ 1

2

√
δ

δ − 1
M2,

where the equality holds if and only if G is a regular graph.

Proof. By Lemmas 2.1 and 2.2, we have

M2 = 2
∑

vivj∈E(G)

di + dj − 2

di + dj

= 2
∑

vivj∈E(G)

(√
di + dj − 2

di + dj

)2

≥ 2

√
δ − 1

δ

∑
vivj∈E(G)

√
di + dj − 2

di + dj

= 2

√
δ − 1

δ
ABS(G).

Thus,

ABS(G) ≤ 1

2

√
δ

δ − 1
M2,

where the equality holds if and only if G is a regular graph. Similarly, we have

ABS(G) ≥ 1

2

√
4
4− 1

M2,

with equality if and only if G is a regular graph.

Theorem 3.3. Let G be a graph with n vertices and maximum degree at least 2. Then

n

2(n− 1)

√
4
4− 1

ξ2
1 ≤ ABS(G) ≤ nξ1

2
.

If G = Kn, the left equality holds. If G is a regular graph, the right equality holds.

Proof. Let A be the adjacency matrix of G and η1(G), η2(G), · · · , ηn(G) be its eigenvalues such that

η1(G) ≥ η2(G) ≥ · · · ≥ ηn(G).

Note that e = (1, 1, . . . , 1)T ∈ Rn. Thus, by the Courant-Fischer Minimax theorem, we have

ξ1(G) = ξ1 = max
x 6=0

(
xTSx

xTx

)
≥ eTSe

eT e
=

2

n
ABS(G),

and hence ABS(G) ≤ nξ1
2 . If G is a k-regular graph, then by Lemma 2.3, we have ξ1(G) = η1(G)

√
k−1
k = k

√
k−1
k , and

ABS(G) =
∑

vivj∈E(G)

√
di + dj − 2

di + dj
=
kn

2

√
k − 1

k
=
n

2
k

√
k − 1

k
=
nξ1
2
.

Now, by Cauchy’s inequality, we have

ξ2
1 =

(
n∑
i=2

ξi

)2

≤ (n− 1)

(
n∑
i=2

ξ2
i

)
.

4
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Hence, by Theorem 3.2, we have

nξ2
1

n− 1
= ξ2

1 +
ξ2
1

n− 1
≤ ξ2

1 +

n∑
i=2

ξ2
i =

n∑
i=1

ξ2
i = M2 ≤ 2

√
∆− 1

∆
ABS(G).

Consequently, we have

ABS(G) ≥ ξ2
1n

2(n− 1)

√
∆

∆− 1
.

If G = Kn, then by Lemma 2.3, we have ξ1 =
√

(n− 2)(n− 1) and

ABS(G) =
n(n− 1)

2

√
n− 2

n− 1
=

n

2(n− 1)

√
∆

∆− 1
ξ2
1 .

4. The ABS eigenvalues and the Laplacian ABS eigenvalues

In this section, we establish some basic properties and bounds for the ABS eigenvalues and Laplacian ABS eigenvalues.
The harmonic index [6] of a graph G is defined as

H(G) =
∑

vivj∈E(G)

2

di + dj
.

Proposition 4.1. Let G has n ≥ 3 vertices, m edges, and no isolated vertices. Then
n∑
i=1

ξi(G) = 0,

n∑
i=1

ξ2
i (G) = 2(m−H(G)),

and ∑
1≤i<j≤n

ξi(G)ξj(G) = H(G)−m.

Proof. Using the fundamental properties of S(G), we have
n∑
i=1

ξi(G) = tr(S(G)) = 0.

Also, it holds that
n∑
i=1

ξ2
i (G) = tr(S(G)2) = 2

∑
vivj∈E(G)

(
1− 2

di + dj

)
= 2(m−H(G)).

Furthermore, ∑
1≤i<j≤n

ξi(G)ξj(G) =
1

2

(
(

n∑
i=1

ξi(G))2 −
n∑
i=1

ξ2
i (G)

)
= H(G)−m.

Theorem 4.1. Let G be a graph of order n ≥ 3 with no isolated vertices. Then S(G) has only one (distinct) eigenvalue if and
only if n is even and G = (n2 )K2.

Proof. Proposition 4.1 gives
∑n
i=1 ξi(G) = 0. Therefore, all the ABS eigenvalues of G are equal to 0 if there is merely one

distinct ABS eigenvalue. This suggests that S(G) = 0, which leads to the conclusion that G = (n2 )K2 and n is even.
On the other hand, if n is even and G = (n2 )K2, then S(G) = 0 and therefore all of its eigenvalues equal to 0.

Proposition 4.2. Let G be a graph with order n ≥ 3. Then G has two different eigenvalues of S(G) if and only if G = Kn.

Proposition 4.3. Assume that G has m edges, n ≥ 3 vertices, and no isolated vertices. Then

ξ1(G) ≥
√

2 (m−H(G))

n
, (2)

where the equality holds if and only if n is even and G = (n2 )K2.

5



J. Liu, Y. Hu, and X. Ren / Contrib. Math. 10 (2024) 1–10 6

Proof. By Proposition 4.1, we have

nξ2
1(G) ≥

n∑
i=1

ξ2
i (G) = 2 (m−H(G)) . (3)

Hence, we have

ξ1(G) ≥
√

2 (m−H(G))

n
.

Now, we give a characterization for the equality in (2). First, assume that n is even and G = (n2 )K2. Then S(G) = 0 and
hence ξ1(G) = ξ2(G) = · · · = ξn(G) = 0. Note that H(G) = n

2 , and as a result, we have√
2 (m−H(G))

n
=

√
2(n2 −H(G))

n
= 0.

Thus, the equality in (2) is satisfied. Conversely, we suppose that the equality in (2) is satisfied. According to the equality in
(3), we have ξ2

1(G) = ξ2
2(G) = · · · = ξ2

n(G). Hence, G has at most two different eigenvalues. By Proposition 4.1, if G = (n2 )K2

and n is even, then G has only one eigenvalue for S(G). If G has two distinct eigenvalues of S(G), then Proposition 4.2
implies that G has a component C = Kt having two different ABS eigenvalues and |V (C)| = t ≥ 3. Thus, by Lemma 2.3,
we have ξ1(C) =

√
(t− 2)(t− 1) and ξ2(C) = ξ3(C) = · · · = ξt(C) = −

√
t−2
t−1 ; but, ξ2

1(C) 6= ξ2
2(C) if t ≥ 3. This leads to a

contradiction, along with the fact that ξ1(C), ξ2(C), . . . , ξt(C) are part of the eigenvalues of S(G).

Lemma 4.1. Let G be a connected graph with n ≥ 3 vertices. Then L̃(G) has t (2 ≤ t ≤ n) distinct eigenvalues if and only if
there exist t− 1 distinct nonzero numbers `1, `2, . . . , `t−1 such that

t−1∏
i=1

(L̃(G)− `iI) = (−1)t−1

t−1∏
i=1

`i

n
J,

where I is the unit matrix of order n and J is all 1 matrix of order n.

Theorem 4.2. Let G be a graph with n ≥ 3 vertices. Then G has exactly two different Laplacian ABS eigenvalues if and
only if G = Kn.

Proof. According to Lemma 4.1, G has exactly two different Laplacian ABS eigenvalues if and only if there is a number
` 6= 0 such that

L̃(G)− `I = − `
n
J.

That is, L̃(G) = `I − `
nJ. Clearly, all of the off-diagonal entries of L̃(G) are nonzero. Thus, we have G = Kn and

` = n

√
n− 2

n− 1
.

Proposition 4.4. Let G be a graph of order n ≥ 3. Then

µ1(G) ≤ n
√
n− 2

n− 1
and µn(G) = 0.

Every eigenvector of L̃(G) corresponding to the eigenvalue 0 is constant if G is connected.

Theorem 4.3. Let G be a graph with order n ≥ 3. Then

µn−1(G) ≤ n
√
n− 2

n− 1
, (4)

where the equality holds if and only if G = Kn.

Proof. We have
tr
(
L̃(G)

)
= µ1(G) + µ2(G) + · · ·+ µn(G) = 2ABS(G). (5)

Note that µn(G) = 0. By Lemma 3.1, we have

µn−1(G) ≤ 2ABS(G)

n− 1
≤ n

√
n− 2

n− 1
. (6)

By (5) and µ1(G) ≥ · · · ≥ µn−1(G), we have µ1(G) = · · · = µn−1(G). Thus, if the equality in (4) holds, then by Theorem 4.2,
we have G = Kn. Conversely, if G = Kn then we obtain the equality in (4).

6
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5. Basic properties of the matrix Sα(G)

By using the definition of Sα(G), for 1 < k ≤ n, we obtain the eigenequations given as follows:

λxk = Sα(G)xk = α
∑

vivk∈E(G)

akixk + (1− α)
∑

vivk∈E(G)

akixi

= α
∑

vivk∈E(G)

√
di + dk − 2

di + dk
xk + (1− α)

∑
vivk∈E(G)

√
di + dk − 2

di + dk
xi.

(7)

Let aij =
√

di+dj−2
di+dj

. By using Lemma 2.2, we have the following two results:

Proposition 5.1. Let α ∈ [0, 1] and Sα(G) = Sα. Then

λ1(G) = max
‖x‖2=1

〈Sαx,x〉 and λn(G) = min
‖x‖2=1

〈Sαx,x〉 .

Also, if x := (x1, x2, . . . , xn) is a unit n-vector, then λ1(G) = 〈Sαx,x〉 if and only if x is an eigenvector corresponding to λ1(G),
and λn(G) = 〈Sαx,x〉 if and only if x is an eigenvector corresponding to λn(G).

Proposition 5.2. Let α ∈ [0, 1) and Sα(G) = Sα. Then

λ1(G) = max{λ1(H)} and λn(G) = min{λn(H)},

where H is a component of G.

Before proving the next proposition, we need the following fact:

Sα(G)− Sβ(G) = (α− β)L̃(G). (8)

Proposition 5.3. Assume that 1 ≥ α > β ≥ 0. Let λk(G) and λ′k(G) be the k-th largest eigenvalues of Sα(G) and Sβ(G),
respectively. Then

λk(G)− λ′k(G) ≥ 0, (9)

for any k ∈ [n], where [n] := {1, 2, . . . n} . If G is connected, then the equality in (9) holds if and only if k = 1 and G is regular.

Proof. From Theorem 2.1, Proposition 4.4, and (8), it follows that

λk(G)− λ′k(G) ≥ (α− β)µn(G) = 0.

If G is a connected graph and the equality in (9) holds, then Theorem 2.1 implies that λk(G), λ′k(G), and µn(G) share
an eigenvector, which by Proposition 4.4 must be constant. Now, k = 1 is implied by Proposition 5.7, and (7) implies that
G is regular.

Proposition 5.4. If α > 1
2 , then Sα(G) is positive semidefinite. If the order of G is n ≥ 3 and G has no isolated vertices,

then Sα(G) is positive definite.

Proof. Note that
〈Sαx,x〉 = (2α− 1)

∑
vi∈V (G)

(x2
i

∑
vivj∈E(G)

aij) + (1− α)
∑

vivj∈E(G)

aij(xi + xj)
2,

where x := (x1, x2, . . . , xn) is a nonzero vector. Recall that aij =
√

di+dj−2
di+dj

≥ 0. If α > 1
2 , then we have

〈Sαx,x〉 ≥ (1− α)aij(xi + xj)
2 + (2α− 1)aijx

2
i + (2α− 1)aijx

2
j ≥ 0,

for vivj ∈ E(G). Hence, Sα(G) is a positive semidefinite matrix.
Now, assume that the order ofG is n ≥ 3 andG has no isolated vertices. We have a vertex vj with xj 6= 0 and vivj ∈ E(G).

Thus, Sα(G) is positive definite.

For a graph G, if an automorphism f : G→ G exists and f(vi) = vj , then vi and vj are called equivalent.

7
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Proposition 5.5. Let vi and vj be equivalent vertices in a connected graph G. If (x1, . . . , xn) is an eigenvector corresponding
to λ1(G), then xi = xj .

Proof. Let x := (x1, . . . , xn) be the unit nonnegative eigenvector corresponding to λ1(G). Assume that f : G→ G such that
f(vi) = vj . Let F be the permutation matrix corresponding to f . Observe that f is a permutation of V (G). Since f is an
automorphism, we have F−1SαF = Sα. Hence, F−1SαFx = Sαx, and then Fx is an eigenvector to Sα. As x is unique and
Sα is irreducible, we have Fx = x; that is, xi = xj .

Proposition 5.6. Let S(G) = S, D̃(G) = D̃, and Sα(G) = Sα. Then

λ1(G) ≥ ξ1(G). (10)

If the equality holds in (10), then G has a ξ1(G)-regular component. Also, if a∆ =
√

∆−1
∆ ≥ 0, then

λ1(G) ≤ α∆a∆ + (1− α)ξ1(G). (11)

The equality holds in (11) if and only if G has a ∆-regular component.

Proof. Although Proposition 5.3 dictates (10), we present another proof to support the equality argument. We assume
that H is a component of G such that ξ1(G) = ξ1(H). Let h be the order of H, and (x1, x2, . . . , xh) be a positive unit vector
corresponding to ξ1(H). For every vivj ∈ E(H), we have

aij =

√
di + dj − 2

di + dj
≥ 0,

and hence

2aijxixj = aij(2αxixj + 2(1− α)xixj)

≤ aij
(
αx2

i + 2(1− α)xixj + αx2
j

)
.

Adding up all the edges vivj ∈ E(H) in this inequality, and using

〈Sαx,x〉 =
∑

vivj∈E(G)

aij(αx
2
i + αx2

j + 2(1− α)xixj),

we have
ξ1(G) = ξ1(H) = 〈S(H)x,x〉 ≤ 〈Sα(H)x,x〉 ≤ λ1(G),

which proves (10). If the equality holds in (10), then x1 = x2 = · · · = xh. Thus, H is a ξ1(G)-regular graph.
We observe that (11) follows from Theorem 2.1 because

λ1(G) ≤ α∆ + (1− α)ξ1(G).

Next, we provide a proof, based on the following, for the equality in (11):

〈Sαx,x〉 = α
∑

vi∈V (G)

(x2
i

∑
vivj∈E(G)

aij) + 2(1− α)
∑

vivj∈E(G)

aijxixj .

Let H is a component of graph G and λ1(G) = λ1(H). For λ1(H), let x := (x1, x2, . . . , xh) be a positive unit eigenvector, then

λ1(G) = α
∑

vi∈V (H)

x2
i

 ∑
vivj∈E(G)

aij

+ 2(1− α)

 ∑
vivj∈E(G)

xixjaij


≤ α∆a∆

∑
vi∈V (H)

x2
i + (1− α)ξ1(H)

≤ α∆a∆ + (1− α)ξ1(G).

If the equality holds in (11), then H is ∆-regular. If G contains a ∆-regular component, then ξ1(G) = ∆a∆ = λ1(G). Thus,
the equality holds in (11).

8
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The Perron-Frobenius theory of nonnegative matrices can be used to obtain the following characteristics of Sα(G):

Proposition 5.7. Let α ∈ [0, 1) and x be a nonnegative eigenvector corresponding to λ1(G).

(i). The eigenvector x is positive and distinctive up to scale if G is a connected graph.

(ii). If G is not connected and P is the set of vertices in x with positive entries, then the resulting subgraph induced by P is
a union of components H of G with λ1(G) = λ1(H).

(iii). If G is a connected graph and λ is an eigenvalue of Sα(G) with a nonnegative eigenvector, then λ = λ1(G).

(iv). If H is a proper subgraph of a connected graph G, then λ1(H) < λ1(G) for every α ∈ [0, 1) .

Let Tr(n) be an r-partite Turán graph with n vertices. Recall that Tr(n) has the largest number of edges among all
r-partite graphs with n vertices.

Proposition 5.8. Let G be an r-chromatic graph of order n such that r ≥ 2. If α < 1 − 1
r , then λ1(G) < λ1(Tr(n)), unless

G = Tr(n). If α > 1− 1
r , then λ1(G) < λ1(Sn,r−1), unless G = Sn,r−1. If α = 1− 1

r , then λ1(G) ≤ (1− 1
r )n with equality if and

only if G is a complete r-partite graph.

Proof. Assume that G is an r-partite graph of order n with maximum λ1(G) among all r-partite graph of order n. Propo-
sition 5.7 implies that G is a complete r-partite graph. Let the partition sets of G be V1, . . . , Vr. If these sets have sizes of
n1, . . . , nr, respectively, then n1 + · · ·+nr = n. Let λ1 = λ1(G) and x := (x1, . . . , xn) be a positive eigenvector corresponding
to λ1. According to Proposition 5.5, the values of the entries in x that belong to vertices in the same partition set are equal,
say zi for Vi, i = 1, . . . , r. Hence, we have

λ1zk = α

 ∑
i∈[r]\{k}

niaki

 zk + (1− α)
∑

i∈[r]\{k}

niakizi, 1 ≤ k ≤ r. (12)

If α = 1− 1
r , then

λ1 =

(
1− 1

r

)∑
i∈[r]

niaki

is an eigenvalue with an eigenvector defined by

zi =
1

rakini
, i = 1, . . . , r.

Take S = n1ak1z1 + · · ·+ nrakrzr. From (12), we haveλ1 − α

∑
i∈[r]

niaki − nkakk

+ (1− α)nkakk

nkzk = (1− α)nkS,

for 1 ≤ k ≤ r, where akk =
√

dk−1
dk

. Next, we note that λ1 satisfies the following equation:

∑
j∈[r]

njakj
λ1 − α

∑
i∈[r] niaki + njakj

=
1

1− α
. (13)

If α < 1− 1
r , then 1

1−α < r. Hence, by (13), we have

λ1 − α
∑
i∈[r]

niaki > 0.

Letting

f(z) =
z

λ1 − α
∑
i∈[r] niaki + z

= 1−
λ1 − α

∑
i∈[r] niaki

λ1 − α
∑
i∈[r] niaki − z

, z > 0,

we have
f

′′
(z) =

−2(λ1 − α
∑
i∈[r] niaki)

(λ1 − α
∑
i∈[r] niaki + z)3

< 0.

Let λT = λ1(Tr(n)) and t1, . . . , tr be the sizes of the partition sets of Tr(n); in other words, ti =
⌊
n
r

⌋
or ti =

⌈
n
r

⌉
and

t1 + · · ·+ tr = n. From (13), we have ∑
j∈[r]

tjakj
λT − α

∑
i∈[r] tiaki + tjakj

=
1

1− α
.

9
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Thus, we have ∑
j∈[r]

tjakj
λT − α

∑
i∈[r] niaki + tjakj

=
1

1− α

=
∑
j∈[r]

njakj
λ1 − α

∑
i∈[r] niaki + njakj

≤
∑
j∈[r]

tjakj
λ1 − α

∑
i∈[r] niaki + tjakj

.

Consequently, we have λT ≥ λ1 with equality if and only if ni =
⌊
n
r

⌋
or ni =

⌈
n
r

⌉
. Similarly, if α > 1− 1

r , then 1
1−α > r. As

a result, by (13), we have λ1 − α
∑
i∈[r] niaki < 0. If

f(z) =
z

λ1 − α
∑
i∈[r] niaki + z

,

for z > 0, then f ′′
(z) > 0. Let s1, . . . , sr be the sizes of the partition sets of Sn,r−1, which means that s1 = s2 = · · · = sr−1 = 1

and sr = n− r + 1. Assume that λs = λ1(Sα(Sn,r−1)). Considering (13), we obtain∑
j∈[r]

sjakj
λs − α

∑
i∈[r] siaki + sjakj

=
1

1− α
.

Then, ∑
j∈[r]

sjakj
λs − α

∑
i∈[r] niaki + sjakj

=
1

1− α

=
∑
j∈[r]

njakj
λ1 − α

∑
i∈[r] niaki + njakj

≤
∑
j∈[r]

sjakj
λ1 − α

∑
i∈[r] niaki + sjakj

,

and hence λs ≥ λ1. Note that the equation λs = λ1 holds if and only if G = Sn,r−1.
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