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Abstract
In this note, spectral conditions involving the eigenvalues, Laplacian eigenvalues and signless Laplacian eigenvalues are
derived for Hamiltonian properties of graphs.
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1. Introduction

The graphs considered in this note are finite undirected graphs containing neither multiple edges nor loops. Terminology
and notation, not defined here, can be found in [1]. For a graph G = (V,E), the number of vertices in G is denoted by n.
The complete graph of order n is denoted by Kn. Denote by Gc the complement of a graph G. For the two graphs H and K,
denote by H ∨K the join of H and K. Define G1(n, k) := Kk ∨Kc

k+1 for k ≥ 2 and G2(n, k) := Kk ∨Kc
k+2 for k ≥ 1. A cycle

in a graph G that contains all the vertices of G is called a Hamiltonian cycle of G. A graph containing a Hamiltonian cycle
is known as a Hamiltonian graph. A path in a graph G that consists of all the vertices of G is referred to as a Hamiltonian
path of G. A graph containing a Hamiltonian path is called a traceable graph. Obviously, G1(n, k) is not a Hamiltonian
graph and G2(n, k) is not a traceable graph.

The eigenvalues of the adjacency matrixA(G) of a graphG are called the the eigenvalues ofG. Let λ1(G), λ2(G), ..., λn(G)
satisfying λ1(G) ≥ λ2(G) ≥ ... ≥ λn(G), be the eigenvalues of the graphG. LetD(G) be the diagonal matrix diag(d1, d2, ..., dn)
of G, where d1, d2, ..., dn are the degrees of vertices in the graph G. For a graph G, the eigenvalues of the matrix

L(G) := D(G)−A(G)

are denoted by µ1(G), µ2(G), ..., µn(G), where µ1(G) ≥ µ2(G) ≥ ... ≥ µn(G) = 0, and these eigenvalues are called the
Laplacian eigenvalues of G. For a graph G, the eigenvalues of the matrix

Q(G) := D(G) +A(G)

are called the signless Laplacian eigenvalues of G and these eigenvalues are denoted by q1(G), q2(G), ..., qn(G), where
q1(G) ≥ q2(G) ≥ ... ≥ qn(G) ≥ 0.

Notice that we can use Theorem 2.8 given on Page 57 of [2] to find ai := λi(G1(n, k)) and a′i := λi(G2(n, k)), where i is any
integer satisfying the inequality 1 ≤ i ≤ n. Also, we can use Theorem 2.1 given on Page 225 of [5] to find bi := µi(G1(n, k))

and b′i := µi(G2(n, k)), where i is any integer satisfying the inequality 1 ≤ i ≤ n. Moreover, we can use (1) mentioned on
Page 992 of [4] to find ci := qi(G1(n, k)) and c′i := qi(G2(n, k)), where i is any integer with 1 ≤ i ≤ n.

In this note, spectral conditions involving the eigenvalues, Laplacian eigenvalues and signless Laplacian eigenvalues
are presented for Hamiltonian properties of graphs. Next, we give the statements of the main results of this note.

Theorem 1.1. For k ≥ 2, let G be a k-connected graph of order n. For each i with 1 ≤ i ≤ n, let α1, βi and γi be non-negative
real numbers such that α1 and γ1 cannot be equal to zero simultaneously. If

α1λ1 +

n∑
i=1

βiµi +

n∑
i=1

γiqi ≥ α1a1 +

n∑
i=1

βibi +

n∑
i=1

γici,

then G is Hamiltonian or Kk ∨Kc
k+1.
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Theorem 1.2. Let G be a k-connected graph of order n, where k ≥ 1. For each i with 1 ≤ i ≤ n, let α1, βi and γi be
non-negative real numbers such that α1 and γ1 cannot be equal to zero simultaneously. If

α1λ1 +

n∑
i=1

βiµi +

n∑
i=1

γiqi ≥ α1a
′
1 +

n∑
i=1

βib
′
i +

n∑
i=1

γic
′
i,

then G is traceable or Kk ∨Kc
k+2.

2. Some lemmas

We need the following results as lemmas to prove our theorems. The following lemma is a part of Corollary 1.5 given on
Page 11 of [6].

Lemma 2.1. For any edge e of a connected graph G, λ1(G− e) < λ1(G).

The next result follows from Theorem 1.14 given on Page 13 of [6] and from the fact that µn(H) = 0 for any graph H.

Lemma 2.2. For any edge e of a connected graph G, µi(G− e) ≤ µi(G), for each i with 1 ≤ i ≤ n.

the following lemma is a part of Corollary 1.16 given on Page 14 of [6].

Lemma 2.3. For any edge e of a connected graph G, q1(G− e) < q1(G).

Next lemma follows directly from Theorem 2.1 given on Page 13 of [3].

Lemma 2.4. For any edge e of a connected graph G, qi(G− e) ≤ qi(G), for each i with 1 ≤ i ≤ n.

3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Suppose thatG is a graph satisfying the constraints mentioned in Theorem 1.1. Suppose thatG is
not a Hamiltonian graph. Then G is not a complete graph. We further have that n ≥ 2k+1 otherwise 2δ ≥ 2k ≥ n and G is
Hamiltonian. Since k ≥ 2, G contains a cycle. Let C be a longest cycle in the graph G and take an orientation on the cycle
C. As G is not a Hamiltonian graph, there is at least one vertex x0 ∈ V (G)\V (C). Because of Menger’s theorem, there are
s pairwise disjoint (except for the vertex x0) paths P1, P2, ..., Ps between x0 and V (C), where s ≥ k. For 1 ≤ i ≤ s, assume
that ui is an end vertex of Pi lying on C. For 1 ≤ i ≤ s, denote by u+i the successor of the vertex ui along the orientation of
the cycle C. Then, {x0, u+1 , u+2 , ..., u+s } is an independent set, otherwise G has at least one cycle of length greater than that
of the cycle C. Therefore, S := {x0, u+1 , u

+
2 , ..., u

+
k } is an independent set and |S| = k + 1. Take

T := V (G)− S = { v1, v2, ..., vr }.

Thus,
|T | = r = n− |S| = n− (k + 1) ≥ k.

It is clear that xy ∈ E for every x ∈ S and for every y ∈ T , and vivj ∈ E where 1 ≤ i 6= j ≤ r. Otherwise, from Lemmas 2.1,
2.2, 2.3 and 2.4, we have

α1a1 +

n∑
i=1

βibi +

n∑
i=1

γici ≤ α1λ1 +

n∑
i=1

βiµi +

n∑
i=1

γiqi < α1a1 +

n∑
i=1

βibi +

n∑
i=1

γici,

a contradiction. If r ≥ (k + 1), it is obvious that G is Hamiltonian. Thus r ≤ k. Namely, r = k and G is G1(n, k).

�

Proof of Theorem 1.2. Suppose that G is a graph satisfying the conditions of Theorem 1.2. assume that G is not a
traceable graph. Then, G is not complete. We further have that n ≥ 2k + 2 otherwise 2δ ≥ 2k ≥ n− 1 and G is a traceable
graph. Let P be a longest path in the graph G and take an orientation on the path P . Let y, z ∈ V (G) be the end vertices
of the path P . As G is not a traceable graph, there is at least one vertex x0 ∈ V (G) \ V (P ). Because of Menger’s theorem,
there are s pairwise disjoint (except for x0) paths P1, P2, ..., Ps between x0 and V (P ), where s ≥ k. For 1 ≤ i ≤ s, assume
that ui is the end vertex of the path Pi lying on P . As P is a longest path in the graph G, y 6= ui and z 6= ui, for each i with
1 ≤ i ≤ s, otherwise G has at least one path of length greater than that of the path P . For 1 ≤ i ≤ s, denote by u+i the
successor of the vertex ui along the orientation of the path P . Then, {x0, y, u+1 , u+2 , ..., u+s } is an independent set otherwise
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G has at least one path of length greater than that of the path P . Therefore, S := {x0, y, u+1 , u
+
2 , ..., u

+
k } is independent and

|S| = k + 2. Now, take T := V (G)− S = { v1, v2, ..., vr }. Thus, |T | = r = n− |S| = n− (k + 2) ≥ k.
It is clear that xy ∈ E for every x ∈ S and for every y ∈ T , and vivj ∈ E where 1 ≤ i 6= j ≤ r. Otherwise, from Lemmas

2.1, 2.2, 2.3 and 2.4, we have that

α1a
′
1 +

n∑
i=1

βib
′
i +

n∑
i=1

γic
′
i ≤ α1λ1 +

n∑
i=1

βiµi +

n∑
i=1

γiqi < α1a
′
1 +

n∑
i=1

βib
′
i +

n∑
i=1

γic
′
i,

a contradiction. If r ≥ (k + 1), it is obvious that G is traceable. Thus r ≤ k. Namely, r = k and G is G2(n, k).

�

Since we have infinitely many choices for the values of α1, βi ≥ 0 (1 ≤ i ≤ n), and γi ≥ 0 (1 ≤ i ≤ n) in Theorems 1.1 and
1.2, we can obtain infinitely many sufficient conditions for Hamiltonian and traceable graphs.
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