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Abstract

A graph of order n whose degree set consists of exactly n− 1 elements is called antiregular graph. Such type of graphs are
usually considered opposite to the regular graphs. An irregularity measure (IM ) of a connected graph G is a non-negative
graph invariant satisfying the property: IM(G) = 0 if and only if G is regular. The total irregularity of a graph G, denoted
by irrt(G), is defined as irrt(G) =

∑
{u,v}⊆V (G) |du−dv|where V (G) is the vertex set of G and du, dv denote the degrees of the

vertices u, v, respectively. Antiregular graphs are the most nonregular graphs according to the irregularity measure irrt ;
however, various non-antiregular graphs are also the most nonregular graphs with respect to this irregularity measure. In
this note, two new irregularity measures having high discriminatory ability are devised. Only antiregular graphs are the
most nonregular graphs according to the proposed measures.
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1. Introduction

Graphs considered in this article are simple and finite. Sets of vertices and edges of a graph G will be denoted by V (G)

and E(G), respectively. Degree of a vertex u and the edge connecting the vertices u, v ∈ V (G) will be denoted by du and uv,
respectively. By an n-vertex graph, we mean a graph with n vertices. An (n,m)-graph is an n-vertex graph with m edges.
The graph theoretical terminology, not defined here, can be found in some standard books of graph theory, like [12,14].

The degree set of a graph G is denoted [13] by D(G) and is defined as the set of all different vertex degrees of G. A
graph whose degree set consists of only one element is called regular graph. Sometimes (for example, see [5]), the term
“irregular graphs” is used for those graphs which are not regular, while sometimes (for example, see [13]), the same term
is used for a totally different purpose. Hence, in order to avoid confusion, and by following the references [15, 18, 46], we
use the term “nonregular graphs” instead of “irregular graphs” for the graphs which are not regular.

A graph having maximum degree less than 5 is known as a molecular graph in chemical graph theory. Molecular graphs
of annulenes, cycloalkanes and fullerenes are the examples of regular molecular graphs. The vast majority of molecular
graphs is nonregular; some are more nonregular than others.

An irregularity measure (IM ) of a connected graph G is a non-negative graph invariant satisfying the property:
IM(G) = 0 if and only ifG is regular. If IM(G) > IM(H) then we say thatG is more nonregular thanH according to the con-
sidered irregularity measure IM . Irregularity measures may play an important role in network theory [17,20,21,29,44,45]
as well as in chemistry, particularly in the QSPR (quantitative structure-property relationship) and QSAR (quantitative
structure-activity relationship) studies [26,41].

Historically, the Gini index (some detail about this index is given in Section 3), appeared implicitly in [24], can be
considered as one of the first irregularity measures. However, this index was intended to be used for a completely different
purpose [8,43]. For m ≥ 1, the Gini index for an (n,m)-graph G, denoted by ζ(G), can be defined as follows

ζ(G) =
1

2mn

∑
{u,v}⊆V (G)

|du − dv| .

Here, it needs to be mentioned that ζ(G) = irrt(G)
2mn where irrt is a recently introduced irregularity measure, namely the

total irregularity [1].
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We may say that Collatz and Sinogowits [16] probably introduced explicitly the first irregularity measure, which is
defined, for an (n,m)-graph G, as

CS(G) = λ1 −
2m

n
,

where λ1 is the greatest eigenvalue of the adjacency matrix of G. For n ≥ 3, Estrada [20] devised the following irregularity
measure, under the name “normalized heterogeneity index”, within the study of network heterogeneity:

ρ(G) =
n− 2 ·R(G)

n− 2
√
n− 1

,

where R(G) =
∑
uv∈E(G)(du dv)

−1/2 is the Randić index [31, 38] of the n-vertex graph G. Actually, dozens of irregularity
measures exist in literature and various new ones can be easily defined. In Table 1, those existing irregularity measures
(together with their definitions and some relevant references) are given which will be discussed in this paper. Further
detail about the existing irregularity measures can be found in the surveys [6,25], papers [10,11,19,33,34,39,41] and in
the references listed therein.

It is well-known fact that there does not exist any n-vertex graph whose all degrees are different for n > 1. An n-vertex
graph whose degree set consists of exactly n− 1 elements is called the antiregular graph [32] as well as the quasi-perfect
graph [9], half-complete graph [22], maximally nonregular graph [47] and pairlone graph [42]; however, it seems that
“antiregular graphs” is a generally accepted term for referring such kind of graphs [3,30,35] (also see [36] for some basic
properties of the antiregular graphs), so we use this term in the remaining part of this paper. It is known [9] that for every
integer n ≥ 2 there is a unique connected antiregular n-vertex graph An (and a unique disconnected antiregular n-vertex
graph, which is actually the complement of An). Following the references [1, 10, 11], we take antiregular graphs as the
graphs opposite to the regular graphs.

Table 1. Some existing irregularity measures considered in this paper.

Name of irregularity measure Definition for an (n,m)-graph G

Gini index [24] ζ(G) = 1
2mn

∑
{u,v}⊆V (G) |du − dv|

Collatz-Sinogowitz index [16] CS(G) = λ1 − 2m
n

Degree variance [7,28,44,45] V ar(G) = 1
n

∑
v∈V (G)

(
dv − 2m

n

)2
Discrepancy [28,29] Disc(G) = 1

n

∑
v∈V (G) |dv −

2m
n |

Albertson index [4] A(G) =
∑
uv∈E(G) |du − dv|

Degree deviation [37] S(G) = n ·Disc(G)

Normalized heterogeneity index [20] ρ(G) = n−2·R(G)

n−2
√
n−1

Total irregularity [1] irrt(G) = 2mn · ζ(G)

Sigma index [23,27] σ(G) =
∑
uv∈E(G)(du − dv)2

The following problem was posed in [40].

Problem 1.1. Let G, R, An be any connected n-vertex graph, a connected n-vertex regular graph, a connected n-vertex
antiregular graph, respectively. Produce an irregularity measure IM which satisfies the inequality

IM(R) ≤ IM(G) ≤ IM(An) (1)

with left equality if and only if G ∼= R and the right equality holds if and only if G ∼= An.

The main purpose of the present article is to devise two new irregularity measures having high discriminatory ability
as well as satisfying the constraints specified in Problem 1.1. The newly developed irregularity measures are compared
with some well-known existing irregularity measures and it is noted that the proposed measures give better results in a
certain way.

2. Construction of irregularity measures possessing high discriminatory performance

Before defining the two new irregularity measures, we would like to note, from Table 2, that among those existing irregu-
larity measures which are considered in this paper, only the graph invariant |D(G)| − 1 satisfies the constraints specified

28
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in Problem 1.1. However, according to Gutman [25] “In the case of molecular graphs, the invariant |D(G)| − 1 should
be applied with due caution, or – better – not applied at all. Because, for the graphs depicted in Figure 1, it holds that
|D(H1)| = |D(H2)|; but, intuitively, one would expect that H2 is much more nonregular than H1”. Also, we observe that the
total irregularity irrt satisfies (1) and the extremal graphs for the left inequality of (1) are same as mentioned in Problem
1.1. However, there exist graphs different from An for which the right equality sign in (1) holds. Consequently, we define
two new irregularity measures satisfying all the conditions mentioned in Problem 1.1.

Table 2. Some existing irregularity measures of the four graphs, shown in Figure 2.

Graph m irrt |D | − 1 CS A σ V ar S ζ ρ
G1 9 26 4 0.404 16 40 1.667 6.000 0.241 0.304
G2 7 26 3 0.481 18 56 1.889 6.667 0.310 0.522
G3 8 26 3 0.435 20 56 1.889 7.333 0.271 0.419
G4 8 26 2 0.510 14 44 1.889 6.667 0.271 0.433

H1 H2

Figure 1: Two nonregular graphs with the same degree set.

G1 G4G2 G3

Figure 2: Four 6-vertex nonregular graphs with the same total irregularity.

From the computed irregularity measures given in Table 2, the following conclusions can be drawn for the graphs Gi
(i = 1, 2, 3, 4):

• For all graphs, the total irregularity index is same, that is irrt = 26, and hence we may say that irrt has a low
discriminatory ability for the considered graphs.

• Among the investigated irregularity measures, there are six measures (CS, σ, V ar, S, ζ and ρ) having a minimum
value for the antiregular graph G1 and hence we conclude that this graph is less nonregular than each of the other
three graphs according to these six irregularity measures.

• In addition to irrt, the irregularity measures σ, V ar, S, ζ have only a limited discriminatory power for the graphs
under consideration. Surprisingly, V ar(G1) = 1.667, while V ar(G2) = V ar(G3) = V ar(G4) = 1.889.

• For the majority of the considered irregularity measures, the right inequality in (1) does not hold.

In what follows, it is assumed, unless stated otherwise, that G is a connected graph of order at least 3 with the vertex
set V (G) = {v1, v2, · · · , vn} and with the degree sequence (d1, d2, · · · , dn) such that d1 ≥ d2 ≥ · · · ≥ dn where di = dvi for
i = 1, 2, · · · , n. We define an n × n matrix B(G) having entries bi,j = |di − dj |. The matrix B(G) is referred as the degree-
difference matrix of the graph G. Clearly, the matrix B(G) is a symmetric matrix. One can construct several different
versions of the degree-difference matrix. For example, consider the n×n matrix B(1)(G) of the graph G whose components
are defined by b(1)

i,j = di−dj . Clearly, B(1)(G) is an antisymmetric matrix. Another possible version of the degree-difference
matrix is the matrix B(2)(G) whose entries are defined as b(2)

i,j = (di − dj)2.
For a non-negative integer k, let Nk(G) be the number of those upper diagonal entries of the matrix B(G) which are

equal to k. In other words, Nk(G) is the number of those pairs of vertices (vi, vj) ∈ V (G)× V (G) which satisfy di − dj = k

for i < j. Clearly, it holds that ∑
k≥0

Nk(G) =
n(n− 1)

2
. (2)
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Moreover, it is easy to see that
irrt(G) =

∑
k≥1

kNk(G)

which is, also, equal to
∑
i<j bi,j , that is, the sum of the upper diagonal entries of the matric B(G).

We consider the 6-vertex nonregular graphs depicted in Figure 2. Because all of them have the same total irregularity
(equal to 26), they cannot be distinguished in terms of their irregularity using the total irregularity. Efficient discrim-
ination between graphs with equal total irregularity can be performed by constructing novel graph invariants that are
highly sensitive to the structural differences in such graphs. The simplest such structure-sensitive invariant having an
improved discriminatory power is the graph invariant N0(G). For the graphs shown in Figure 2, one obtains N0(Gj) = j

for j = 1, 2, 3, 4. By means of N0(G), various irregularity measures can be generated; some of them seem to be efficient for
the structural discrimination (ranking) of graphs with identical total irregularity. Here, we define the following two such
irregularity measures

IRA(G) =
n(n− 1)

2
· 1

N0(G)
− 1 and IRB(G) = 1− 2

n(n− 1)
·N0(G) .

Because of (2), the formulas of the irregularity measures IRA(G) and IRB(G) can be rewritten as

IRA(G) =
1

N0(G)
·
∑
k≥1

Nk(G) and IRB(G) =
2

n(n− 1)
·
∑
k≥1

Nk(G) .

Here, we note that N0(H1) = 46 and N0(H2) = 30, and hence using the irregularity measures IRA and IRB, we remark
that H2 is more nonregular than H1, as noted in the first paragraph of this section.

Now, for the 6-vertex graphs depicted in Figure 2 having the same irrt value, we compute the newly defined irregularity
measures IRA and IRB; these approximated values are given in Table 3. We note that the calculated values of IRA and
IRB for these four graphs are all different and that the antiregular graph G1 has the maximal values of the irregularity
measures IRA and IRB among the considered graphs, which indicates that the measures IRA and IRB have a high
discriminatory ability as well as these measures may satisfy the constraints given in Problem 1.1, which is actually true
due to Proposition 2.1. Consequently, we conclude that the newly developed irregularity measures IRA and IRB are
somehow better, in a certain way, than the existing irregularity measures given in Table 1. It should be noted here that
the graph invariant ζ = irrt/2mn has only two same values among the four values listed in the last column of Table 3 (this
last column was added by following the suggestion of one of the reviewers of this paper).

Table 3. The irregularity measures IRA and IRB of the graphs, shown in Figure 2.

Graph m irrt N0 IRA IRB ζ
G1 9 26 1 14.00 0.933 0.24
G2 7 26 2 6.50 0.867 0.31
G3 8 26 3 4.00 0.800 0.27
G4 8 26 4 2.75 0.733 0.27

Lemma 2.1. It holds that N0(G) ≥ 1 with equality if and only if G is an antiregular graph.

Proof. The desired result follows from the fact that every non-trivial graph contains at least two vertices of same degree.

From the definitions of the irregularity measures IRA and IRB, and from Lemma 2.1, the next result follows.

Proposition 2.1. It holds that
0 ≤ IRA(G) ≤ n(n− 1)

2
− 1 (3)

and
0 ≤ IRB(G) ≤ 1− 2

n(n− 1)
. (4)

The left equality sign in either of Inequalities (3), (4) holds if and only if G is regular, while the right equality sign in either
of Inequalities (3), (4) holds if and only if G is antiregular.

Since 1 − 2
n(n−1) → 1 when n → ∞, Proposition 2.1 ensures that the value of the irregularity measure IRB(G) lies

between 0 and 1.
Next, we compare the measures IRA and IRB with the total irregularity irrt, which is a modified version of the Albert-

son index A. The following three facts can be considered as the main reasons for introducing irrt (the purpose of adding
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A. Ali and T. Réti / Contrib. Math. 1 (2020) 27–34 31

these three facts is that the irregularity measures IRA and IRB have all those advantages which the measure irrt has,
and in addition, these two newly proposed measures also obeyed all the constraints given in Problem 1.1, however irrt does
not obey one of these constraints) :

Fact 1. The measure irrt can be calculated from the degree sequence of a graph G, while to calculate the Albertson index,
one needs all the vertices’ adjacency information for G;

Fact 2. Graphs with the same degree sequence have the same irrt value, while there exist some graphs, say G and G′,
with equal degree sequences such that A(G) 6= A(G′);

Fact 3. Among all the n-vertex graphs, the graphs with maximal Albertson index are bidegreed graphs belonging to the
family of complete split graphs [2], while the graphs with maximal irrt value have large degree sets.

We remark that if “irrt” is replaced with either “IRA” or “IRB” in the statements of Facts 1, 2, and 3, then the resulting
statements also hold. In addition, we note that the graph with (n− 1)-element degree set is the only graph with the max-
imal IRA value (as well as maximal IRB value) among all the n-vertex graphs; this is not always the case for the total
irregularity “irrt”.

Since the irregularity measures IRA and IRB depend only on the graph invariantN0 , finding mathematical properties
of the invariant N0 seems to be an interesting work.

Remark 2.1. From Lemma 2.1, it follows that if the inequality N0(G) > 1 holds then G is not an antiregular graph.
Consequently, the graph invariantN0(G) classify the n-vertex graphs into disjoint subsets (representing disjoint equivalence
classes).

For any non-trivial connected n-vertex graph G, it is easy to see that

N0(G) ≤ n(n− 1)

2

where the equality sign holds if and only if G is a regular graph. In the next lemma, we will see that this bound can be
sharpened for nonregular graphs. A graph whose degree set consists of only two elements is called a bidegreed graph. By
a bidegreed partition (A,B) of a bidegreed graph G, we mean a partition of V (G) such that du 6= dv for every u ∈ A and for
every v ∈ B.

Lemma 2.2. If the connected n-vertex nonregular graph G has the maximum degree ∆, then it holds that

N0(G) ≤ n(n− 1)

2
−∆

with equality if and only if G is a bidegreed graph containing a unique vertex of degree n− 1.

Proof. We note that

N0(G) =

∆∑
i=1

ni(ni − 1)

2
,

where ni is the number of vertices of degree i in G. Suppose that one of the ni’s is n− k for some fixed k ∈ {1, 2, · · · , n− 1}.
If k ≤ ∆, then it holds that

N0(G) ≤ (n− k)(n− k − 1)

2
+
k(k − 1)

2
=
n(n− 1)

2
− k(n− 1) + k(k − 1)

≤ n(n− 1)

2
− k∆ + k(k − 1) ≤ n(n− 1)

2
−∆ . (5)

The last inequality holds if k(k − 1) ≤ ∆(k − 1), which certainly obeyed. We note that the equality sign holds throughout
in (5) if and only if G is a bidegreed graph with the bidegreed partition (A,B) such that one of |A|, |B| is k and the other
is n − k, ∆ = n − 1 and either k = 1 or k = ∆; that is, if and only if G is a bidegreed graph containing a unique vertex of
degree n− 1.

If k > ∆, then we have
N0(G) ≤ n(n− 1)

2
− k(n− k) ≤ n(n− 1)

2
− k < n(n− 1)

2
−∆ .

because of n− k ≥ 1.

The following proposition is a direct consequence of Lemma 2.2.
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Proposition 2.2. If the connected n-vertex nonregular graph G has the maximum degree ∆ ≥ 2, then

IRA(G) ≥ 2∆

n(n− 1)− 2∆

and
IRB(G) ≥ 2∆

n(n− 1)
,

with equality if and only if G is a bidegreed graph containing a unique vertex of degree n− 1.

If H1 and H2 are connected bidegreed n-vertex graphs with n∆(H1) = n∆(H2) or nδ(H1) = n∆(H2) then from the
equation

N0(G) =

∆∑
i=1

ni(ni − 1)

2
,

the next result follows. (Recall that ni is the number of those vertices of G that have degree i.)

Proposition 2.3. If H1 and H2 are connected bidegreed n-vertex graphs satisfying n∆(H1) = n∆(H2) or nδ(H1) = n∆(H2)

then IRA(H1) = IRA(H2) and IRB(H1) = IRB(H2).

The following corollary is direct consequence of Proposition 2.3.

Corollary 2.1. If H1 and H2 are two connected regular n-vertex graphs such that the graphs H1 − e1 and H2 − e2 are also
connected then IRA(H1 − e1) = IRA(H2 − e2) and IRB(H1 − e1) = IRB(H2 − e2), where e1 ∈ E(H1) and e2 ∈ E(H2).

Several existing irregularity measures have different values for the graphs P6 (the 6-vertex path graph which is iso-
morphic to the graph obtained from the 6-vertex cycle (a regular graph) graph by removing an edge) and K6− e (the graph
obtained from the 6-vertex complete graph by removing an edge); for example, the Albertson index, Collatz-Sinogowitz
index, Gini index, etc. and hence according to these irregularity measures, one of the two graphs P6, K6 − e, is more non-
regular than the other one. Contrary to this, one intuitively would expect that both the graphs P6 and K6 − e have same
degree of irregularity or better to say that neither of these two graphs is more nonregular than the other one; the same
conclusion implies from Corollary 2.1. This example demonstrates clearly that IRA and IRB indices quantify basically
the structural heterogeneity of the graphs P6 and K6 − e. Strictly speaking, IRA and IRB indices characterize (measure)
the heterogeneity (inhomogeneity) difference between the vertex-degree distributions of the considered graphs.

Remark 2.2. One of the referees of this paper noted that the irregularity measures IRA and IRB behave same in the sense
that IRA(H) ≤ IRA(G) if and only if IRB(H) ≤ IRB(G) because

IRB(G) +
1

1 + IRA(G)
= 1 .

3. A new/old formulation of the total irregularity

Let Y = (y1, y2, · · · , yn) be a sequence of non-negative real numbers yi, for which it holds that y1 ≥ y2 ≥ · · · ≥ yn and that
µ(Y ) =

∑n
i=1 yi
n 6= 0. The Gini index ζ (also known as the Gini coefficient), attributed to Gini [24], for the sequence Y can

be written (see page 31 in [43]) as

ζ(Y ) =
1

2n2 · µ(Y )

n∑
i=1

n∑
j=1

|yi − yj | = 1− 1

n2 · µ(Y )

n∑
i=1

(2i− 1)yi .

Since the average degree of an (n,m)-graph G containing at least one edge is 2m/n, the Gini index for G can be defined as
follows

ζ(G) =
1

4mn

n∑
i=1

n∑
j=1

|di − dj | = 1− 1

2mn

n∑
i=1

(2i− 1)di ,

where V (G) = {v1, v2, · · · , vn}, d1 ≥ d2 ≥ · · · ≥ dn, and di = dvi for i = 1, 2, · · · , n. Clearly, ζ(G) ≥ 0 with equality if and
only if G is regular, which means that the Gini index is also an irregularity measure. Here, it needs to be mentioned that
the Gini index is bounded between 0 and 1; for example, see [8]. We note that the total irregularity of the graph G can be
rewritten as

irrt(G) = 2mn · ζ(G) =

n∑
i=1

(n+ 1− 2i)di = 2m(n+ 1)− 2

n∑
i=1

idi .

In order to find the irrt value of a graph G, one may prefer the formula irrt(G) = 2m(n+1)−2
∑n
i=1 idi due to its simplicity

instead of irrt(G) = 1
2

∑n
i=1

∑n
j=1 |di − dj |.

32
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4. Concluding remarks

The main contribution of the present paper is the development of the irregularity measures IRA and IRB, which provide
the solution of Problem 1.1. Let us consider a more general version of Problem 1.1, that was posed in [40]. For stating this
problem, we need some definitions first. A connected graph of maximum degree ∆ ≥ 2 in which each vertex of degree ∆

has a neighbor of degree k for every k ∈ {1, 2, · · · ,∆}, is known as the “almost highly irregular graph”. A connected graph
of maximum degree ∆ ≥ 2 and with the degree set {1, 2, · · · ,∆} is known as the “maximally irregular graph”. A connected
graph of order 3 or more which does not contain any vertex having at least two neighbors of same degree, is called “highly
irregular graph”. A “totally segregated graph” is a connected graph containing no pair of adjacent vertices of same degree.
Note that every almost highly irregular graph is a maximally irregular graph – more detail about the relation between the
aforementioned types of graphs can be found in [40]. Now, we are ready to state the problem given in [40].

Problem 4.1. Design some irregularity measure(s) IM satisfying

IM(Gr) ≤ IM(G) ≤ IM(GI)

with left equality if and only if G ∼= Gr and the right equality holds if and only if G ∼= GI , where Gr is any connected n-vertex
r-regular graph, G is any connected n-vertex graph and GI is a connected n-vertex (i) antiregular graph, or (ii) maximally
irregular graph, or (iii) highly irregular graph, or (iv) almost highly irregular graph, or (v) totally segregated graph.

The first part of Problem 4.1 is same as Problem 1.1. Let us consider the second part of Problem 4.1. For a connected
graph G of maximum degree ∆ and with the degree set D , let

IMΦ(G) =
1

∆− |D |+ 1
− 1

∆
.

Note that 1 ≤ ∆ − |D | + 1 ≤ ∆ with the left equality if and only G is a maximally irregular graph and the right equality
holds if and only if G is a regular graph. Thus,

0 ≤ IMΦ(G) ≤ 1− 1

∆
(6)

with the left equality if and only if G is regular and with the right equality if and only G is a maximally irregular graph.
It should also be noted that if G is an almost highly irregular graph then the right equality in (6) holds but there also exist
the (maximally irregular) graphs, attaining this equality, which are not almost highly irregular graphs.

Next, we consider the fifth part of Problem 4.1. An edge uv of a graph satisfying the inequality |du − dv| ≥ 1 is called a
strong edge. If G is a connected graph of size m ≥ 2 and if Es is the set of all its strong edges, then let

IMΨ(G) =
|Es|
m

.

It is obvious that 0 ≤ IMΨ(G) ≤ 1 , with the left equality if and only if G is regular and with the right equality if and only
G is a totally segregated graph.

We leave the formation of the irregularity measure(s) satisfying the third/fourth part of Problem 4.1 as open.
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