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Abstract

Let G be a simple graph of minimum degree at least 1. Let V = {v1, v2, . . . , vn} be the vertex set of G, and denote by di the
degree of the vertex vi for i = 1, 2, · · · , n. If the two vertices vi and vj are not adjacent in G, we write i � j. The general
zeroth–order Randić coindex of G is defined as 0Rα(G) =

∑
i�j, i 6=j(d

α−1
i + dα−1

j ), where α is an arbitrary real number.
Denote by G the complement of G. In this note, by assuming that G is a tree, we derive new lower bounds on the numbers
0Rα(G) and 0Rα(G), and determine all the graphs attaining these bounds. As the special cases of the main results, we obtain
bounds on the first Zagreb coindex 0R2 as well as on the forgotten topological coindex 0R3 (which is also called the Lanzhou
index).

Keywords: topological index; general zeroth–order Randić coindex; first Zagreb coindex; forgotten topological coindex;
Lanzhou index.
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1. Introduction

Let G = (V,E) be a simple graph with the vertex set V = {v1, v2, . . . , vn}, edge set E and with the vertex–degree sequence
(d1, d2, · · · , dn) satisfying d1 ≥ d2 ≥ · · · ≥ dn > 0, where n ≥ 3, |E| = m and di is the degree of the vertex vi for i = 1, 2, · · · , n.
The complement of G is the simple graph G = (V,E), with the vertex set equal to the vertex set of G and with the edge set
E consisting of all the edges not present in G. Since the sum of the number of edges of G and G is equal to the number of
edges of the complete graph Kn, the number of edges in G is m = n(n−1)

2 −m. If the vertices vi and vj are adjacent in G,
we write i ∼ j and if they are not adjacent in G, we write i � j.

In graph theory, an invariant is a numerical quantity of graphs that depends only on their abstract structure, not on
the labeling of vertices or edges, or on the drawings of the graphs. In chemical graph theory, such quantities are usually
referred to as topological indices [6,18–20]. Many of them are defined as simple functions of the degrees of the vertices of
graph. Many degree based topological indices can be viewed as the contributions of pairs of adjacent vertices. But, equally
important are the degree based topological indices that are defined over the non-adjacent pairs of vertices for computing
some topological properties of graphs, and such topological indices are named as topological coindices.

The first Zagreb index is a vertex–degree–based graph invariant defined as

M1(G) =

n∑
i=1

d2i =
∑
i∼j

(di + dj) .

The quantity M1 was first time considered in 1972 [7]. It was recognized to be a measure of the extent of branching of
the carbon–atom skeleton of the underlying molecule. The first Zagreb index became one of the most popular and most
extensively studied graph-based molecular structure descriptors.

Various generalizations of the first Zagreb index have been proposed. In [9] a so called general zeroth–order Randić
index was introduced. It was conceived as

0Rα(G) =

n∑
i=1

dαi =
∑
i∼j

(dα−1i + dα−1j ) ,

where α is an arbitrary real number (note that 0Rα(G) is well-defined also for α < 0 because we already have assumed
that d1 ≥ d2 ≥ · · · ≥ dn > 0, which means that G does not contain any isolated vertex). This index is also met under the
names the first general Zagreb index [11] and variable first Zagreb index [14]. For specific values of α, specific notations
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and hence specific names are being used. For example, the choice α = 2 gives the aforementioned first Zagreb index. For
α = 3, the so called forgotten topological index [4]

F (G) =

n∑
i=1

d3i =
∑
i∼j

(d2i + d2j )

is gained. More details on the above-mentioned indices and their mathematical properties can be found in the surveys
[1,2,8,16] and in the references cited therein.

The notion of a coindex was introduced in [3]. The general zeroth–order Randić coindex was defined in [13] as

0Rα(G) =
∑

i�j, i 6=j
(dα−1i + dα−1j ) ,

where α is an arbitrary real number. For its mathematical properties and bounds (both upper and lower), one can refer
to [13,15]. In [13], the authors proved that if α ≥ 2 then

0Rα(G) =

n∑
i=1

(n− 1− di)dα−1i . (1)

We remark here that (1) holds for any real number α because di > 0 for i = 1, 2, . . . , n, and

0Rα(G) + 0Rα(G) =
∑
i∼j

(dα−1i + dα−1j ) +
∑

i�j, i 6=j
(dα−1i + dα−1j ) =

n∑
i=1

(n− 1)dα−1i = (n− 1)0Rα−1(G) .

It needs to be mentioned here that 0R2 is same as the first Zagreb coindex M1 that was proposed in [3] and 0R3 is equal to
the forgotten topological coindex (or F -coindex for short) F that was introduced in [5]. In [21], the F -coindex was referred
as the Lanzhou index. In this note, new lower bounds on the numbers 0Rα(G) and 0Rα(G) are established when G is a tree.
All the trees attaining these bounds are also determined. Moreover, as the special cases of the main results, lower bounds
on the first Zagreb coindex M1 as well as on the forgotten topological coindex (or the Lanzhou index) F are obtained.

2. Main results

Firstly, we recall a discrete inequality for real number sequences that is crucial in proving the main theorems of this note.

Lemma 2.1. Let p = (pi), i = 1, 2, . . . , n, be a non-negative real number sequence and let a = (ai), i = 1, 2, . . . , n, be a
sequence of positive real numbers. In [10] (see also [17]) it was proved that for any real r satisfying r ≤ 0 or r ≥ 1, it holds
that (

n∑
i=1

pi

)r−1 n∑
i=1

pia
r
i ≥

(
n∑
i=1

piai

)r
. (2)

When 0 ≤ r ≤ 1, the opposite inequality in (2) is valid. Equality in (2) holds if and only if either r = 0, or r = 1, or
a1 = a2 = · · · = an, or p1 = · · · = pt = 0 and at+1 = · · · = an, for some t satisfying 1 ≤ t ≤ n− 1.

As usual, the path and star graphs of order n are denoted by Pn and K1,n−1, respectively. Next, we need to prove the
following auxiliary result for trees.

Lemma 2.2. Let T be a tree with the vertex–degree sequence (d1, d2, · · · , dn) satisfying d1 ≥ d2 ≥ · · · ≥ dn, where n ≥ 3. If

n− 1 6= d2 = · · · = dn−2 ,

then T ∼= Pn or T ∼= K1,n−1, and vice versa.

Proof. Let d2 = · · · = dn−2 > dn−1 = dn = 1. Then a tree T has only two vertices of degree 1, which implies that T ∼= Pn. If
d2 = · · · = dn−2 = dn−1 = dn = 1, then d1 = n− 1, which means that T ∼= K1,n−1.

Now, we are prepared to prove the first main result of this note. This result reveals a connection between 0Rα(T ) and
M1(T ), where T is a tree.

Theorem 2.1. Let T be a tree of order n ≥ 4 and maximum degree ∆. If α is any real number satisfying α ≤ 1 or α ≥ 2,
then it holds that

0Rα(T ) ≥ 2(n− 2) + (n− 1−∆)∆α−1 +

(
2(n2 − 3n+ 3)− (n− 1−∆)∆−M1(T )

)α−1
(n2 − 6n+ ∆ + 7)α−2

. (3)

When 1 ≤ α ≤ 2, the opposite inequality in (3) is valid. Equality in (3) holds if and only if either α = 1, or α = 2, or T ∼= Pn,
or T ∼= K1,n−1.
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Proof. The inequality (2) can be considered as(
n−2∑
i=2

pi

)r−1 n−2∑
i=2

pia
r
i ≥

(
n−2∑
i=2

piai

)r
. (4)

For r = α− 1 with α ≤ 1 or α ≥ 2, pi = n− 1− di, ai = di, i = 1, 2, . . . , n, the above inequality becomes(
n−2∑
i=2

(n− 1− di)

)α−2 n−2∑
i=2

(n− 1− di)dα−1i ≥

(
n−2∑
i=2

(n− 1− di)di

)α−1
,

that is

((n− 1)(n− 3)− 2m+ ∆ + δ + dn−1)α−2
(
0Rα(G)− (n− 1−∆)∆α−1 − (n− 1− δ)δα−1 − (n− 1− dn−1)dα−1n−1

)
≥ (2m(n− 1)−M1(G)− (n− 1−∆)∆− (n− 1− δ)δ − (n− 1− dn−1)dn−1)α−1 .

Let G be a tree, G = T . Then m = n − 1 and dn−1 = dn = δ = 1 (since every tree has at least two vertices of degree 1). In
that case the above inequality becomes

(n2 − 6n+ 7 + ∆)α−2
(
0Rα(T )− 2(n− 2)− (n− 1−∆)∆α−1

)
≥ (2(n2 − 3n+ 3)− (n− 1−∆)∆−M1(T ))α−1 , (5)

from which (3) is obtained.
The opposite inequality, i.e. when 1 ≤ α ≤ 2, is proved analogously.
Equality in (5) holds if and only if either α = 1, or α = 2, or n − 1 = d1 = · · · = dt > dt+1 = · · · = dn−2, for some t,

2 ≤ t ≤ n − 3, or n − 1 6= d2 = · · · = dn−2. Then, according to Lemma 2.2 we have that equality in (3) holds if and only if
either α = 1, or α = 2, or T ∼= Pn, or T ∼= K1,n−1.

Corollary 2.1. If T is a tree of order n ≥ 4 and maximum degree ∆, then for any real number α satisfying α ≤ 1 or α ≥ 2,
it holds that

0Rα(T ) ≥ 2(n− 2) + (n− 1−∆)∆α−1 +
(2(n− 2)2 − (2n− 3−∆)∆)α−1

(n2 − 6n+ 7 + ∆)α−2
.

When 1 ≤ α ≤ 2, the opposite inequality is valid. Equality holds if and only if either α = 1, or T ∼= Pn, or T ∼= K1,n−1.

Proof. The following inequality was proved in [12]

M1(T ) ≤ 2(n− 1) + (n− 2)∆ , (6)

with equality if and only if T ∼= Pn or T ∼= K1,n−1. From the inequalities (6) and (3), we obtain the required result.

From Corollary 2.1, we obtain lower bounds on the forgotten topological coindex F and on the first Zagreb coindex M1

of the trees.

Corollary 2.2. If T is a tree of order n ≥ 4 and maximum degree ∆, then

F (T ) ≥ 2(n− 2) + (n− 1−∆)∆2 +
(2(n− 2)2 − (2n− 3−∆)∆)2

n2 − 6n+ 7 + ∆
,

with equality holding if and only if T ∼= Pn, or T ∼= K1,n−1.

Corollary 2.3. If T is a tree of order n ≥ 4 and maximum degree ∆, then

M1(T ) ≥ (n− 2)[2(n− 1)−∆] , (7)

with equality holding if and only if T ∼= Pn, or T ∼= K1,n−1.

Note that the inequalities (6) and (7) are equivalent because the equation M1(G) = 2m(n − 1) −M1(G) holds for any
graph G of order n and size m. In the next theorem, we determine a relationship between 0Rα(T ) and M1(T ).

Theorem 2.2. Let T be a tree of order n ≥ 4 and maximum degree ∆. If α ≤ 1 and T 6∼= K1,n−1 or if α ≥ 2, then it holds that

0Rα(T ) ≥ 2(n− 2)α−1 + ∆(n− 1−∆)α−1 +
(2(n2 − 3n+ 3)−M1(T )−∆(n− 1−∆))α−1

(2(n− 2)−∆)α−2
. (8)

When 1 ≤ α ≤ 2, the opposite inequality in (8) is valid. Equality in (8) holds if and only if either α = 1, or α = 2, or T ∼= Pn,
or T ∼= K1,n−1 and α ≥ 1.
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Proof. For r = α− 1, α ≤ 1 or α ≥ 2, pi = di, ai = n− 1− di, i = 1, 2, . . . , n, the inequality (4) transforms into(
n−2∑
i=2

di

)α−2 n−2∑
i=2

di(n− 1− di)α−1 ≥

(
n−2∑
i=2

di(n− 1− di)

)α−1
,

that is
(2m−∆− δ − dn−1)α−2

(
0Rα(G)−∆(n− 1−∆)α−1 − δ(n− 1− δ)α−1 − dn−1(n− 1− dn−1)α−1

)
≥
(

2m(n− 1)−M1(G)−∆(n− 1−∆)− δ(n− 1− δ)− dn−1(n− 1− dn−1)
)α−1

.

When graph has a tree structure, we have m = n− 1 and dn−1 = dn = δ = 1, and the above inequality becomes

(2(n− 2)−∆)α−2
(
0Rα(T )− 2(n− 2)α−1 −∆(n− 1−∆)α−1

)
≥
(

2(n2 − 3n+ 3)−M1(T )−∆(n− 1−∆)
)α−1

, (9)

from which (8) is obtained.
Equality in (9) holds if and only if α = 1, or α = 2, or d2 = · · · = dn−2. Having this in mind and Lemma 2.2 we conclude

that equality in (8) holds if and only if either α = 1, or α = 2, or T ∼= Pn, or T ∼= K1,n−1 and α ≥ 1.

Corollary 2.4. Let T be a tree of order n ≥ 4 and maximum degree ∆. If α ≤ 1 and T 6∼= K1,n−1 or if α ≥ 2, then it holds
that

0Rα(T ) ≥ 2(n− 2)α−1 + ∆(n− 1−∆)α−1 +
(2(n− 2)2 − (2n− 3−∆)∆)α−1

(2(n− 2)−∆)α−2
. (10)

When 1 ≤ α ≤ 2 the opposite inequality in (10) is valid. Equality in (10) holds if and only if either α = 1, or T ∼= Pn, or
T ∼= K1,n−1 and α ≥ 1.

From Corollary 2.4, we obtain lower bounds on the forgotten topological coindex F and on the first Zagreb coindex M1

of the complement of trees.

Corollary 2.5. If T is a tree of order n ≥ 4 and maximum degree ∆, then

F (T ) ≥ 2(n− 2)2 + ∆(n− 1−∆)2 +
(2(n− 2)2 − (2n− 3−∆)∆)2

2(n− 2)−∆
.

with equality if and only if T ∼= Pn, or T ∼= K1,n−1.

Corollary 2.6. If T is a tree of order n ≥ 4 and maximum degree ∆, then

M1(T ) ≥ (n− 2)[2(n− 1)−∆] , (11)

with equality holding if and only if T ∼= Pn, or T ∼= K1,n−1.

It needs to be noted here that the inequalities (6), (7) and (11) are equivalent because it holds that M1(G) = M1(G) =

2m(n− 1)−M1(G) for any graph G of order n and size m. Next result follows from Corollaries 2.2 and 2.5.

Corollary 2.7. If T is a tree of order n ≥ 4 and maximum degree ∆, then

F (T ) + F (T ) ≥ (n− 1)

(
2(n− 2) + (n− 1−∆)∆ +

(n− 3)(2(n− 2)2 − (2n− 3−∆)∆)2

(2(n− 2)−∆)(n2 − 6n+ 7 + ∆)

)
.

with equality if and only if T ∼= Pn, or T ∼= K1,n−1.
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[2] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17–100.
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